1
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
2
|
Zhou C, Hardin EJ, Zimmer TS, Jackvony S, Barnett D, Khobrekar N, Giacomelli E, Studer L, Orr AL, Orr AG. Neuroimmune signaling mediates astrocytic nucleocytoplasmic disruptions and stress granule formation associated with TDP-43 pathology. Neurobiol Dis 2025; 211:106939. [PMID: 40339618 DOI: 10.1016/j.nbd.2025.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Alterations in transactivating response region DNA-binding protein 43 (TDP-43) are prevalent in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurological disorders. TDP-43 influences neuronal functions and might also affect glial cells. However, specific intracellular effects of TDP-43 alterations on glial cells and underlying mechanisms are not clear. We report that TDP-43 dysregulation in mouse and human cortical astrocytes causes nucleoporin mislocalization, nuclear envelope remodeling, and changes in nucleocytoplasmic protein transport. These effects are dependent on interleukin-1 (IL-1) receptor activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and are associated with the formation of cytoplasmic stress granules. Stimulation of IL-1 receptors and NF-κB signaling are necessary and sufficient to induce astrocytic stress granules and rapid nucleocytoplasmic changes, which are broadly alleviated by inhibition of the integrated stress response. These findings establish that TDP-43 alterations and neuroimmune factors can induce nucleocytoplasmic changes through NF-κB signaling, revealing mechanistic convergence of proteinopathy and neuroimmune pathways onto glial nucleocytoplasmic disruptions that may occur in diverse neurological conditions.
Collapse
Affiliation(s)
- Constance Zhou
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Evelyn J Hardin
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Stephanie Jackvony
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Noopur Khobrekar
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Elisa Giacomelli
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam L Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The Pseudoenzyme β-Amylase9 From Arabidopsis Activates α-Amylase3: A Possible Mechanism to Promote Stress-Induced Starch Degradation. Proteins 2025; 93:1189-1201. [PMID: 39846389 PMCID: PMC12046210 DOI: 10.1002/prot.26803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three-fold. Modeling of the AMY3-BAM9 complex predicted a previously undescribed alpha-alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model-based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery.
Collapse
Affiliation(s)
| | - Amanda R. Storm
- Department of BiologyWestern Carolina UniversityCullowheeNorth CarolinaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | - Angelina M. Sardelli
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Sheikh R. Hossain
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | | | - Luke M. McFather
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Mafe A. Connor
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Jonathan D. Monroe
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| |
Collapse
|
4
|
Tang Y, Zhang Y, Yang N, Shi H, Fu Y, Bai B, Li B, Yang B, Liu G. TGEV NSP1 enhances viral replication through antagonizing stress granule formation. Vet Microbiol 2025; 305:110502. [PMID: 40239441 DOI: 10.1016/j.vetmic.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Stress granules (SGs) are membrane-less organelles that form in response to adverse external stimuli. Upon viral invasion, SGs formation can serve as a cellular defence mechanism against infection. Transmissible gastroenteritis virus (TGEV), an α-coronavirus with a large positive-sense single-stranded RNA genome, causes diarrhoea, vomiting, dehydration, and even fatality in piglets. Previous studies have shown that coronaviruses employ various strategies to inhibit the SGs formation, thereby facilitating viral replication. However, the interplay between TGEV infection and the SGs formation remains unclear. In this study, we demonstrate that the SGs formation can enhance antiviral innate immunity mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway, thereby inhibiting TGEV replication. Nevertheless, TGEV counteracts the SGs formation by reducing the protein level of Ras-GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) to promote its own replication. Among the TGEV-encoded proteins, non-structural protein 1 (NSP1) exhibits the strongest inhibitory effect on the SGs formation. In summary, our study systematically elucidated the relationship between TGEV and the SGs formation, providing insights into the mechanism of TGEV pathogenesis and a theoretical foundation for identifying novel anti-coronavirus targets.
