1
|
You M, Li J, Wang X, Liu Y, Chen S, Wang P. Targeting SLC7 A11 Ameliorates Ulcerative Colitis by Promoting Efferocytosis Through the ERK1/2 Pathway. Inflammation 2025:10.1007/s10753-025-02312-6. [PMID: 40360947 DOI: 10.1007/s10753-025-02312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE AND DESIGN This study investigates the effect and underlying mechanism of targeting SLC7A11 in mitigating dextran sulfate sodium (DSS)-induced intestinal inflammation and injury in colitis. METHODS We utilized wild-type and SLC7A11-/+ mice to assess the inflammatory damage in DSS-induced colitis in vivo. In vitro, colon tissues from patients with ulcerative colitis were analyzed to compare SLC7A11 expression between inflamed and non-inflamed regions. Further mechanistic insights were obtained using Caco-2 cells and bone marrow-derived dendritic cells (BMDCs). RESULTS In human colon tissues, SLC7A11 expression was significantly elevated in inflamed regions compared to non-inflamed areas, particularly in dendritic cells. In vivo inhibition of SLC7A11 markedly alleviated DSS-induced colitis symptoms. In vitro, suppressing SLC7A11 restored the integrity of the Caco-2 monolayer intestinal epithelial model. Both knockout and inhibition of SLC7A11 enhanced ERK1/2 phosphorylation and increased efferocytosis in BMDCs. CONCLUSIONS Targeting SLC7A11 augments dendritic cell efferocytosis and preserves intestinal epithelial barrier function, potentially offering a therapeutic avenue for alleviating ulcerative colitis.
Collapse
Affiliation(s)
- Meiyi You
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Jichang Li
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xin Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Yucun Liu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Shanwen Chen
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| | - Pengyuan Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
2
|
Chen Y, Kou Y, Ni Y, Yang H, Xu C, Fan H, Liu H. Microglia efferocytosis: an emerging mechanism for the resolution of neuroinflammation in Alzheimer's disease. J Neuroinflammation 2025; 22:96. [PMID: 40159486 PMCID: PMC11955113 DOI: 10.1186/s12974-025-03428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by significant neuroinflammatory responses. Microglia, the immune cells of the central nervous system, play a crucial role in the pathophysiology of AD. Recent studies have indicated that microglial efferocytosis is an important mechanism for clearing apoptotic cells and cellular debris, facilitating the resolution of neuroinflammation. This review summarizes the biological characteristics of microglia and the mechanisms underlying microglial efferocytosis, including the factors and signaling pathways that regulate efferocytosis, the interactions between microglia and other cells that influence this process, and the role of neuroinflammation in AD. Furthermore, we explore the role of microglial efferocytosis in AD from three perspectives: its impact on the clearance of amyloid plaques, its regulation of neuroinflammation, and its effects on neuroprotection. Finally, we summarize the current research status on enhancing microglial efferocytosis to alleviate neuroinflammation and improve AD, as well as the future challenges of this approach as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yongping Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yang Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haotian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Cailin Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China.
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Aviani MG, Menard F. Emerging Roles for MFG-E8 in Synapse Elimination. J Neurochem 2025; 169:e70009. [PMID: 39891478 DOI: 10.1111/jnc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Synapse elimination is an essential process in the healthy nervous system and is dysregulated in many neuropathologies. Yet, the underlying molecular mechanisms and under what conditions they occur remain unclear. MFG-E8 is a secreted glycoprotein well known to act as an opsonin, tagging stressed and dying cells for engulfment by phagocytes. Opsonization of cells and debris by MFG-E8 for microglial phagocytosis in the CNS is well established, and its role in astrocytic phagocytosis, and trogocytosis-like engulfment of synapses is beginning to be explored. However, MFG-E8's function in other tissues is highly diverse, and evidence suggests that its role in the nervous system and on synapse elimination in particular may be more complex and varied than opsonization. In this review, we outline the documented direct and indirect effects of MFG-E8 on synapse elimination, while also proposing potential roles to be explored further, in particular, cytoskeletal reorganization of neurites and glia leading to synapse elimination by various mechanisms. Finally, we demonstrate the need for several open questions to be answered-chiefly, under what conditions might MFG-E8-mediated synapse elimination occur in favor of other mechanisms, and when might its activity be dysregulated, increasing unwanted synapse elimination and neurotoxicity?
Collapse
Affiliation(s)
- Marisa G Aviani
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Fred Menard
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
- Department of Chemistry, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Ye XH, Xu ZM, Shen D, Jin YJ, Li JW, Xu XH, Tong LS, Gao F. Gas6/Axl signaling promotes hematoma resolution and motivates protective microglial responses after intracerebral hemorrhage in mice. Exp Neurol 2024; 382:114964. [PMID: 39288830 DOI: 10.1016/j.expneurol.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) stands out as the most fatal subtype of stroke, currently devoid of effective therapy. Recent research underscores the significance of Axl and its ligand growth arrest-specific 6 (Gas6) in normal brain function and a spectrum of neurological disorders, including ICH. This study is designed to delve into the role of Gas6/Axl signaling in facilitating hematoma clearance and neuroinflammation resolution following ICH. METHODS Adult male C57BL/6 mice were randomly assigned to sham and ICH groups. ICH was induced by intrastriatal injection of autologous arterial blood. Recombinant mouse Gas6 (rmGas6) was administered intracerebroventricularly 30 min after ICH. Virus-induced knockdown of Axl or R428 (a selective inhibitor of Axl) treatment was administrated before ICH induction to investigate the protective mechanisms. Molecular changes were assessed using western blot, enzyme-linked immunosorbent assay and immunohistochemistry. Coronal brain slices, brain water content and neurobehavioral tests were employed to evaluate histological and neurofunctional outcomes, respectively. Primary glia cultures and erythrophagocytosis assays were applied for mechanistic studies. RESULTS The expression of Axl increased at 12 h after ICH, peaking on day 3. Gas6 expression did not remarkably changed until day 3 post-ICH. Early administration of rmGas6 following ICH significantly reduced hematoma volume, mitigated brain edema, and restored neurological function. Both Axl-knockdown and Axl inhibitor treatment abolished the neuroprotection of exogenous Gas6 in ICH. In vitro studies demonstrated that microglia exhibited higher capacity for phagocytosing eryptotic erythrocytes compared to normal erythrocytes, a process reversed by blocking the externalized phosphatidylserine on eryptotic erythrocytes. The erythrophagocytosis by microglia was Axl-mediated and Gas6-dependent. Augmentation of Gas6/Axl signaling attenuated neuroinflammation and drove microglia towards pro-resolving phenotype. CONCLUSIONS This study demonstrated the beneficial effects of recombinant Gas6 on hematoma resolution, alleviation of neuroinflammation, and neurofunctional recovery in an animal model of ICH. These effects were primarily mediated by the phagocytotic role of Axl expressed on microglia.
