1
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Jain G, Chaurasia R, Kaur BP, Chowdhury OP, Roy H, Gupta RR, Biswas B, Chakrabarti S, Mukherjee M. Unleashing the antibacterial potential of ZIFs and their derivatives: mechanistic insights. J Mater Chem B 2025; 13:3270-3291. [PMID: 39935286 DOI: 10.1039/d4tb02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Antibiotic resistance presents an alarming threat to global health, with bacterial infections now ranking among the leading causes of mortality. To address this escalating challenge, strategies such as antibiotic stewardship, development of antimicrobial therapies, and exploration of alternative treatment modalities are imperative. Metal-organic frameworks (MOFs), acclaimed for their outstanding biocompatibility and in vivo biodegradability, are promising avenues for the synthesis of novel antibiotic agents under mild conditions. Among these, zeolitic imidazolate frameworks (ZIFs), a remarkable subclass of MOFs, have emerged as potent antibacterial materials; the efficacy of which stems from their porous structure, metal ion content, and tunable functionalized groups. This could be further enhanced by incorporating or encapsulating metal ions, such as Cu, Fe, Ti, Ag, and others. This perspective aims to underscore the potential of ZIFs as antibacterial agents and their underlying mechanisms including the release of metal ions, generation of reactive oxygen species (ROS), disruption of bacterial cell walls, and synergistic interactions with other antibacterial agents. These attributes position ZIFs as promising candidates for advanced applications in combating bacterial infections. Furthermore, we propose a novel approach for synthesizing ZIFs and their derivatives, demonstrating exceptional antibacterial efficacy against Escherichia coli and Staphylococcus aureus. By highlighting the benefits of ZIFs and their derivatives as antibacterial agents, this perspective emphasizes their potential to address the critical challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Geetika Jain
- Amity Institute of Nanotechnology, Amity University, Noida, UP 201313, India
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Radhika Chaurasia
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bani Preet Kaur
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | | | - Hiranmay Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Richa Rani Gupta
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Sandip Chakrabarti
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Monalisa Mukherjee
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| |
Collapse
|
3
|
Tan H, Liu X, Wang Y, Yang Y, Wang X, Zhu C. Methylene blue-functionalized ZIF-8/Au nanoparticle composites based ratiometric electrochemical sensor for reliable detection of methyl parathion in vegetables. Food Chem 2025; 464:141812. [PMID: 39486285 DOI: 10.1016/j.foodchem.2024.141812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
A novel ratiometric electrochemical sensor based on methylene blue-functionalized ZIF-8/Au nanoparticle composites (ZIF-8@MB/AuNPs) was constructed for reliable detection of methyl parathion (MP). The ZIF-8@MB/AuNPs composites were prepared by a simple and mild room-temperature method. Here, ZIF-8 was served as a support for loading functional nanomaterials, which helps to improve the adsorption and accumulation capacity for MP. The functional electroactive molecule methylene blue (MB) was adopted to produce a stable reference signal and form a ratiometric sensing strategy, offering more accurate and reliable detection results. The decoration of Au nanoparticles can effectively enhance the conductivity and catalytic activity of the composites. The obtained ZIF-8@MB/AuNPs composites exhibited a superior electrochemical catalytic performance toward MP. According to the ratiometric signal of IMP/IMB, the developed sensor offered a detection range of 0.05-30 μg mL-1 and exhibited favorable selectivity, reproducibility and stability, and satisfactory applicability in vegetable samples.
Collapse
Affiliation(s)
- Hao Tan
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaohong Liu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Ying Wang
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yiming Yang
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xi Wang
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chengxi Zhu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
4
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
5
|
Xu C, Tan J, Li Y. Application of Electrospun Nanofiber-Based Electrochemical Sensors in Food Safety. Molecules 2024; 29:4412. [PMID: 39339407 PMCID: PMC11434313 DOI: 10.3390/molecules29184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Food safety significantly impacts public health and social welfare. Recently, issues such as heavy metal ions, drug residues, food additives, and microbial contamination in food have become increasingly prominent. Electrochemical sensing technology, known for its low cost, simplicity, rapid response, high sensitivity, and excellent selectivity, has been crucial in food safety detection. Electrospun nanofibers, with their high specific surface area, superior mechanical properties, and design flexibility, offer new insights and technical platforms for developing electrochemical sensors. This study introduces the fundamental principles, classifications, and detection mechanisms of electrochemical sensors, along with the principles and classifications of electrospinning technology. The applications of electrospun nanofiber-based electrochemical sensors in food safety detection over the past five years are detailed, and the limitations and future research prospects are discussed. Continuous innovation and optimization are expected to make electrospun nanofiber-based electrochemical sensors a key technology in rapid food safety detection, providing valuable references for expanding their application and advancing food safety detection methods.