Collapse
Affiliation(s)
- Yutong Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Han Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingrong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Saad S, Swigut T, Tabatabaee S, Lalgudi P, Jarosz DF, Wysocka J. DNA binding and mitotic phosphorylation protect polyglutamine proteins from assembly formation. Cell 2025; 188:2974-2991.e20. [PMID: 40239647 DOI: 10.1016/j.cell.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/20/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Polyglutamine (polyQ) expansion is associated with pathogenic protein aggregation in neurodegenerative disorders. However, long polyQ tracts are also found in many transcription factors (TFs), such as FOXP2, a TF implicated in human speech. Here, we explore how FOXP2 and other glutamine-rich TFs avoid unscheduled assembly. Throughout interphase, DNA binding, irrespective of sequence specificity, has a solubilizing effect. During mitosis, multiple phosphorylation events promote FOXP2's eviction from chromatin and supplant the solubilizing function of DNA. Further, human-specific amino acid substitutions linked to the evolution of speech map to a mitotic phospho-patch, the "EVO patch," and reduce the propensity of the human FOXP2 to assemble. Fusing the pathogenic form of Huntingtin to either a DNA-binding domain, a phosphomimetic variant of this EVO patch, or a negatively charged peptide is sufficient to diminish assembly formation, suggesting that hijacking mechanisms governing solubility of glutamine-rich TFs may offer new strategies for treatment of polyQ expansion diseases.
Collapse
Affiliation(s)
- Shady Saad
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pranav Lalgudi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Chen Q, An S, Wang C, Zhou Y, Liu X, Ren W. Phase separation in mitochondrial fate and mitochondrial diseases. Proc Natl Acad Sci U S A 2025; 122:e2422255122. [PMID: 40344006 DOI: 10.1073/pnas.2422255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Mitochondria are central metabolic organelles that control cell fate and the development of mitochondrial diseases. Traditionally, phase separation directly regulates cell functions by driving RNA, proteins, or other molecules to concentrate into lipid droplets. Recent studies show that phase separation regulates cell functions and diseases through the regulation of subcellular organelles, particularly mitochondria. In fact, phase separation is involved in various mitochondrial activities including nucleoid assembly, autophagy, and mitochondria-related inflammation. Here, we outline the key mechanisms through which phase separation influences mitochondrial activities and the development of mitochondrial diseases. Insights into how phase separation regulates mitochondrial activities and diseases will help us develop interventions for related diseases.
Collapse
Affiliation(s)
- Qingyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanshuang Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Wenkai Ren
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Monteiro Neto JR, de Souza GF, Dos Santos VM, de Holanda Paranhos L, Ribeiro GD, Magalhães RSS, Queiroz DD, Eleutherio ECA. SOD1, A Crucial Protein for Neural Biochemistry: Dysfunction and Risk of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-05067-1. [PMID: 40419749 DOI: 10.1007/s12035-025-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Neurons are very susceptible to oxidative stress. They are the major consumers of oxygen in the brain, which is used to provide energy through oxidative phosphorylation, the major source of reactive oxygen species (ROS). In addition, compared to other tissues, neurons have lower levels of catalase and glutathione and increased susceptibility to lipid peroxidation due to the elevated levels of unsaturated fatty acids. These characteristics increasingly emphasize the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) to maintain neuronal redox homeostasis. In the last decade, SOD1 gained additional roles which are also important to the metabolism of neurons. SOD1 controls the production of ROS by the electron transport chain, activates the expression of genes involved in the protection against oxidative stress, and regulates the shift from oxidative to fermentative metabolism involved in astrocyte-neuron metabolic cooperation. Furthermore, impaired interaction between the phosphatase calcineurin and SOD1 seems to result in TDP-43 hyperphosphorylation, the main proteinopathy found in amyotrophic lateral sclerosis (ALS) patients. However, this enzyme is ubiquitously expressed, mutated, and damaged forms of SOD1 cause disease in motor neurons. In this review, we discuss the pivotal functions of SOD1 in neuronal biochemistry and their implications for ALS.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriel Freitas de Souza