Collapse
Affiliation(s)
- Xiang-Hua Ye
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhi-Ming Xu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dan Shen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu-Jia Jin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jia-Wen Li
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xu-Hua Xu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
5
|
Zhang B, Zou Y, Yuan Z, Jiang K, Zhang Z, Chen S, Zhou X, Wu Q, Zhang X. Efferocytosis: the resolution of inflammation in cardiovascular and cerebrovascular disease. Front Immunol 2024; 15:1485222. [PMID: 39660125 PMCID: PMC11628373 DOI: 10.3389/fimmu.2024.1485222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases have surpassed cancer as significant global health challenges, which mainly include atherosclerosis, myocardial infarction, hemorrhagic stroke and ischemia stroke. The inflammatory response immediately following these diseases profoundly impacts patient prognosis and recovery. Efficient resolution of inflammation is crucial not only for halting the inflammatory process but also for restoring tissue homeostasis. Efferocytosis, the phagocytic clearance of dying cells by phagocytes, especially microglia and macrophages, plays a critical role in this resolution process. Upon tissue injury, phagocytes are recruited to the site of damage where they engulf and clear dying cells through efferocytosis. Efferocytosis suppresses the secretion of pro-inflammatory cytokines, stimulates the production of anti-inflammatory cytokines, modulates the phenotype of microglia and macrophages, accelerates the resolution of inflammation, and promotes tissue repair. It involves three main stages: recognition, engulfment, and degradation of dying cells. Optimal removal of apoptotic cargo by phagocytes requires finely tuned machinery and associated modifications. Key molecules in efferocytosis, such as 'Find-me signals', 'Eat-me signals', and 'Don't eat-me signals', have been shown to enhance efferocytosis following cardiovascular and cerebrovascular diseases. Moreover, various additional molecules, pathways, and mitochondrial metabolic processes have been identified to enhance prognosis and outcomes via efferocytosis in diverse experimental models. Impaired efferocytosis can lead to inflammation-associated pathologies and prolonged recovery periods. Therefore, this review consolidates current understanding of efferocytosis mechanisms and its application in cardiovascular and cerebrovascular diseases, proposing future research directions.
Collapse
Affiliation(s)
- Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixuan Yuan
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Jiang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaoxiang Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Krishnacoumar B, Stenzel M, Garibagaoglu H, Omata Y, Sworn RL, Hofmann T, Ipseiz N, Czubala MA, Steffen U, Maccataio A, Stoll C, Böhm C, Herrmann M, Uderhardt S, Jenkins RH, Taylor PR, Grüneboom A, Zaiss MM, Schett G, Krönke G, Scholtysek C. Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors. Bone Res 2024; 12:40. [PMID: 38987568 PMCID: PMC11237014 DOI: 10.1038/s41413-024-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.
Collapse
Affiliation(s)
- Brenda Krishnacoumar
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
- Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany.
- Medical Faculty, University Hospital, University Duisburg-Essen, Essen, 45147, Germany.
| | - Martin Stenzel
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany
| | - Hilal Garibagaoglu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Yasunori Omata
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Rachel L Sworn
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Thea Hofmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK
| | - Magdalena A Czubala
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Antonio Maccataio
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Cornelia Stoll
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Christina Böhm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Optical Imaging Competence Centre (FAU OICE), Exploratory Research Unit, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert H Jenkins
- Division of Infection & Immunity, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK
| | - Anika Grüneboom
- Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany
- Medical Faculty, University Hospital, University Duisburg-Essen, Essen, 45147, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
8
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Jia Y, Wang X, Li L, Li F, Zhang J, Liang XJ. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305300. [PMID: 37547955 DOI: 10.1002/adma.202305300] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.
Collapse
Affiliation(s)
- Yaru Jia
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Xiuguang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Luwei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jinchao Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Xing-Jie Liang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Dong ZC, Shi Y, Zheng LL, Tian YP, Yang J, Wei Y, Zhou Y, Pan BW. Synthesis and Activity Evaluation of Vinpocetine-Derived Indole Alkaloids. Molecules 2023; 29:14. [PMID: 38202595 PMCID: PMC10779641 DOI: 10.3390/molecules29010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study focuses on the synthesis of novel vinpocetine derivatives (2-25) and their biological evaluation. The chemical structures of the synthesized compounds were fully characterized using techniques such as 1H NMR, 13C NMR, and HRMS. The inhibitory activity of the synthesized compounds on PDE1A was evaluated, and the results revealed that compounds 3, 4, 5, 12, 14, 21, and 25 exhibited superior inhibitory activity compared to vinpocetine. Compound 4, with a para-methylphenyl substitution, showed a 5-fold improvement in inhibitory activity with an IC50 value of 3.53 ± 0.25 μM. Additionally, compound 25, with 3-chlorothiazole substitution, displayed an 8-fold increase in inhibitory activity compared to vinpocetine (IC50 = 2.08 ± 0.16 μM). Molecular docking studies were conducted to understand the binding models of compounds 4 and 25 within the active site of PDE1A. The molecular docking study revealed additional binding interactions, such as π-π stacking and hydrogen bonding, contributing to the enhanced inhibitory activity and stability of the ligand-protein complexes. Overall, the synthesized vinpocetine derivatives demonstrated promising inhibitory activity on PDE1A, and the molecular docking studies provided insights into their binding modes, supporting further development of these compounds as potential candidates for drug research and development.
Collapse
Affiliation(s)
- Zhang-Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Liang-Liang Zheng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - You-Ping Tian
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ying Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.-C.D.); (Y.S.); (L.-L.Z.); (Y.-P.T.); (Y.W.)
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Gonzalez Fernandez J, Moncayo Arlandi J, Ochando A, Simon C, Vilella F. The role of extracellular vesicles in intercellular communication in human reproduction. Clin Sci (Lond) 2023; 137:281-301. [PMID: 36762584 DOI: 10.1042/cs20220793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Embryo-maternal cross-talk has emerged as a vitally important process for embryo development and implantation, which is driven by secreted factors and extracellular vesicles (EVs). The EV cargo of bioactive molecules significantly influences target cells and primes them for critical stages of reproductive biology, including embryo development, adhesion, and implantation. Recent research has suggested that EVs and their cargo represent a powerful non-invasive tool that can be leveraged to assess embryo and maternal tissue quality during assisted reproduction treatments. Here, we review the current scientific literature regarding the intercellular cross-talk between embryos and maternal tissues from fertilization to implantation, focusing on human biology and signaling mechanisms identified in animal models.
Collapse
Affiliation(s)
- Javier Gonzalez Fernandez
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Javier Moncayo Arlandi
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
12
|
Abstract
The need for a more precise test that replicates the in vivo hemostatic conditions is increasingly being recognized. Up to now, the thrombin generation assay (TGA) has become the most reliable approach to evaluate the status of coagulation activation. The clinical potential for the TGA is most promising in the prediction of venous thromboembolism recurrence. However, there is currently an urgent need for a standardized global test that can reliably detect, predict and monitor coagulation disorders in both clinical and experimental studies. We have recently modified the TGA to analyze not only tissue factor-driven coagulation, but the intrinsic coagulation pathway as well. In the present review, we discuss different TG tests, emphasizing the requirement for a better understanding of the evaluation of distinct coagulation pathways using this technique, as well as the standardization and clinical validation.