Collapse
Affiliation(s)
- Changdong Xu
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jianfeng Tan
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
6
|
Maleki F, Razmi H, Rashidi MR, Yousefi M, Ramezani S, Ghorbani M. Electrospun EU/HPMC nanofibers decorated by ZIF-8 nanoparticle as the advanced electrochemical biosensor modifier for sensitive and selective detection of c-MET cancer biomarker in human plasma sample. Biosens Bioelectron 2024; 257:116319. [PMID: 38669845 DOI: 10.1016/j.bios.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This research presents a selective and sensitive electrochemical biosensor for the detection of the mesenchymal-epithelial transition factor (c-MET). The biosensing is based on a modification of the SPCE (screen-printed carbon electrode) with the electrospun nanofiber containing eudragit (EU), hydroxypropyl methylcellulose (HPMC), and Zeolite imidazolate frameworks (ZIF-8) nanoparticles. EU/HPMC/ZIF-8 nanofibers have presented a high capability of electron transfer, and more active surface area than bare SPCE due to synergistic effects between EU, HPMC, and ZIF-8. On the other hand, EU/HPMC nanofibers provided high porosity, flexible structures, high specific surface area, and good mechanical strength. The presence of ZIF-8 nanoparticles improved the immobilization of anti-c-MET on the modified SPCE and also resulted in increasing the conductivity. By c-MET incubation on the modified SPCE, c-MET was connected to anti-c-MET, and consequently the electrochemical signal of [Fe(CN)6]3-/4- as the anion redox probe was reduced. In order to investigate the structural and morphological characteristics and elemental composition of electrospun nanofibers, various characterization methods including FE-SEM, XRD, FTIR, and EDS were used. Under optimum conditions with a working potential range -0.3-0.6 V (vs. Ag/AgCl), linear range (LR), correlation coefficient (R2), sensitivity, and limit of detection (LOD) were acquired at 100 fg/mL-100 ng/mL, 0.9985, 53.28 μA/cm2.dec, and 1.28 fg/mL, respectively. Moreover, the mentioned biosensor was investigated in a human plasma sample to determine c-MET and showed ideal results including reproducibility, stability, and good selectivity against other proteins.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soghra Ramezani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia 5716693188, Iran
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, PO Box:14965/115, Tehran, Iran.
| |
Collapse
|
7
|
Lin J, Shen C, Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ. Thermo-Switchable Enzyme@Metal-Organic Framework for Selective Biocatalysis and Biosensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052986 DOI: 10.1021/acsami.4c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.
Collapse
Affiliation(s)
- Jiale Lin
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Cai Shen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne 3010, Australia
| | - Yongfa Cheng
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence Department of Agro-Industry, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
8
|
Qin Z, Jiang Q, Zou Y, Chen M, Li J, Li Y, Zhang H. Synthesis of Nanosized γ-Cyclodextrin Metal-Organic Frameworks as Carriers of Limonene for Fresh-Cut Fruit Preservation Based on Polycaprolactone Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400399. [PMID: 38607266 DOI: 10.1002/smll.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Indexed: 04/13/2024]
Abstract
To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.
Collapse
Affiliation(s)
- Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yucheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Meiyu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Li Q, Qu K. Electrochemical Impedimetric Platform Based on Con A@MIL-101 for Glycoprotein Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7974-7981. [PMID: 38564230 DOI: 10.1021/acs.langmuir.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An electrochemical impedimetric biosensing platform with lectin as a molecular recognition element has been established for the sensitive detection of glycoproteins, a class of important biomarkers in clinical diagnosis. One of the representative metal-organic framework materials, MIL-101(Cr)-NH2, was utilized as the supporting matrix, and its amino groups served as the anchors to immobilize the lectins of concanavalin A (Con A), constituting Con A@MIL-101(Cr)-NH2 for the determination of invertase (INV) as a model glycoprotein. The Con A concentration, immobilization time, and incubation time with INV were optimized. Under the optimal conditions, the degree of impedance increase was linearly proportional to the logarithm of INV concentration between 1.0 × 10-16 and 1.0 × 10-11 M, affording a limit of detection as low as 3.98 × 10-18 M. Good specificity, stability, reproducibility, and repeatability were demonstrated for the fabricated biosensing platform. Moreover, real mouse serum samples were spiked with different concentrations of INV. Excellent recoveries were obtained, which demonstrated the biosensing platform's capability of analyzing glycoproteins within a complex matrix.