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Vanessa Mattos Dos Santos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Luan de Holanda Paranhos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriela Delaqua Ribeiro
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rayne Stfhany Silva Magalhães
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniela Dias Queiroz
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Elis Cristina Araujo Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
8
|
Demeshkina NA, Ferré-D'Amaré AR. Large-scale purifications reveal yeast and human stress granule cores are heterogeneous particles with complex transcriptomes and proteomes. Cell Rep 2025; 44:115738. [PMID: 40413746 DOI: 10.1016/j.celrep.2025.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/14/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025] Open
Abstract
Stress granules are a conserved response of eukaryotic cells to environmental insults. These cytoplasmic ribonucleoprotein condensates have hitherto been primarily studied by microscopy, which showed previously that they comprise dense ∼200 nm cores embedded in a diffuse shell. We have developed large-scale purifications of budding yeast and mammalian (HEK293T cell) stress granule cores that do not rely on immunoprecipitation of candidate protein constituents. These unbiased preparations reveal that stress granule cores are discrete particles with variable size (average, 135 and 225 nm for yeast and human, respectively) and shape. Proteomics and transcriptomics demonstrate complex composition. The results of hybridization chain reaction fluorescence in situ hybridization (FISH) analyses in HEK293T cells are consistent with stress granule cores having heterogeneous composition, i.e., each stress granule core particle contains only a limited number of mRNA species. Biochemical purification now opens the way to mechanistic analysis of the heterogeneity and complexity of stress granules.
Collapse
Affiliation(s)
- Natalia A Demeshkina
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Selig EE, Sohn EJ, Stoja A, Moreno-Romero AK, Akula S, Xu X, Bishop AJR, Libich DS. Phase separation of the oncogenic fusion protein EWS::FLI1 is modulated by its DNA-binding domain. Proc Natl Acad Sci U S A 2025; 122:e2221823122. [PMID: 40377985 PMCID: PMC12107149 DOI: 10.1073/pnas.2221823122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2025] [Indexed: 05/18/2025] Open
Abstract
Ewing sarcoma (EwS) is an aggressive cancer of bone and soft tissue that predominantly affects children and young adults. A chromosomal translocation joins the low-complexity domain (LCD) of the RNA-binding protein EWS (EWSLCD) with the DNA-binding domain of Friend leukemia integration 1 (FLI1DBD), creating EWS::FLI1, a potent fusion oncoprotein essential for EwS development and responsible for over 85% of EwS tumors. EWS::FLI1 forms biomolecular condensates in vivo and promotes tumorigenesis through mediation of aberrant transcriptional changes and by interfering with the normal functions of nucleic acid-binding proteins like EWS through a dominant-negative mechanism. In particular, the expression of EWS::FLI1 in EwS directly interferes with the biological functions of EWS leading to alternate splicing events and defects in DNA-damage repair pathways. Though the EWSLCD is capable of phase separation, here we report a direct interaction between FLI1DBD and EWSLCD that enhances condensate formation and alters the physical properties of the condensate. This effect was conserved for three related E-twenty-six transformation-specific (ETS) DNA-binding domains (DBDs) while DNA binding blocked the interaction with EWSLCD and inhibited EWS::FLI1 condensate formation. NMR spectroscopy and mutagenesis studies confirmed that ETS DBDs transiently interact with EWSLCD via the ETS DBDs "wings." Together these results revealed that ETS DBDs, particularly FLI1DBD, enhance EWSLCD condensate formation and rigidity, supporting a model in which electrostatic and structural interactions drive condensate dynamics with implications for EWS::FLI1-mediated transcriptional regulation in EwS.