Collapse
|
13
|
Xie Y, Chen H, Qu P, Qiao X, Guo L, Liu L. Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 2022; 113:109260. [DOI: 10.1016/j.intimp.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
|
14
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
15
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
16
|
Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers (Basel) 2022; 14:polym14132601. [PMID: 35808648 PMCID: PMC9268820 DOI: 10.3390/polym14132601] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/17/2022] Open
Abstract
Passive targeting is the foremost mechanism by which nanocarriers and drug-bearing macromolecules deliver their payload selectively to solid tumors. An important driver of passive targeting is the enhanced permeability and retention (EPR) effect, which is the cornerstone of most carrier-based tumor-targeted drug delivery efforts. Despite the huge number of publications showcasing successes in preclinical animal models, translation to the clinic has been poor, with only a few nano-based drugs currently being used for the treatment of cancers. Several barriers and factors have been adduced for the low delivery efficiency to solid tumors and poor clinical translation, including the characteristics of the nanocarriers and macromolecules, vascular and physiological barriers, the heterogeneity of tumor blood supply which affects the homogenous distribution of nanocarriers within tumors, and the transport and penetration depth of macromolecules and nanoparticles in the tumor matrix. To address the challenges associated with poor tumor targeting and therapeutic efficacy in humans, the identified barriers that affect the efficiency of the enhanced permeability and retention (EPR) effect for macromolecular therapeutics and nanoparticle delivery systems need to be overcome. In this review, approaches to facilitate improved EPR delivery outcomes and the clinical translation of novel macromolecular therapeutics and nanoparticle drug delivery systems are discussed.
Collapse
|
17
|
Zhao P, Xu Y, Jiang LL, Fan X, Ku Z, Li L, Liu X, Deng M, Arase H, Zhu JJ, Huang TY, Zhao Y, Zhang C, Xu H, Tong Q, Zhang N, An Z. LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Mol Neurodegener 2022; 17:44. [PMID: 35717259 PMCID: PMC9206387 DOI: 10.1186/s13024-022-00550-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/08/2022] [Indexed: 12/18/2022] Open
Abstract
Background Microglia plays crucial roles in Alzheimer’s disease (AD) development. Triggering receptor expressed on myeloid cells 2 (TREM2) in association with DAP12 mediates signaling affecting microglia function. Here we study the negative regulation of TREM2 functions by leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2), an inhibitory receptor bearing ITIM motifs. Methods To specifically interrogate LILRB2-ligand (oAβ and PS) interactions and microglia functions, we generated potent antagonistic LILRB2 antibodies with sub-nanomolar level activities. The biological effects of LILRB2 antagonist antibody (Ab29) were studied in human induced pluripotent stem cell (iPSC)–derived microglia (hMGLs) for migration, oAβ phagocytosis, and upregulation of inflammatory cytokines. Effects of the LILRB2 antagonist antibody on microglial responses to amyloid plaques were further studied in vivo using stereotaxic grafted microglia in 5XFAD mice. Results We confirmed the expression of both LILRB2 and TREM2 in human brain microglia using immunofluorescence. Upon co-ligation of the LILRB2 and TREM2 by shared ligands oAβ or PS, TREM2 signaling was significantly inhibited. We identified a monoclonal antibody (Ab29) that blocks LILRB2/ligand interactions and prevents TREM2 signaling inhibition mediated by LILRB2. Further, Ab29 enhanced microglia phagocytosis, TREM2 signaling, migration, and cytokine responses to the oAβ-lipoprotein complex in hMGL and microglia cell line HMC3. In vivo studies showed significantly enhanced clustering of microglia around plaques with a prominent increase in microglial amyloid plaque phagocytosis when 5XFAD mice were treated with Ab29. Conclusions This study revealed for the first time the molecular mechanisms of LILRB2-mediated inhibition of TREM2 signaling in microglia and demonstrated a novel approach of enhancing TREM2-mediated microglia functions by blocking LILRB2-ligand interactions. Translationally, a LILRB2 antagonist antibody completely rescued the inhibition of TREM2 signaling by LILRB2, suggesting a novel therapeutic strategy for improving microglial functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00550-y.
Collapse
Affiliation(s)
- Peng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanzhong Xu
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoye Liu
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, University of Texas Health Science Center in Houston, McGovern Medical School and Memorial Hermann, Houston, TX, USA
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chengcheng Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Wang J, Yu C, Zhuang J, Qi W, Jiang J, Liu X, Zhao W, Cao Y, Wu H, Qi J, Zhao RC. The role of phosphatidylserine on the membrane in immunity and blood coagulation. Biomark Res 2022; 10:4. [PMID: 35033201 PMCID: PMC8760663 DOI: 10.1186/s40364-021-00346-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Changxin Yu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junyi Zhuang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xuanting Liu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wanwei Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yiyang Cao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Beijing, 100005, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
19
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
20
|
Petrignani B, Rommelaere S, Hakim-Mishnaevski K, Masson F, Ramond E, Hilu-Dadia R, Poidevin M, Kondo S, Kurant E, Lemaitre B. A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in Drosophila. EMBO Rep 2021; 22:e52262. [PMID: 34370384 PMCID: PMC8419693 DOI: 10.15252/embr.202052262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death plays a fundamental role in development and tissue homeostasis. Professional and non‐professional phagocytes achieve the proper recognition, uptake, and degradation of apoptotic cells, a process called efferocytosis. Failure in efferocytosis leads to autoimmune and neurodegenerative diseases. In Drosophila, two transmembrane proteins of the Nimrod family, Draper and SIMU, mediate the recognition and internalization of apoptotic corpses. Beyond this early step, little is known about how apoptotic cell degradation is regulated. Here, we study the function of a secreted member of the Nimrod family, NimB4, and reveal its crucial role in the clearance of apoptotic cells. We show that NimB4 is expressed by macrophages and glial cells, the two main types of phagocytes in Drosophila. Similar to draper mutants, NimB4 mutants accumulate apoptotic corpses during embryogenesis and in the larval brain. Our study points to the role of NimB4 in phagosome maturation, more specifically in the fusion between the phagosome and lysosomes. We propose that similar to bridging molecules, NimB4 binds to apoptotic corpses to engage a phagosome maturation program dedicated to efferocytosis.