Collapse
Affiliation(s)
- Qianlan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Ke Qu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
10
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
11
|
Balasubramaniyan NG, Perumal P. Highly efficient electrochemical detection of H 2O 2 utilizing an innovative copper porphyrinic nanosheet decorated bismuth metal-organic framework modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:624-638. [PMID: 38198128 DOI: 10.1039/d3ay01804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ability to detect hydrogen peroxide is important due to the presence in biological systems. Researchers are highly interested in developing efficient electrochemical hydrogen peroxide sensors. Metal-organic frameworks (MOFs) with their composites, an emerging class of porous materials, are ideal candidates for heterogeneous catalysts because of their versatile functionalities. Using a facile solvothermal reaction, we fabricated a 2D Cu-TCPP nanosheet uniformly grown on a 3D Bi-MOF. The process takes advantage of the large surface area and pore volume of the Bi-MOF while maintaining the crystallinity of Bi-BTC when Cu-TCPP is added to the surface. The sensor was fabricated by depositing the Bi-BTC-Cu-TCPP nanocomposites on a glassy carbon electrode to conduct electrochemical measurements such as cyclic voltammetry and electrochemical impedance spectroscopy. Finally, differential pulse voltammetry was utilized to investigate the effect of hydrogen peroxide on the electrochemical activity of Bi-BTC-Cu-TCPP deposited on a glassy carbon electrode. This electrode showed high electrochemical performance activity for the reduction of hydrogen peroxide. The sensor showed a linear response to H2O2 in the 10-120 μM concentration range, with a detection limit of 0.20 μM. The sensor was also stable and selective for H2O2 in the presence of other interfering species. This work demonstrates the potential of nanocomposite-based electrochemical sensors for sensitive and selective detection of H2O2. Besides, the modified electrode has many advantages, including remarkable catalytic activity, long-term stability, good reproducibility, and a good signal response during H2O2 reduction.
Collapse
Affiliation(s)
- Nandha Gopal Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| |
Collapse
|
12
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024; 55:581-602. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
13
|
Manoj D, Rajendran S, Murphy M, Jalil AA, Sonne C. Recent progress and perspectives of metal organic frameworks (MOFs) for the detection of food contaminants. CHEMOSPHERE 2023; 340:139820. [PMID: 37586499 DOI: 10.1016/j.chemosphere.2023.139820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.
Collapse
Affiliation(s)
- Devaraj Manoj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manoharan Murphy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| |
Collapse
|
14
|
Li Q, Yang J, Yu W, He L, Zhou R, Nie C, Liao L, Xiao X. Two Fe(III)/Eu(III) Salophen complex-based optical sensors for determination of organophosphorus pesticide monocrotophos. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2334-2342. [PMID: 37140268 DOI: 10.1039/d3ay00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Monocrotophos (MP), an organophosphorus pesticide, poses a serious threat to human health, so a rapid and simple technique is needed to detect it. In this study, two novel optical sensors for MP detection were created using the Fe(III) Salophen complex and Eu(III) Salophen complex, respectively. One sensor is an Fe(III) Salophen complex (I-N-Sal), which can bind MP selectively and form a supramolecule, resulting in a strong resonance light scattering (RLS) signal at 300 nm. Under the optimum conditions, the detection limit was 30 nM, the linear range was 0.1-1.1 μM, the correlation coefficient R2 = 0.9919, and the recovery rate range was 97.0-103.1%. Interaction properties between the sensor I-N-Sal and MP and the RLS mechanism were investigated using density functional theory (DFT). And another sensor is based on the Eu(III) Salophen complex and 5-aminofluorescein derivatives. The Eu(III) Salophen complex was immobilized on the surface of amino-silica gel (Sigel-NH2) particles as the solid phase receptor (ESS) of MP and 5-aminofluorescein derivatives as the fluorescent (FL)-labeled receptor (N-5-AF) of MP, which can selectively bind the MP and form a sandwich-type supramolecule. Under the optimum conditions, the detection limit was 0.4 μM, the linear range was 1.3-7.0 μM, the correlation coefficient R2 = 0.9983, and the recovery rate range was 96.6-101.1%. Interaction properties between the sensor and MP were investigated by UV-vis, FT-IR, and XRD. Both sensors were successfully applied to the determination of MP content in tap water and camellia.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Jing Yang
- Hengyang Market Supervision, Inspection and Testing Center, Hengyang City 421001, P. R. China
| | - Wenzhan Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Liqiong He
- Department of Public Health and Laboratory Science, School of Public Health, University of South China, Hengyang 421001, P. R. China
| | - Renlong Zhou
- Department of Public Health and Laboratory Science, School of Public Health, University of South China, Hengyang 421001, P. R. China
| | - Changming Nie
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, China.
| |
Collapse
|
15
|
Mohd Mokhtar NAI, Ashari SE, Mohd Zawawi R. Optimization of a lipase/reduced graphene oxide/metal-organic framework electrode using a central composite design-response surface methodology approach. RSC Adv 2023; 13:13493-13504. [PMID: 37152575 PMCID: PMC10155190 DOI: 10.1039/d3ra01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Lipase has been gaining attention as the recognition element in electrochemical biosensors. Lipase immobilization is important to maintain its stability while providing excellent conductivity. In this study, a lipase electrochemical biosensor immobilized on a copper-centred metal-organic framework integrated with reduced graphene oxide (lipase/rGO/Cu-MOF) was synthesized by a facile method at room temperature. Response surface methodology (RSM) via central composite design (CCD) was used to optimize the synthesis parameters, which are rGO weight, ultrasonication time, and lipase concentration, to maximize the current response for the detection of p-nitrophenyl acetate (p-NPA). The results of the analysis of variance (ANOVA) showed that all three parameters were significant, while the interaction between the ultrasonication time and lipase concentration was the only significant interaction with a p-value of less than 0.05. The optimized electrode with parameters of 1 mg of rGO, 30 min ultrasonication time, and 30 mg mL-1 lipase exhibited the highest current response of 116.93 μA using cyclic voltammetry (CV) and had a residual standard error (RSE) of less than 2% in validation, indicating that the model is suitable to be used. It was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR), where the integration of the composite was observed. Immobilization using ultrasonication altered the lipase's secondary structure, but reduced its unorderly coils. The electrochemical and thermal analysis showed that the combination of Cu-MOF with rGO enhanced the electrochemical conductivity and thermostability.