Collapse
Affiliation(s)
- Emily E. Selig
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Erich J. Sohn
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Aiola Stoja
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Alma K. Moreno-Romero
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Shivani Akula
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Xiaoping Xu
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - David S. Libich
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| |
Collapse
|
10
|
Rashid M, Tachiyama S, Zhu S, Zhao H, McCaig WD, Sun J, Li H, Liu J, Thanassi DG. Outer membrane tube formation by Francisella novicida involves extensive envelope modifications and is linked with type VI secretion and alterations to the host phagosomal membrane. mBio 2025:e0106025. [PMID: 40387340 DOI: 10.1128/mbio.01060-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025] Open
Abstract
Francisella tularensis is a gram-negative, intracellular pathogen that causes the zoonotic disease tularemia. Due to its ease of dissemination and high lethality, F. tularensis is classified as a tier 1 select agent with potential for misuse as a bioweapon. The mechanisms by which Francisella replicates intracellularly and interacts with the host during infection are not well understood. Francisella produces spherical outer membrane vesicles (OMVs) and novel tubular extensions of its cell surface that are also released extracellularly. These OMV and outer membrane tubes (OMTs) contain Francisella virulence factors and are produced in response to amino acid starvation and during infection of macrophages. To investigate how the OMTs are formed, we used cryogenic electron tomography to examine the model Francisella spp., Francisella novicida, during in vitro culture and within the macrophage phagosome. OMT formation involved progressive alterations of the bacterial envelope, resulting in extensions of both the inner and outer membranes. A dynamic cytoplasmic structure was present at the base of the OMT that extended into the tubes during elongation, together with cytoplasmic material. OMT produced within the macrophage phagosome was associated with changes to the phagosomal membrane, suggesting a role in phagosomal escape. Consistent with this, using confocal microscopy, we observed co-localization of the Francisella type VI secretion system with the OMT, both within bacteria and in released tubular vesicles. These findings reveal the cellular transformations that occur during membrane tubulation by Francisella and provide insights into the function of membrane-derived structures during host-pathogen interactions. IMPORTANCE Francisella tularensis is an intracellular bacterial pathogen that causes the zoonotic disease tularemia. Following uptake by host cells, the bacteria rapidly escape the phagosome and replicate intracellularly. In previous studies, we found that Francisella produces tubular extensions of its cell surface in response to specific cues and during macrophage infection. In the present study, we used cryogenic electron tomography to examine tube formation by the model Francisella sp., F. novicida. This analysis revealed that tube formation involves extensive bacterial envelope alterations and a dynamic cytoplasmic organelle. Furthermore, tubes produced by bacteria within infected macrophages were associated with the breakdown of the phagosomal membrane. In addition, we found that the Francisella type VI secretion system, which is essential for phagosomal escape, co-localized with the bacterial tubes. These findings reveal the cellular transformations that occur during membrane tubulation by Francisella and suggest a role for the tubes in phagosomal escape.
Collapse
Affiliation(s)
- Maheen Rashid
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, USA
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, USA
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, USA
| | - William D McCaig
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Jingchuan Sun
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, USA
| | - David G Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Biancon G, Busarello E, Cheng M, Halene S, Tebaldi T. Dissecting the stress granule RNA world: dynamics, strategies, and data. RNA (NEW YORK, N.Y.) 2025; 31:743-755. [PMID: 40086831 DOI: 10.1261/rna.080409.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein granules that commonly nucleate from the interaction of translationally stalled mRNAs and RNA-binding proteins. SGs are involved in the cellular adaptation to stress conditions participating in the regulation of gene expression and cell signaling. While dysregulation of SG dynamics has been increasingly implicated in human disease, a comprehensive understanding of SG composition, particularly of the RNA component, across various conditions remains elusive. Here, we review the physiological and pathological aspects of SGs, discuss current and future experimental strategies to identify SG components, and provide insights into the SG RNA world through the meta-analysis of 26 human SG transcriptome data sets.