Collapse
Affiliation(s)
- Bianca Petrignani
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Florent Masson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elodie Ramond
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Reut Hilu-Dadia
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
21
|
Freeman S, Grinstein S. Promoters and Antagonists of Phagocytosis: A Plastic and Tunable Response. Annu Rev Cell Dev Biol 2021; 37:89-114. [PMID: 34152790 DOI: 10.1146/annurev-cellbio-120219-055903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Spencer Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Chen M, Rosenberg J, Cai X, Lee ACH, Shi J, Nguyen M, Wignakumar T, Mirle V, Edobor AJ, Fung J, Donington JS, Shanmugarajah K, Lin Y, Chang E, Randall G, Penaloza-MacMaster P, Tian B, Madariaga ML, Huang J. Nanotraps for the containment and clearance of SARS-CoV-2. MATTER 2021; 4:2059-2082. [PMID: 33907732 PMCID: PMC8062026 DOI: 10.1016/j.matt.2021.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 05/17/2023]
Abstract
SARS-CoV-2 enters host cells through its viral spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells. Here, we show that functionalized nanoparticles, termed "Nanotraps," completely inhibited SARS-CoV-2 infection by blocking the interaction between the spike protein of SARS-CoV-2 and the ACE2 of host cells. The liposomal-based Nanotrap surfaces were functionalized with either recombinant ACE2 proteins or anti-SARS-CoV-2 neutralizing antibodies and phagocytosis-specific phosphatidylserines. The Nanotraps effectively captured SARS-CoV-2 and completely blocked SARS-CoV-2 infection to ACE2-expressing human cell lines and primary lung cells; the phosphatidylserine triggered subsequent phagocytosis of the virus-bound, biodegradable Nanotraps by macrophages, leading to the clearance of pseudotyped and authentic virus in vitro. Furthermore, the Nanotraps demonstrated an excellent biosafety profile in vitro and in vivo. Finally, the Nanotraps inhibited pseudotyped SARS-CoV-2 infection in live human lungs in an ex vivo lung perfusion system. In summary, Nanotraps represent a new nanomedicine for the inhibition of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Min Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jillian Rosenberg
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xiaolei Cai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Chicago Immunoengineering Innovation Center, Chicago, IL 60637, USA
| | | | - Vikranth Mirle
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Yiliang Lin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Eugene Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | | | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
24
|
Yefimova MG, Lefevre C, Bashamboo A, Eozenou C, Burel A, Lavault MT, Meunier AC, Pimentel C, Veau S, Neyroud AS, Jaillard S, Jégou B, Bourmeyster N, Ravel C. Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 2021; 35:1346-1362. [PMID: 32531067 DOI: 10.1093/humrep/deaa097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/14/2020] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Do human granulosa cells (GCs) ingest and destroy apoptotic oocytes? SUMMARY ANSWER Somatic GCs ingest and destroy apoptotic oocytes and other apoptotic substrates through unconventional autophagy-assisted phagocytosis. WHAT IS KNOWN ALREADY Most (99%) ovarian germ cells undergo apoptosis through follicular atresia. The mode of cleaning of atretic follicles from the ovary is unclear. Ovarian GCs share striking similarities with testicular Sertoli cells with respect to their origin and function. Somatic Sertoli cells are responsible for the elimination of apoptotic spermatogenic cells through unconventional autophagy-assisted phagocytosis. STUDY DESIGN, SIZE, DURATION Human GCs were tested for the ability to ingest and destroy the apoptotic oocytes and other apoptotic substrates. A systemic study of the main phagocytosis steps has been performed at different time points after loading of apoptotic substrates into the GC. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of GC retrieved following controlled ovarian stimulation of five women for IVF/ICSI and a human granulosa KGN cell line were incubated with different apoptotic substrates: oocytes which underwent spontaneous apoptosis during the cultivation of immature germ cells for IVF/ICSI; apoptotic KGN cells; and apoptotic membranes from rat retinas. Cultured GC were analyzed for the presence of specific molecular markers characteristic of different steps of phagocytic and autophagy machineries by immunocytochemistry, confocal microscopy, transmission electron microscopy and western blotting, before and after loading with apoptotic substrates. MAIN RESULTS AND THE ROLE OF CHANCE Incubation of human GC with apoptotic substrates resulted in their translocation in cell cytoplasm, concomitant with activation of the phagocytosis receptor c-mer proto-oncogene tyrosine kinase MERTK (P < 0.001), clumping of motor molecule myosin II, recruitment of autophagy proteins: autophagy-related protein 5 (ATG5), autophagy-related protein 6 (Beclin1) and the rise of a membrane form of microtubule-associated protein 1 light chain 3 (LC3-II) protein. Ingestion of apoptotic substrates was accompanied by increased expression of the lysosomal protease Cathepsin D (P < 0.001), and a rise of lysosomes in the GCs, as assessed by different techniques. The level of autophagy adaptor, sequestosome 1/p62 (p62) protein remained unchanged. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of patients described here is limited. Also the dependence of phagocytosis on reproductive hormone status of patients should be analyzed. WIDER IMPLICATIONS OF THE FINDINGS Removal of apoptotic oocytes by surrounding GC seems likely to be a physiological mechanism involved in follicular atresia. Proper functioning of this mechanism may be a new strategy for the treatment of ovarian dysfunctions associated with an imbalance in content of germ cells in the ovaries, such as premature ovarian failure and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by Rennes Metropole (AIS 2015) and Agence de BioMédecine. This work was supported by funding from Université de Rennes1, Institut National de la Santé et de la Recherche Médicale (INSERM) and CHU de Rennes. A.B. is funded in part by the program Actions Concertées Interpasteuriennes (ACIP) and a research grant from the European Society of Pediatric Endocrinology. This work is supported by the Agence Nationale de la Recherche Grants ANR-17-CE14-0038 and ANR-10-LABX-73. The authors declare no competing interests.
Collapse
Affiliation(s)
- M G Yefimova
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - C Lefevre
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - A Bashamboo
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - C Eozenou
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - A Burel
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - M T Lavault
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - A C Meunier
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France
| | - C Pimentel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Veau
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - A S Neyroud
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Jaillard
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - B Jégou
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - N Bourmeyster
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France.,CHU POITIERS, Pôle Biospharm, secteur Biochimie, 86022 Poitiers Cedex, France
| | - C Ravel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
25
|
Mahida RY, Scott A, Parekh D, Lugg ST, Belchamber KBR, Hardy RS, Matthay MA, Naidu B, Thickett DR. Assessment of Alveolar Macrophage Dysfunction Using an in vitro Model of Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:737859. [PMID: 34660643 PMCID: PMC8511446 DOI: 10.3389/fmed.2021.737859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Impaired alveolar macrophage (AM) efferocytosis may contribute to acute respiratory distress syndrome (ARDS) pathogenesis; however, studies are limited by the difficulty in obtaining primary AMs from patients with ARDS. Our objective was to determine whether an in vitro model of ARDS can recapitulate the same AM functional defect observed in vivo and be used to further investigate pathophysiological mechanisms. Methods: AMs were isolated from the lung tissue of patients undergoing lobectomy and then treated with pooled bronchoalveolar lavage (BAL) fluid previously collected from patients with ARDS. AM phenotype and effector functions (efferocytosis and phagocytosis) were assessed by flow cytometry. Rac1 gene expression was assessed using quantitative real-time PCR. Results: ARDS BAL treatment of AMs decreased efferocytosis (p = 0.0006) and Rac1 gene expression (p = 0.016); however, bacterial phagocytosis was preserved. Expression of AM efferocytosis receptors MerTK (p = 0.015) and CD206 (p = 0.006) increased, whereas expression of the antiefferocytosis receptor SIRPα decreased following ARDS BAL treatment (p = 0.036). Rho-associated kinase (ROCK) inhibition partially restored AM efferocytosis in an in vitro model of ARDS (p = 0.009). Conclusions: Treatment of lung resection tissue AMs with ARDS BAL fluid induces impairment in efferocytosis similar to that observed in patients with ARDS. However, AM phagocytosis is preserved following ARDS BAL treatment. This specific impairment in AM efferocytosis can be partially restored by inhibition of ROCK. This in vitro model of ARDS is a useful tool to investigate the mechanisms by which the inflammatory alveolar microenvironment of ARDS induces AM dysfunction.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Rahul Y. Mahida
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Departments of Medicine and of Anaesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Radhakrishnan K, Khamrang T, Sambantham K, Sali VK, Chitgupi U, Lovell JF, Mohammad AA, Venugopal R. Identification of cytotoxic copper(II) complexes with phenanthroline and quinoline, quinoxaline or quinazoline-derived mixed ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
28
|
Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, Ferron M, Veillette A, Daly RJ, Gingras AC, Gratton JP, Côté JF. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020; 11:3586. [PMID: 32681075 PMCID: PMC7368075 DOI: 10.1038/s41467-020-17415-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors. AXL receptor tyrosine kinase has a role in metastasis but the mechanism is unclear. In this study, the authors show that AXL activation can control focal adhesion dynamics via PEAK1 and that AXL-mediated PEAK1 phosphorylation is required for metastasis of triple negative breast cancer cells in vivo.