Collapse
Affiliation(s)
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| |
Collapse
|
16
|
Zhang W, Li X, Ding X, Hua K, Sun A, Hu X, Nie Z, Zhang Y, Wang J, Li R, Liu S. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC Adv 2023; 13:10800-10817. [PMID: 37033424 PMCID: PMC10074235 DOI: 10.1039/d3ra00966a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023] Open
Abstract
Metal-organic framework composites have the advantages of large surface area, high porosity, strong catalytic efficiency and good stability, which provide a great possibility of finding excellent electrode materials for electrochemical sensors. However, MOF composites still face various challenges and difficulties, which limit their development and application. This paper reviews the application of MOF composites in electrochemical sensors, including MOF/carbon composites, MOF/metal nanoparticle composites, MOF/metal oxide composites and MOF/enzyme composites. In addition, the application challenges of MOF composites in electrochemical sensors are summarized. Finally, the application prospect for MOF composites is considered to promote the synthesis of more MOF composites with excellent properties.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Xiaoman Ding
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Kang Hua
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Aili Sun
- School of 3D Printing, Xinxiang University Xinxing 453003 China
| | - Xinxin Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Ziwei Nie
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Yongsheng Zhang
- China Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| |
Collapse
|
17
|
Song D, Xu X, Huang X, Li G, Zhao Y, Gao F. Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal-Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2600-2609. [PMID: 36715487 DOI: 10.1021/acs.jafc.2c08818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal oxides (TMOs) with a hollow multishelled structure have emerged as highly potential materials for high-performance electrochemical sensing, benefiting from their superior electronic conductivity, exceptionally large specific surface area, excellent stability, and electrochemistry properties. In particular, binary TMOs are expected to outperform unitary TMOs due to the synergistic effect of the different metals. Herein, MnCo2O4.5 hollow quadruple-shelled porous micropolyhedrons (MnCo2O4.5 HoQS-MPs) were prepared and employed to construct an ultrasensitive sensing platform for a multipesticide assay. Profiting from complex hollow interior structures and abundant active sites, the MnCo2O4.5 HoQS-MPs manifest outstanding electrochemical properties as electrode materials for the pesticide assay. The MnCo2O4.5 HoQS-MP-based biosensor demonstrated remarkable performance for monocrotophos, methamidophos, and carbaryl detection, with wide linear ranges, as well as low detection limits. This work unveils a new pathway for the ultrasensitive detection of pesticides and demonstrates tremendous potential for detecting other environmentally deleterious chemicals.
Collapse
Affiliation(s)
- Dandan Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xiaoyue Xu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xingge Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Guoqiang Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Yisong Zhao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao066004, P. R. China
| |
Collapse
|
18
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
19
|
Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Mikrochim Acta 2022; 189:461. [DOI: 10.1007/s00604-022-05562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
|
20
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
21
|
Xia Z, Zhou Y, Gong Y, Mao P, Zhang N, Yuan C, Xue W. AuNPs and graphdiyne nanocomposite as robust electrocatalyst for methyl parathion detection in real samples. ANAL SCI 2022; 38:1513-1522. [PMID: 36071334 DOI: 10.1007/s44211-022-00184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
The present work describes a simple and rapid synthesis method of gold nanoparticles and graphdiyne (AuNPs@GDY) nanocomposites including porous structure. Moreover, the synthesized AuNPs@GDY material was decorated on the glassy carbon electrode (GCE) with a drop coating method to construct a non-enzymatic electrochemical pesticides sensor. The micro-morphology and elemental composition of the materials were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The electrocatalysis and conductivity of the material were studied with cyclic voltammetry (CV) and impedance method, respectively. The properties of the sensor were investigated by CV and differential pulse voltammetry (DPV). The results showed that AuNPs@GDY exhibited excellent electrocatalytic ability for methyl parathion in a wide linear range (from 0.25 ng/mL to 24.43 μg/mL) and low limit of detection value (6.2 pg/mL). Furthermore, the DPV method used in this paper was accurate and sensitive, and could be used for routine quality control of methyl parathion in kiwi fruit and tomato samples.