Collapse
Affiliation(s)
- Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Emma Busarello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| | - Matthew Cheng
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| |
Collapse
|
12
|
Yuan J, Yang Y, Dai K, Fakhrullin R, Li H, Zhou P, Yuan C, Yan X. Peptide Coacervates: Formation, Mechanism, and Biological Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27697-27712. [PMID: 40304369 DOI: 10.1021/acsami.5c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Biomolecular coacervates, dynamic compartments formed via liquid-liquid phase separation (LLPS), are essential for orchestrating intracellular processes and have emerged as versatile tools in bioengineering. Peptides, with their modular amino acid sequences, exhibit unique potential in coacervate design due to their ability to undergo LLPS while offering precise control over molecular architecture and environmental responsiveness. Their simplicity, synthetic accessibility, and tunability make peptide-based coacervates particularly attractive for biomedical and materials applications. However, the formation and stability of these systems depend on a delicate balance of intrinsic factors (e.g., sequence charge, hydrophobicity, and chain length) and extrinsic conditions (e.g., pH, ionic strength, and temperature), necessitating a deeper understanding of their interplay. This review synthesizes recent advances in the molecular mechanisms driving peptide coacervation, emphasizing how sequence design and environmental cues govern phase behavior. We further highlight groundbreaking applications, from drug delivery platforms to protocell mimics, and discuss strategies to translate mechanistic insights into functional materials. By bridging fundamental principles with innovative applications, this work aims to accelerate the development of peptide coacervates as programmable, multifunctional systems, offering a roadmap for next-generation biochemical technologies.
Collapse
Affiliation(s)
- Jiewei Yuan
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yufan Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Dai
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Peng Zhou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Uechi H, Sridharan S, Nijssen J, Bilstein J, Iglesias-Artola JM, Kishigami S, Casablancas-Antras V, Poser I, Martinez EJ, Boczek E, Wagner M, Tomschke N, de Jesus Domingues AM, Pal A, Doeleman T, Kour S, Anderson EN, Stein F, Lee HO, Zhang X, Fritsch AW, Jahnel M, Fürsch J, Murthy AC, Alberti S, Bickle M, Fawzi NL, Nadler A, David DC, Pandey UB, Hermann A, Stengel F, Davis BG, Baldwin AJ, Savitski MM, Hyman AA, Wheeler RJ. Small-molecule dissolution of stress granules by redox modulation benefits ALS models. Nat Chem Biol 2025:10.1038/s41589-025-01893-5. [PMID: 40369342 DOI: 10.1038/s41589-025-01893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
Neurodegenerative diseases, such as amyotrophic lateral sclerosis, are often associated with mutations in stress granule proteins. Aberrant stress granule condensate formation is associated with disease, making it a potential target for pharmacological intervention. Here, we identified lipoamide, a small molecule that specifically prevents cytoplasmic condensation of stress granule proteins. Thermal proteome profiling showed that lipoamide stabilizes intrinsically disordered domain-containing proteins, including SRSF1 and SFPQ, which are stress granule proteins necessary for lipoamide activity. SFPQ has redox-state-specific condensate dissolving behavior, which is modulated by the redox-active lipoamide dithiolane ring. In animals, lipoamide ameliorates aging-associated aggregation of a stress granule reporter protein, improves neuronal morphology and recovers motor defects caused by amyotrophic lateral sclerosis-associated FUS and TDP-43 mutants. Thus, lipoamide is a well-tolerated small-molecule modulator of stress granule condensation, and dissection of its molecular mechanism identified a cellular pathway for redox regulation of stress granule formation.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jessica Bilstein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Satoshi Kishigami
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Virginia Casablancas-Antras
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Ina Poser
- Dewpoint Therapeutics, Dresden, Germany
| | | | | | | | - Nadine Tomschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - António M de Jesus Domingues
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Dewpoint Therapeutics, Dresden, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Thom Doeleman
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Sukhleen Kour
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric Nathaniel Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Hyun O Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xiaojie Zhang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Anatol W Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Biotechnology Center (BIOTEC), CMCB, TU Dresden, Dresden, Germany
| | - Julius Fürsch
- University of Konstanz, Department of Biology, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), CMCB, TU Dresden, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Institute for Translational Bioengineering, pRED, Roche, Basel, Switzerland
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Della C David
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Babraham Institute, Cambridge, UK
| | - Udai B Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- Translational Neurodegeneration Section 'Albrecht Kossel', Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Florian Stengel
- University of Konstanz, Department of Biology, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Richard J Wheeler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK.