Collapse
Affiliation(s)
- Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Carine Delliaux
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Chloé Apcher
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Céline Schott
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Halil Bagci
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | | | - Dominique Davidson
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Mathieu Ferron
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - André Veillette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada. .,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
29
|
Protective effect of L-carnitine on platelet apoptosis during storage of platelet concentrate. Transfus Clin Biol 2020; 27:139-146. [PMID: 32544525 DOI: 10.1016/j.tracli.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet apoptosis is considered as one of the important factors involved in platelet storage lesion (PSL) and affect the quality of platelets during storage. The beneficial effect of L-carnitine (LC) on platelet apoptosis during platelet concentrates (PCs) storage has not been fully investigated. The aim of this study was to evaluate the effects of LC on platelets of PC regarding their apoptosis markers during storage. METHODS Ten PCs from healthy donors were investigated in this study. PCs were prepared by platelet rich plasma (PRP) method and stored at 22±2°C with gentle agitation during storage. The effects of LC (15mM) on the platelet apoptosis were assessed by analyzing different indicative presence or absence of LC. Sampling was performed to evaluate apoptosis markers during platelet storage. RESULTS The results indicated significantly higher mitochondrial membrane potential for LC-treated platelets than the untreated on the days 2 and 5 of storage (Pday2=0.001, Pday5=0.001). Phosphatidylserine (PS) exposure significantly increased on the untreated compared with LC-treated platelets on the second and third days of storage (Pday2=0.014, Pday3=0.012). Also, active caspase 3 was lower in the LC- treated platelets than the control group on the day 5 of storage (Pday5=0.004). Cytosolic cytochrome C was so significantly lower in LC-treated compared to the untreated platelets during storage time (Pday2=0.002, Pday3=0.001, Pday5=0.001). CONCLUSION The results of this study indicate that the use of LC as an additive solution in platelets may be useful to reduce PSL by decreasing platelet apoptosis via mitochondrial pathway and increase platelet quality during storage.
Collapse
|
30
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Identification and Characterization of Extracellular Vesicles and Its DNA Cargo Secreted During Murine Embryo Development. Genes (Basel) 2020; 11:genes11020203. [PMID: 32079252 PMCID: PMC7074575 DOI: 10.3390/genes11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are known to transport DNA, but their implications in embryonic implantation are unknown. The aim of this study was to investigate EVs production and secretion by preimplantation embryos and assess their DNA cargo. Murine oocytes and embryos were obtained from six- to eight-week-old females, cultured until E4.5 and analyzed using transmission electron microscopy to examine EVs production. EVs were isolated from E4.5-day conditioned media and quantified by nanoparticle tracking analysis, characterized by immunogold, and their DNA cargo sequenced. Multivesicular bodies were observed in murine oocytes and preimplantation embryos together with the secretion of EVs to the blastocoel cavity and blastocyst spent medium. Embryo-derived EVs showed variable electron-densities and sizes (20–500 nm) and total concentrations of 1.74 × 107 ± 2.60 × 106 particles/mL. Embryo secreted EVs were positive for CD63 and ARF6. DNA cargo sequencing demonstrated no differences in DNA between apoptotic bodies or smaller EVs, although they showed significant gene enrichment compared to control medium. The analysis of sequences uniquely mapping the murine genome revealed that DNA contained in EVs showed higher representation of embryo genome than vesicle-free DNA. Murine blastocysts secrete EVs containing genome-wide sequences of DNA to the medium, reinforcing the relevance of studying these vesicles and their cargo in the preimplantation moment, where secreted DNA may help the assessment of the embryo previous to implantation.
Collapse
|
32
|
Chirino LM, Kumar S, Okumura M, Sterner DE, Mattern M, Butt TR, Kambayashi T. TAM receptors attenuate murine NK-cell responses via E3 ubiquitin ligase Cbl-b. Eur J Immunol 2020; 50:48-55. [PMID: 31531847 PMCID: PMC7769591 DOI: 10.1002/eji.201948204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023]
Abstract
TAM receptors (Tyro3, Axl, and Mer) are receptor tyrosine kinases (RTKs) that are expressed by multiple immune cells including NK cells. Although RTKs typically enhance cellular functions, TAM receptor ligation blocks NK-cell activation. The mechanisms by which RTKs block NK-cell signaling downstream of activating receptors are unknown. In this report, we demonstrate that TAM receptors attenuate NK cell responses via the activity of E3 ubiquitin ligase Casitas B lineage lymphoma b (Cbl-b). Specifically, we show that Tyro3, Axl, and Mer phosphorylate Cbl-b, and Tyro3 ligation activates Cbl-b by phosphorylating tyrosine residues 133 and 363. Ligation of TAM receptors by their ligand Gas6 suppresses activating receptor-stimulated NK-cell functions such as IFN-γ production and degranulation, in a TAM receptor kinase- and Cbl-b-dependent manner. Moreover, Gas6 ligation induces the degradation of LAT1, a transmembrane adaptor protein required for NK cell activating receptor signaling, in WT but not in Cbl-b knock-out NK cells. Together, these results suggest that TAM receptors may attenuate NK-cell function by phosphorylating Cbl-b, which in turn dampens NK-cell activation signaling by promoting the degradation of LAT1. Our data therefore support a mechanism by which RTKs attenuate, rather than stimulate, signaling pathways via the activation of ubiquitin ligases.
Collapse
Affiliation(s)
- Leilani M. Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
33
|
Dietary Polyunsaturated Fatty Acids Promote Neutrophil Accumulation in the Spleen by Altering Chemotaxis and Delaying Cell Death. Infect Immun 2019; 87:IAI.00270-19. [PMID: 31085706 DOI: 10.1128/iai.00270-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/04/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.