Collapse
Affiliation(s)
- Zhi Xia
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, People's Republic of China
| | - Yuanxiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuchen Gong
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Piao Mao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nian Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chunmei Yuan
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
22
|
Research Progress of Nanomaterials-Based Sensors for Food Safety. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
24
|
Sohrabi H, Sani PS, Orooji Y, Majidi MR, Yoon Y, Khataee A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem Toxicol 2022; 165:113176. [DOI: 10.1016/j.fct.2022.113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|
25
|
Bimetallic Mn/Fe MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of organophosphate. Anal Chim Acta 2022; 1202:339676. [DOI: 10.1016/j.aca.2022.339676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
|
26
|
Cheng W, Zhang Q, Wu D, Yang Y, Zhang Y, Tang X. A facile electrochemical method for rapid determination of 3-chloropropane-1,2-diol in soy sauce based on nanoporous gold capped with molecularly imprinted polymer. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
28
|
Ding R, Li Z, Xiong Y, Wu W, Yang Q, Hou X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit Rev Anal Chem 2022; 53:1766-1791. [PMID: 35235478 DOI: 10.1080/10408347.2022.2041391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Organophosphorus pesticides were easily remained in fruits and vegetables which would be harm to the environmental safety and human health. In recent years, due to the simple preparation process, fast response and high sensitivity, the electrochemical (bio)sensors have received increasing attention, which were extensively used as the sensing platform for the detection of OPPs. The mechanisms for the determination of OPPs mainly included redox of nitrophenyl OPPs, enzyme hydrolysis and inhibition, immunosensor, aptasensor. Nowadays, the mainly explored electrode material has focused on metal-organic frameworks, metal and metal derivatives, carbon materials (carbon nanotube, graphene, g-C3N4), MXene, etc. These nanomaterials played important roles in the electrochemical (bio)sensors, which included: (a) as an electrocatalyst to promote the redox reaction, (b) as a carrier to load the enzyme or aptamer, (c) as a recognizer to identify the targets. The nanomaterials-based electrochemical (bio)sensor was a rapid, cost-effective methods to detect OPPs with high sensitivity. Besides, this review compared the analytical performance of different nanomaterials-based electrochemical (bio)sensors, and also identified the key challenges in the future. It would provide new ideas and insights to the further development and application of electrochemical (bio)sensors and the detection of pesticides in real samples.
Collapse
Affiliation(s)
- Rong Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
29
|
Bhattu M, Kathuria D, Billing BK, Verma M. Chromatographic techniques for the analysis of organophosphate pesticides with their extraction approach: a review (2015-2020). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:322-358. [PMID: 34994766 DOI: 10.1039/d1ay01404h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In agriculture, a wide range of OPPs has been employed to boost crop yield, quality, and storage life. However, due to the ever-increasing population and rapid urbanization, pesticide use has surged in recent years. These compounds are exceedingly poisonous to humans, and despite the fact that specific legislation prohibits their use, the frequency of toxic and/or fatal incidents, as well as current statistics, suggest that they are currently accessible. As a result, determining the exposure to these substances as well as their detection (and that of their metabolites) in different types of exposed samples has become a hot issue in terms of quality and safety concerns. However, developing tools for the evaluation of these substances is a critical challenge for laboratories. Various chromatographic-based methods reported in the period of 2015-2020 have been developed, which are summarized and critically reviewed in this article, including the extraction of the target OPPs from different kinds of matrices. A comparison among the extraction and analysis techniques has been made in the current review article.
Collapse
Affiliation(s)
- Monika Bhattu
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Beant Kaur Billing
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| |
Collapse
|
30
|
Li J, Yang F, Huang J, Xiang Y, Wang B, Sun X, Liu Y, Kong Q, Chen W, Li P, Guo Y. Novel Pyramidal DNA Nanostructure as a Signal Probe Carrier Platform for Detection of Organophosphorus Pesticides. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Wu X, Wei J, Wu C, Lv G, Wu L. ZrO 2/CeO 2/polyacrylic acid nanocomposites with alkaline phosphatase-like activity for sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120165. [PMID: 34304012 DOI: 10.1016/j.saa.2021.120165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we synthesized ZrO2/CeO2/polyacrylic acid (PAA) nanocomposites (nanozyme) with phosphatase-like activity. ZrO2 evenly distributed in CeO2 nanorods considered as lewis acids to enhance the phosphatase-like activity of CeO2 nanorods. Furthermore, PAA was used to coat ZrO2/CeO2/ nanorods and improve the dispersion, stability and robustness. The ZrO2/CeO2/PAA nanocomposites had 100% enhanced phosphatase-like activity compared with CeO2 nanorods and excellent adaptability in a wide pH range from 4.0 to 12.0. ZrO2/CeO2/PAA nanocomposites could hydrolyze methyl parathion (MP) to p-nitrophenol (p-NP) with bright yellow color for colorimetric detection. The developed colorimetric detection system showed a linear response from 7.60 × 10-11-7.60 × 10-8 M with a detection limit of 0.021 nM and was successfully applied for the determination of MP in corn samples.
Collapse
Affiliation(s)
- Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
32
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
33
|
Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian JY, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Li S, Pang C, Ma X, Zhang Y, Xu Z, Li J, Zhang M, Wang M. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Mikrochim Acta 2021; 188:438. [PMID: 34839414 DOI: 10.1007/s00604-021-05084-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023]
Abstract
The rapid detection of insecticides such as parathion-methyl (PM) requires methods with high sensitivities and selectivities. Herein, a dual catalytic amplification strategy was developed using Fe3O4 nanozyme-supported carbon quantum dots and silver terephthalate metal-organic frameworks (Fe3O4/C-dots@Ag-MOFs) as current amplification elements. Based on this strategy, a novel electrochemical microfluidic paper-based chip was designed to detect PM. Fe3O4/C-dots@Ag-MOFs were synthesised by a hydrothermal method, and a molecularly imprinted polymer (MIP) was then synthesised on the surface of Fe3O4/C-dots@Ag-MOFs using PM as a template molecule. Finally, the reaction zone of a chip was modified with MIP/Fe3O4/C-dots@Ag-MOFs. PM from a sample introduced into the reaction zone was captured by the MIP, which generated a reduction current response at - 0.53 V in a three-electrode system embedded in the chip. Simultaneous catalysis by Fe3O4/C-dots and Ag-MOFs significantly enhanced the signal. The chip had a detection limit of 1.16 × 10-11 mol L-1 and was successfully applied to the determination of PM in agricultural products and environmental samples with recovery rates ranging from 82.7 to 109%, with a relative standard deviation (RSD) of less than 5.0%. This approach of combining a dual catalytic amplification strategy with an MIP significantly increased the sensitivity as well as selectivity of chips and can potentially be used to detect a wide variety of target analytes using microfluidic paper-based chips.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Yanling Zhang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Mingyue Wang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| |
Collapse
|
35
|
Cheng C, Shen C, Lai OM, Tan CP, Cheong LZ. Biomimetic self-assembly of lipase-zeolitic imidazolate frameworks with enhanced biosensing of protox inhibiting herbicides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4974-4984. [PMID: 34661208 DOI: 10.1039/d1ay01307f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protox inhibiting herbicides such as nitrofen have detrimental effects on the environment and human health. The current work aims to fabricate a Candida rugosa lipase (CRL)-based electrochemical sensor for rapid and sensitive detection of protox inhibiting herbicides (nitrofen). We proposed the use of poly(vinylpyrrolidone) (PVP) and amino-acids to promote accumulation of Zn2+ ions at the surfaces of Candida rugosa lipase (CRL) and subsequently induce self-assembly of a CRL-zeolitic imidazolate framework (ZIF) structure. This process can be easily and rapidly achieved via a one-pot facile self-assembly method. Steady-state fluorescence spectroscopy indicated that CRL has undergone a conformational change following encapsulation within the ZIF structure. This conformational change is beneficial as the prepared PVP/Glu/CRL@ZIF-8 exhibited enhanced catalytic activity (207% of native CRL), and higher substrate affinity (lower Km than native CRL) and showed high stability under harsh denaturing conditions. PVP/Glu/CRL@ZIF-8 was finally used for electrochemical biosensing of nitrofen. The fabricated biosensor has a wide linear detection range (0-100 μM), a lower limit of detection and a good recovery rate.
Collapse
Affiliation(s)
- Chuanchuan Cheng
- Department of Food Science, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Cai Shen
- Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo 315201, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Bimolecular Sciences, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia
| | - Ling-Zhi Cheong
- Department of Food Science, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
36
|
Ma X, Qian K, Ejeromedoghene O, Kandawa-Schulz M, Song W, Wang Y. p-Co-BDC/AuNPs-based multiple signal amplification for ultra-sensitive electrochemical determination of miRNAs. Anal Chim Acta 2021; 1183:338979. [PMID: 34627529 DOI: 10.1016/j.aca.2021.338979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
In this work, we report AuNPs-decorated pyrolyzed Co-BDC nanosheets (p-Co-BDC/AuNPs) as high-performance electrocatalyst for developing an electrochemical platform. p-Co-BDC/AuNPs as a new electrocatalyst showed superior electrocatalytic activity towards the electrochemical oxidation of methylene blue (MB). Besides, magnetic p-Co-BDC/AuNPs can be well immobilized on the magnetic glassy carbon electrode without further assistance. The oxidation of MB can be reduced by ascorbic acid. Inspired by this phenomenon, an electrochemical biosensor was constructed based on multiple signal amplification for the diagnosis of miRNAs. Firstly, p-Co-BDC/AuNPs enhanced the electrochemical oxidation of MB. Then, strand displacement amplification reaction can form lots of double helix structure DNA to embed more MB molecules. Finally, ascorbic acid in the electrolyte was utilized to reduce the oxidation of MB and improve the electrochemical signal of MB electro-oxidation. The linear detection range for the detection of miRNAs is 100 aM to 10 nM, and the limit of detection is 86 aM. Furthermore, the constructed biosensor also displayed satisfactory selectivity, good reproducibility, and excellent recovery in the detection of real samples. We are convinced that our proposed multiple signal amplification strategy will provide more promising methods for the diagnosis of cancer.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Kun Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | | | - Wei Song