Collapse
|
34
|
Gutiérrez-Jiménez C, Mora-Cartín R, Altamirano-Silva P, Chacón-Díaz C, Chaves-Olarte E, Moreno E, Barquero-Calvo E. Neutrophils as Trojan Horse Vehicles for Brucella abortus Macrophage Infection. Front Immunol 2019; 10:1012. [PMID: 31134082 PMCID: PMC6514781 DOI: 10.3389/fimmu.2019.01012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a stealthy intracellular bacterial pathogen of animals and humans. This bacterium promotes the premature cell death of neutrophils (PMN) and resists the killing action of these leukocytes. B. abortus-infected PMNs presented phosphatidylserine (PS) as “eat me” signal on the cell surface. This signal promoted direct contacts between PMNs and macrophages (Mϕs) and favored the phagocytosis of the infected dying PMNs. Once inside Mϕs, B. abortus replicated within Mϕs at significantly higher numbers than when Mϕs were infected with bacteria alone. The high levels of the regulatory IL-10 and the lower levels of proinflammatory TNF-α released by the B. abortus-PMN infected Mϕs, at the initial stages of the infection, suggested a non-phlogistic phagocytosis mechanism. Thereafter, the levels of proinflammatory cytokines increased in the B. abortus-PMN-infected Mϕs. Still, the efficient bacterial replication proceeded, regardless of the cytokine levels and Mϕ type. Blockage of PS with Annexin V on the surface of B. abortus-infected PMNs hindered their contact with Mϕs and hampered the association, internalization, and replication of B. abortus within these cells. We propose that B. abortus infected PMNs serve as “Trojan horse” vehicles for the efficient dispersion and replication of the bacterium within the host.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Jiménez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
35
|
Zhao J, Xu B, Chen G, Zhang Y, Wang Q, Zhao L, Zhou H. Cryopreserved platelets augment the inflammatory response: role of phosphatidylserine- and P-selectin-mediated platelet phagocytosis in macrophages. Transfusion 2019; 59:1799-1808. [PMID: 30737804 DOI: 10.1111/trf.15183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cryopreservation in dimethyl sulfoxide and storage at -80 °C extends the shelf life of platelets to at least 2 years, allowing greater availability in rural and military areas. While cryopreserved platelets (CPPs) have been extensively characterized for coagulation and thrombin generation, reports on the mechanism of adverse reactions to CPPs transfusion are scarce. Here, we tested the hypothesis that CPPs facilitate phagocytosis by Kupffer cells and subsequently promote the inflammatory response in Kupffer cells. STUDY DESIGN AND METHODS P-selectin expression, glycoprotein Ibα clustering and phosphatidylserine (PS) surface exposure on platelets stored at 22 °C, 4 °C and - 80 °C for 3 days were examined by flow cytometry. The phagocytosis of mepacrine-labeled platelets coincubated with THP-1 cells was examined by flow cytometry and confocal microscopy, and the release of cytokines from THP-1 cells was measured by enzyme-linked immunosorbent assay. RESULTS CPPs showed a marked enhancement of exposed PS but dramatically reduced glycoprotein Ibα expression and clustering compared with platelets stored at 4 °C. Activation of THP-1 cells was stronger by CPPs than by platelets stored at 22 °C and 4 °C. CPP interference tests using annexin V and anti-P-selectin showed that CPPs induced increases in PS- and P-selectin-mediated phagocytosis, as well as secretion of the proinflammatory cytokine tumor necrosis factor-α, and interleukins IL-1β and IL-6, but a decrease in transforming growth factor-β production in THP-1 cells. Surface-exposed PS was more effective than P-selectin for the activation of THP-1 cells. CONCLUSION CPPs triggered PS and P-selectin-mediated phagocytosis by macrophages and stimulated the inflammatory response of macrophages.
Collapse
Affiliation(s)
- Jingxiang Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Bocong Xu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yuhua Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Quan Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Ginisty A, Oliver L, Arnault P, Vallette F, Benzakour O, Coronas V. The vitamin K-dependent factor, protein S, regulates brain neural stem cell migration and phagocytic activities towards glioma cells. Eur J Pharmacol 2019; 855:30-39. [PMID: 31028740 DOI: 10.1016/j.ejphar.2019.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
Malignant gliomas are the most common primary brain tumors. Due to both their invasive nature and resistance to multimodal treatments, these tumors have a very high percentage of recurrence leading in most cases to a rapid fatal outcome. Recent data demonstrated that neural stem/progenitor cells possess an inherent ability to migrate towards glioma cells, track them in the brain and reduce their growth. However, mechanisms involved in these processes have not been explored in-depth. In the present report, we investigated interactions between glioma cells and neural stem/progenitor cells derived from the subventricular zone, the major brain stem cell niche. Our data show that neural stem/progenitor cells are attracted by cultured glioma-derived factors. Using multiple approaches, we demonstrate for the first time that the vitamin K-dependent factor protein S produced by glioma cells is involved in tumor tropism through a mechanism involving the tyrosine kinase receptor Tyro3 that, in turn, is expressed by neural stem/progenitor cells. Neural stem/progenitor cells decrease the growth of both glioma cell cultures and clonogenic population. Cultured neural stem/progenitor cells also engulf, by phagocytosis, apoptotic glioma cell-derived fragments and this mechanism depends on the exposure of phosphatidylserine eat-me signal and is stimulated by protein S. The disclosure of a role of protein S/Tyro3 axis in neural stem/progenitor cell tumor-tropism and the demonstration of a phagocytic activity of neural stem/progenitor cells towards dead glioma cells that is regulated by protein S open up new perspectives for both stem cell biology and brain physiopathology.
Collapse
Affiliation(s)
- Aurélie Ginisty
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Present Address: Biological Adaptation and Ageing (B2A) UMR 8256 CNRS-UPMC Institut de Biologie Paris Seine (IBPS) Sorbonne Université, 75005, Paris, France
| | - Lisa Oliver
- CRCINA, Inserm U1232, Université de Nantes, 44 0000, Nantes, France; Institut de Cancérologie de l'Ouest, René Gauducheau, 44 8000, St Herblain, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - Patricia Arnault
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - François Vallette
- CRCINA, Inserm U1232, Université de Nantes, 44 0000, Nantes, France; Institut de Cancérologie de l'Ouest, René Gauducheau, 44 8000, St Herblain, France; Micronit GDR CNRS 3697, 75020, Paris, France
| | - Omar Benzakour
- Inserm U1082, Université de Poitiers, 86073, Poitiers cedex 09, France
| | - Valérie Coronas
- Laboratoire Signalisations et Transports Ioniques Membranaires (STIM), CNRS ERL 7003 Equipe 4CS - Université de Poitiers, UFR SFA, Pôle Biologie Santé, Bâtiment B36, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS Cedex 9, France; Micronit GDR CNRS 3697, 75020, Paris, France.
| |
Collapse
|
37
|
Nakagawa Y, Yano Y, Lee J, Anraku Y, Nakakido M, Tsumoto K, Cabral H, Ebara M. Apoptotic Cell-Inspired Polymeric Particles for Controlling Microglial Inflammation toward Neurodegenerative Disease Treatment. ACS Biomater Sci Eng 2019; 5:5705-5713. [PMID: 33405702 DOI: 10.1021/acsbiomaterials.8b01510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptotic cells are known to suppress microglial inflammation in the brain by presenting phosphatidylserine. In this study, we newly designed polymeric particles that expose the anti-inflammatory site of phosphatidylserine to serve as an apoptotic cell-mimetic anti-inflammatory platform. The prepared anti-inflammatory particles showed no cytotoxicity and significantly inhibited the production of the inflammatory cytokine interleukin-6 against lipopolysaccharide stimulation in the microglia cell line MG6. This novel polymeric particle has potential for establishing a "cell-free" apoptotic cell-mimetic treatment for intracerebral inflammation.