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
37
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
38
|
Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4390-4428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are generally utilized for the protection of crops from pests. Because the use of OPPs in various agricultural operations has expanded dramatically, precise monitoring of their concentration levels has become the critical issue, which will help in the protection of ecological systems and food supply. However, the World Health Organization (WHO) has classified them as extremely dangerous chemical compounds. Taking their immense use and toxicity into consideration, the development of easy, rapid and highly sensitive techniques is necessary. Despite the fact that there are numerous conventional ways for detecting OPPs, the development of portable sensors is required to make routine analysis considerably more convenient. Some of these advanced techniques include colorimetric sensors, fluorescence sensors, molecular imprinted polymer-based sensors, and surface plasmon resonance-based sensors. This review article specifically focuses on the colorimetric, fluorescence and electrochemical sensors. In this article, the sensing strategies of these developed sensors, analytical conditions and their respective limit of detection are compiled.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Deepika Kathuria
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| |
Collapse
|
39
|
Zhang C, Jiang C, Lan L, Ping J, Ye Z, Ying Y. Nanomaterial-based biosensors for agro-product safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Recent advances of enzyme biosensors for pesticide detection in foods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Cheng W, Tang X, Zhang Y, Wu D, Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
43
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
44
|
Liu B, Peng Z, Wu S, He T, Qiu P. A sensitive fluorescent assay for the determination of parathion-methyl using AHNSA probe with MnO 2 nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119146. [PMID: 33186817 DOI: 10.1016/j.saa.2020.119146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a novel fluorescence assay has been constructed for the determination of parathion-methyl (PM) by using 4-amino-3-hydroxy-1-naphthalenesulfonic acid (AHNSA) as probe. MnO2 nanosheets (MnO2 NS) could quench the fluorescence of AHNSA, while Mn2+, the reduction product of MnO2 NS, has no influence on it, resulting in fluorescence recovery. This is because that MnO2 NS have oxidized characteristic, and they can react with choline (TCh), which is the product of acetylthiocholine (ATCh) catalyzed by acetylcholinesterase (AChE). In the presence of OPs, the activity of AChE was inhibited, accompanied by the restraint of the redox reaction of MnO2 NS, therefore the fluorescence of AHNSA was quenched. Under the optimized experimental conditions, a linear range of PM was determined to be 0.4-40 ng/mL (R2 = 0.997) by the proposed method with the limit of detection for 0.18 ng/mL (S/N = 3). The assay was successfully applied to the determination of PM in lake water, which average recoveries were between 86.5% and 114.4%.
Collapse
Affiliation(s)
- Bicheng Liu
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Sihao Wu
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Tianshuang He
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
45
|
Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C. Proline-Modified UIO-66 as Nanocarriers to Enhance Candida rugosa Lipase Catalytic Activity and Stability for Electrochemical Detection of Nitrofen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4146-4155. [PMID: 33440928 DOI: 10.1021/acsami.0c17134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immobilization can be used to improve the stability of lipases and enhances lipase recovery and reusability, which increases its commercial value and industrial applications. Nevertheless, immobilization frequently causes conformational changes of the lipases, which decrease lipase catalytic activity. in the present work, we synthesized UIO-66 and grafted UIO-66 crystals with proline for immobilization of Candida rugosa lipase (CRL). As indicated by steady-state fluorescence microscopy, grafting of proline onto UIO-66 crystals induced beneficial conformational change in CRL. CRL immobilized on UIO-66/Pro (CRL@UIO-66/Pro) demonstrated higher enzyme activity and better recyclability than that immobilized on UIO-66 (CRL@UIO-66) in both hydrolysis (CRL@UIO-66/Pro: 0.34 U; CRL@UIO-66: 0.15 U) and transesterification (CRL@UIO-66/Pro: 0.93 U; CRL@UIO-66: 0.25 U) reactions. The higher values of kcat and kcat/Km of CRL@UIO-66/Pro also showed that it had better catalytic efficiency as compared to CRL@UIO-66. It is also worth noting that CRL@UIO-66/Pro (0.93 U) demonstrated a much higher transesterification activity as compared to free CRL (0.11 U), indicating that UIO-66/Pro has increased the solvent stability of CRL. Both CRL@UIO-66 and CRL@UIO-66/Pro were also used for the fabrication of biosensors for nitrofen with a wide linear range (0-100 μM), lower limit of detection, and good recovery rate.