Collapse
Affiliation(s)
- Yasuhiro Nakagawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Yuto Yano
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jeonggyu Lee
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasutaka Anraku
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Makoto Nakakido
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
38
|
Pointer CB, Wenzel TJ, Klegeris A. Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Res Bull 2019; 146:153-163. [PMID: 30625370 DOI: 10.1016/j.brainresbull.2019.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Cardiolipin is a mitochondrial membrane phospholipid with several well-defined metabolic roles. Cardiolipin can be released extracellularly by damaged cells and has been shown to affect peripheral immune functions. We hypothesized that extracellular cardiolipin can also regulate functions of microglia, the resident immune cells of the central nervous system (CNS). We demonstrate that extracellular cardiolipin increases microglial phagocytosis and neurotrophic factor expression, as well as decreases the release of inflammatory mediators and cytotoxins by activated microglia-like cells. These results identify extracellular cardiolipin as a potential CNS intercellular signaling molecule that can regulate key microglial immune functions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Caitlin B Pointer
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
39
|
Konarzewska P, Wang Y, Han GS, Goh KJ, Gao YG, Carman GM, Xue C. Phosphatidylserine synthesis is essential for viability of the human fungal pathogen Cryptococcus neoformans. J Biol Chem 2019; 294:2329-2339. [PMID: 30602568 DOI: 10.1074/jbc.ra118.006738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/28/2018] [Indexed: 11/06/2022] Open
Abstract
Phospholipids are an integral part of the cellular membrane structure and can be produced by a de novo biosynthetic pathway and, alternatively, by the Kennedy pathway. Studies in several yeast species have shown that the phospholipid phosphatidylserine (PS) is synthesized from CDP-diacylglycerol and serine, a route that is different from its synthesis in mammalian cells, involving a base-exchange reaction from preexisting phospholipids. Fungal-specific PS synthesis has been shown to play an important role in fungal virulence and has been proposed as an attractive drug target. However, PS synthase, which catalyzes this reaction, has not been studied in the human fungal pathogen Cryptococcus neoformans Here, we identified and characterized the PS synthase homolog (Cn Cho1) in this fungus. Heterologous expression of Cn CHO1 in a Saccharomyces cerevisiae cho1Δ mutant rescued the mutant's growth defect in the absence of ethanolamine supplementation. Moreover, an Sc cho1Δ mutant expressing Cn CHO1 had PS synthase activity, confirming that the Cn CHO1 encodes PS synthase. We also found that PS synthase in C. neoformans is localized to the endoplasmic reticulum and that it is essential for mitochondrial function and cell viability. Of note, its deficiency could not be complemented by ethanolamine or choline supplementation for the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) via the Kennedy pathway. These findings improve our understanding of phospholipid synthesis in a pathogenic fungus and indicate that PS synthase may be a useful target for antifungal drugs.
Collapse
Affiliation(s)
| | - Yina Wang
- From the Public Health Research Institute and
| | - Gil-Soo Han
- the Rutgers Center for Lipid Research and.,Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, and
| | - Kwok Jian Goh
- the School of Biological Sciences, Nanyang Technological University, Singapore 117597, Singapore
| | - Yong-Gui Gao
- the School of Biological Sciences, Nanyang Technological University, Singapore 117597, Singapore
| | - George M Carman
- the Rutgers Center for Lipid Research and.,Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, and
| | - Chaoyang Xue
- From the Public Health Research Institute and .,the Rutgers Center for Lipid Research and.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| |
Collapse
|
40
|
The phase and charge of milk polar lipid membrane bilayers govern their selective interactions with proteins as demonstrated with casein micelles. J Colloid Interface Sci 2019; 534:279-290. [DOI: 10.1016/j.jcis.2018.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
|
41
|
Manojkumar Y, Ambika S, Arulkumar R, Gowdhami B, Balaji P, Vignesh G, Arunachalam S, Venuvanalingam P, Thirumurugan R, Akbarsha MA. Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(iii) Schiff base complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01269a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the recent times metal complexes with dual mechanisms of action, anti-cancer and anti-angiogenic, have gained substantial interest in the field of medicinal chemistry.
Collapse
Affiliation(s)
| | - Subramanian Ambika
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Rasu Arulkumar
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Balakrishnan Gowdhami
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Perumalsamy Balaji
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Gobalsamy Vignesh
- Department of Chemistry
- Einstein Art and Science College
- Tirunelveli-627012
- India
| | | | | | - Ramaswamy Thirumurugan
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | | |
Collapse
|
42
|
Wang H, Wang G, Ansari GAS, Khan MF. Trichloroethene metabolite dichloroacetyl chloride induces apoptosis and compromises phagocytosis in Kupffer Cells: Activation of inflammasome and MAPKs. PLoS One 2018; 13:e0210200. [PMID: 30596806 PMCID: PMC6312261 DOI: 10.1371/journal.pone.0210200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to trichloroethene (TCE), an occupational and ubiquitous environmental contaminant, is associated with the development of several autoimmune diseases, including autoimmune hepatitis (AIH). However, mechanisms contributing to TCE-mediated AIH are not known. Earlier, we have shown that dichloroacetyl chloride (DCAC), one of the reactive metabolites of TCE with strong acylating capability, can elicit an autoimmune response at much lower dose than TCE in female MRL+/+ mice. Furthermore, Kupffer cells (KCs), the liver resident macrophages, are crucial for hepatic homeostasis, but can also participate in the immunopathogenesis of AIH. However, contribution of KCs in TCE-mediated AIH and the underlying mechanisms are not understood. We hypothesized that increased apoptosis and delayed clearance of apoptotic bodies, due to compromised KC function, will result in the breakdown of self-tolerance, autoimmunity, and ultimately AIH. Therefore, using an in vitro model of immortalized mouse KCs, we investigated the contribution of DCAC in TCE-mediated AIH. KCs were treated with different concentrations of DCAC and apoptosis was measured by Annexin V and PI staining. Also, the impact of DCAC on phagocytic potential of KCs was evaluated. Furthermore, markers of inflammasome (NLRP3 and caspase1) were analyzed by real-time PCR and Western blot analysis. DCAC treatment resulted in significantly increased early and late-stage apoptosis, accompanied with inflammasome activation (NLRP3 increases). DCAC treatment resulted in decreased phagocytic function of KCs in a dose-dependent manner, with reduced MFG-E8 levels (phagocytotic function). Furthermore, DCAC exposure led to induction of phos-ERK and phos-AKT signaling. These findings suggest that DCAC induces apoptosis and inflammasome activation, while compromising the phagocytic function of KCs. Our data support that increased apoptosis and impaired KC function by DCAC could be contributory to TCE-mediated AIH.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
Zhang B, Lu H, Jiang A, Wu H, Fang L, Lv Y. MerTK Downregulates Lipopolysaccharide-Induced Inflammation Through SOCS1 Protein but Does Not Affect Phagocytosis of Escherichia coli in Macrophages. Inflammation 2018; 42:113-123. [DOI: 10.1007/s10753-018-0877-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
45
|
Zhong X, Lee HN, Kim SH, Park SA, Kim W, Cha YN, Surh YJ. Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. FASEB J 2018; 32:5312-5325. [PMID: 29718706 DOI: 10.1096/fj.201800223r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A key event required for effective resolution of inflammation is efferocytosis, which is defined as phagocytic removal of apoptotic cells mostly by macrophages acquiring an alternatively activated phenotype (M2). c-Myc has been reported to play a role in alternative activation of human macrophages and is proposed as one of the M2 macrophage markers. We found that M2-like peritoneal macrophages from zymosan A-treated mice exhibited a marked accumulation of Myc-nick, a truncated protein generated by a Calpain-mediated proteolytic cleavage of full-length c-Myc. Further, ectopic expression of Myc-nick in murine bone marrow-derived macrophages promoted the M2 polarization and, consequently, enhanced their efferocytic capability. Notably, Myc-nick-induced efferocytosis was found to be tightly associated with α-tubulin acetylation by K acetyltransferase 2a (Kat2a/Gcn5) activity. These findings suggest Myc-nick as a novel proresolving mediator that has a fundamental function in maintaining homeostasis under inflammatory conditions.-Zhong, X., Lee, H.-N., Kim, S. H., Park, S.-A., Kim, W., Cha, Y.-N., Surh, Y.-J. Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation.