Collapse
Affiliation(s)
- Yongfa Cheng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315211, China
| | - Oi-Ming Lai
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315211, China
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chin-Ping Tan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315211, China
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315211, China
| | - Cai Shen
- Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo 315201, China
| |
Collapse
|
46
|
de Sousa PAR, Squissato AL, Munoz RAA, Coelho LM, de Melo EI, da Silva RAB. Cloud-point extraction associated with voltammetry: preconcentration and elimination of the sample matrix for trace determination of methyl parathion in honey. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5801-5814. [PMID: 33319873 DOI: 10.1039/d0ay02057e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work presents the association of cloud point extraction (CPE) and electroanalysis for the selective and sensitive determination of methyl parathion (MP) in honey. The CPE step provided the pre-concentration of MP from a complex sample, in which the optimized extraction parameters (Triton X-100 concentration of 0.75% w/v, NaCl concentration of 1.0% w/v and heating time of 30 min) were investigated using a factorial design (23). The detection of MP was performed using a cathodically pre-treated boron-doped diamond (BDD) working electrode and square wave voltammetry (SWV), after a suitable dilution of the CPE extract in Britton-Robinson buffer pH 6.0 as the supporting electrolyte. MP presented three electrochemical processes over the BDD surface, but only the reduction peak at around -0.7 V was monitored for the MP determination (higher detectability). Improved reproducibility was reached by applying an in situ cleaning step (+2.0 V for 15 s) followed by a re-activation process (-2.0 V for 15 s) between measurements. Using the optimized variables, a linear range between 0.1 and 2.0 μmol L-1 was obtained for MP with a limit of detection of 0.006 μmol L-1, a 6-fold lower value when compared with the value attained without the CPE step. The experimental enrichment factor of MP was 6.1. Also, the optimized CPE allowed the determination of MP in honey samples with good accuracy (recovery between 94 and 106%), which was not possible using direct detection (without CPE) due to the matrix interference. This is the first paper that demonstrates the combination of CPE and electroanalysis for the determination of an organic compound.
Collapse
Affiliation(s)
- Priscila A R de Sousa
- Federal University of Goias, Av. Dr. Lamartine Pinto de Avelar, 1120, Catalão, GO, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Xu Y, Wang H, Li X, Zeng X, Du Z, Cao J, Jiang W. Metal-organic framework for the extraction and detection of pesticides from food commodities. Compr Rev Food Sci Food Saf 2020; 20:1009-1035. [PMID: 33443797 DOI: 10.1111/1541-4337.12675] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Pesticide residues in food matrices, threatening the survival and development of humanity, is one of the critical challenges worldwide. Metal-organic frameworks (MOFs) possess excellent properties, which include excellent adsorption capacity, tailorable shape and size, hierarchical structure, numerous surface-active sites, high specific surface areas, high chemical stabilities, and ease of modification and functionalization. These promising properties render MOFs as advantageous porous materials for the extraction and detection of pesticides in food samples. This review is based on a brief introduction of MOFs and highlights recent advances in pesticide extraction and detection through MOFs. Furthermore, the challenges and prospects in this field are also described.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Hui Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
48
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
49
|
R PR, Mukherjee I, Basu T, Bharadwaj LM. Metal Organic Framework steered electrosynthesis of anisotropic gold nanorods for specific sensing of organophosphate pesticides in vegetables collected from the field. NANOSCALE 2020; 12:21719-21733. [PMID: 33094779 DOI: 10.1039/d0nr04480f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The uncontrolled use of organophosphate (OP) group of pesticides has led to their accumulation in food and vegetables, causing major health issues. Hence, the development of a reliable sensor is imperative for the detection of neurotoxic organophosphates (OP). In the present study, we have intertwined the interfaces of a Metal Organic Framework (MOF), MOF-directed rapid electrochemically grown gold nanorods (aAuNR), cysteamine (Cys) functionalization, and the neurotransmitter acetylcholinesterase (AChE) to fabricate a novel electrochemical bioprobe AChE/Cys/aAuNR/MOF/ITO for sensing OP pesticides with an ultra-low detection limit of 3 ng L-1 over a linear range of 30 to 600 ng L-1. Prior to sensing, in silico docking studies were employed for tracking the structural aspects of the molecular recognition of specific OP as potential inhibitors. The sensor can quantify residues of sprayed OP (chlorpyrifos, malathion, parathion, methyl parathion, ethion) in field vegetables (Abelmoschus esculentus, Solanum melongena, Capsicum annuum, Momordica charantia Linn) using a single calibration curve designed using chlorpyrifos, and the results were validated via gas chromatography-electron capture detector (GC-ECD) measurements. The inhibition rate kinetics of structurally different OP (chlorpyrifos, malathion, methyl parathion) were studied via the bioprobe and further validated using the standard Ellman method, confirming the practical applicability of the sensor for the detection of a specific group of OP. The bioprobe AChE/Cys/aAuNR/MOF/ITO offers good stability, specificity, and anti-interference properties for the detection of OP in real samples.
Collapse
Affiliation(s)
- Pragadeeshwara Rao R
- Amity Centre for Nanomedicine, Amity University Uttar Pradesh, Noida 201303, India.
| | - Irani Mukherjee
- Division of Agricultural Chemicals Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tinku Basu
- Amity Centre for Nanomedicine, Amity University Uttar Pradesh, Noida 201303, India.
| | - Lalit M Bharadwaj
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201303, India
| |
Collapse
|
50
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|