Collapse
Affiliation(s)
- Xiancai Zhong
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Lee
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Nam Cha
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea; and
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer's disease. Brain Pathol 2018; 27:223-234. [PMID: 28009077 DOI: 10.1111/bpa.12478] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is the most common form of progressive dementia, typified initially by short term memory deficits which develop into a dramatic global cognitive decline. The classical hall marks of Alzheimer's disease include the accumulation of amyloid oligomers and fibrils, and the intracellular formation of neurofibrillary tangles of hyperphosphorylated tau. It is now clear that inflammation also plays a central role in the pathogenesis of the disease through a number of neurotoxic mechanisms. Microglia are the key immune regulators of the CNS which detect amyloidopathy through cell surface and cytosolic pattern recognition receptors (PRRs) and respond by initiating inflammation through the secretion of cytokines such as interleukin-1β (IL-1β). Inflammasomes, which regulate IL-1β release, are formed following activation of cytosolic PRRs, and using genetic and pharmacological approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in pathogenic neuroinflammation in animal models of Alzheimer's disease. Therefore, the inflammasomes are very promising novel pharmacological targets which merit further research in the continued endeavor for efficacious therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Claire S White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
47
|
Singh PK, Jaiswal AK, Pawar VK, Raval K, Kumar A, Bora HK, Dube A, Chourasia MK. Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharm Res 2018; 35:60. [DOI: 10.1007/s11095-017-2293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
|
48
|
Rational design of anti-inflammatory polymers inspired by apoptotic cell death using phosphoramidite chemistry. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Geng K, Kumar S, Kimani SG, Kholodovych V, Kasikara C, Mizuno K, Sandiford O, Rameshwar P, Kotenko SV, Birge RB. Requirement of Gamma-Carboxyglutamic Acid Modification and Phosphatidylserine Binding for the Activation of Tyro3, Axl, and Mertk Receptors by Growth Arrest-Specific 6. Front Immunol 2017; 8:1521. [PMID: 29176978 PMCID: PMC5686386 DOI: 10.3389/fimmu.2017.01521] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/26/2017] [Indexed: 02/01/2023] Open
Abstract
The Tyro3, Axl, and Mertk (TAM) receptors are homologous type I receptor tyrosine kinases that have critical functions in the clearance of apoptotic cells in multicellular organisms. TAMs are activated by their endogenous ligands, growth arrest-specific 6 (Gas6), and protein S (Pros1), that function as bridging molecules between externalized phosphatidylserine (PS) on apoptotic cells and the TAM ectodomains. However, the molecular mechanisms by which Gas6/Pros1 promote TAM activation remains elusive. Using TAM/IFNγR1 reporter cell lines to monitor functional TAM activity, we found that Gas6 activity was exquisitely dependent on vitamin K-mediated γ-carboxylation, whereby replacing vitamin K with anticoagulant warfarin, or by substituting glutamic acid residues involved in PS binding, completely abrogated Gas6 activity as a TAM ligand. Furthermore, using domain and point mutagenesis, Gas6 activity also required both an intact Gla domain and intact EGF-like domains, suggesting these domains function cooperatively in order to achieve TAM activation. Despite the requirement of γ-carboxylation and the functional Gla domain, non-γ-carboxylated Gas6 and Gla deletion/EGF-like domain deletion mutants still retained their ability to bind TAMs and acted as blocking decoy ligands. Finally, we found that distinct sources of PS-positive cells/vesicles (including apoptotic cells, calcium-induced stressed cells, and exosomes) bound Gas6 and acted as cell-derived or exosome-derived ligands to activate TAMs. Taken together, our findings indicate that PS is indispensable for TAM activation by Gas6, and by inference, provides new perspectives on how PS, regulates TAM receptors and efferocytosis.
Collapse
Affiliation(s)
- Ke Geng
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Sushil Kumar
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Stanley G Kimani
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Vladyslav Kholodovych
- Office of Advanced Research Computing (OARC), Rutgers, State University of New Jersey, Newark, New Jersey, United States.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, Piscataway, NJ, United States
| | - Canan Kasikara
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Oleta Sandiford
- Department of Medicine, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Pranela Rameshwar
- Department of Medicine, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers, State University of New Jersey, Newark, New Jersey, United States
| |
Collapse
|
50
|
Chen J, Yang J, Liu R, Qiao C, Lu Z, Shi Y, Fan Z, Zhang Z, Zhang X. Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair via Modulation of Macrophages. Am J Cancer Res 2017; 7:4149-4167. [PMID: 29158816 PMCID: PMC5695003 DOI: 10.7150/thno.21040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
Currently unsatisfactory treatment of myocardial infarction (MI) is due to the unbridled inflammation and the delayed diagnosis at the early stage. To address these problems, firstly, phosphatidylserine (PS) was used to modulate the phenotypes of macrophages (MΦ) and resolve the early inflammation via binding to PS receptors (PSR) on macrophage surface. Secondly, highly-sensitive magnetic iron oxide nanocubes (MIONs) were adopted to realize the early visualization via magnetic resonance imaging (MRI). However, the major drawback for MIONs as contrast agents was their hydrophobic properties and insufficient delivery. Hence, zwitterionic biodegradable copolymer poly(lactide)-polycarboxybetaine (PLA-PCB, PP), companied with PS, was used to provide a good colloidal stability and long blood circulation for the nanocubes. Given the above, a theranostic nanosystem (PP/PS@MIONs) was constructed for early treatment of MI. With external magnetic field-induced targeting and PS targeting, the nanosystem enhanced the accumulation in infarcted area, and accelerated the resolution of early inflammatory responses. Moreover, the nanocubes in system were promoted to escape from endosomes/lysosomes via protonation of PCB, which contributes to accurate MRI. This nanosystem showed good inflammation-resolving effects and imaging ability in MI model rats. Therefore, this theranostic nanosystem can realize accurate visualization and significantly improve the treatment efficacy of MI at early stage.
Collapse
|