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Rajachandran S, Xu Q, Cao Q, Zhang X, Chen F, Mangiameli SM, Chen H. Subcellular level spatial transcriptomics with PHOTON. Nat Commun 2025; 16:4457. [PMID: 40368943 PMCID: PMC12078482 DOI: 10.1038/s41467-025-59801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
The subcellular localization of RNA is closely linked to its function. Many RNA species are partitioned into organelles and other subcellular compartments for storage, processing, translation, or degradation. Thus, capturing the subcellular spatial distribution of RNA would directly contribute to the understanding of RNA functions and regulation. Here, we present PHOTON, a method which combines high resolution imaging with high throughput sequencing to achieve spatial transcriptome profiling at subcellular resolution. We demonstrate PHOTON as a versatile tool to accurately capture the transcriptome of target cell types in situ at the tissue level such as granulosa cells in the ovary, as well as RNA content within subcellular compartments such as the nucleoli, the mitochondria, and the stress granules. Using PHOTON, we also reveal the functional role of m6A modifications on mRNA partitioning into stress granules. These results collectively demonstrate that PHOTON is a flexible and generalizable platform for understanding subcellular molecular dynamics through the transcriptomic lens.
Collapse
Affiliation(s)
- Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qianlan Xu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Chen
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah M Mangiameli
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Geng P, Li C, Quan X, Peng J, Yao Z, Wang Y, Yang M, Wang Y, Jin Y, Xiong Y, Liu H, Qi Y, Yang P, Huang K, Fang X. A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in Arabidopsis. Cell Res 2025:10.1038/s41422-025-01125-4. [PMID: 40360668 DOI: 10.1038/s41422-025-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The ability to sense cellular temperature and induce physiological changes is pivotal for plants to cope with warming climate. Biomolecular condensation is emerging as a thermo-sensing mechanism, but the underlying molecular basis remains elusive. Here we show that an intrinsically disordered protein FUST1 senses heat via its condensation in Arabidopsis thaliana. Heat-dependent condensation of FUST1 is primarily determined by its prion-like domain (PrLD). All-atom molecular dynamics simulation and experimental validation reveal that PrLD encodes a thermo-switch, experiencing lock-to-open conformational changes that control the intermolecular contacts. FUST1 interacts with integral stress granule (SG) components and localizes in the SGs. Importantly, FUST1 condensation is autonomous and precedes condensation of several known SG markers and is indispensable for SG assembly. Loss of FUST1 significantly delays SG assembly and impairs both basal and acquired heat tolerance. These findings illuminate the molecular basis for thermo-sensing by biomolecular condensation and shed light on the molecular mechanism of heat stress granule assembly.
Collapse
Affiliation(s)
- Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changxuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiying Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yunhe Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanning Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunfan Jin
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Xiong
- Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Bao C, Zhang Y, Feng J, Hong X, Gao N, Feng G. Deciphering tuberculosis: lysosome-centric insights into pathogenesis and therapies. Front Cell Infect Microbiol 2025; 15:1582037. [PMID: 40438237 PMCID: PMC12116394 DOI: 10.3389/fcimb.2025.1582037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/17/2025] [Indexed: 06/01/2025] Open
Abstract
Tuberculosis is a widely spread disease caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of the pathogen is closely associated with the immune defense mechanisms of the host cells. As key cellular degradation and metabolic centers, lysosomes critically regulate tuberculosis infection. When Mtb invades the host, it is taken up by macrophages and enters phagosomes. Subsequently, the phagosomes fuse with lysosomes and form phagolysosomes, which eliminate the pathogenic bacteria through the acidic environment and hydrolytic enzymes within lysosomes. However, Mtb can interfere with the normal functions of lysosomes through various strategies. It can secrete specific factors (such as ESAT-6, ppk-1, and AcpM) to inhibit the acidification of lysosomes, enzyme activity, and the fusion of phagosomes and lysosomes, thereby enabling Mtb proliferation within host cells. An in-depth exploration of the mechanism of the interaction between Mtb and lysosomes will both uncover bacterial immune evasion strategies and identify novel anti-tuberculosis therapeutic targets.
Collapse
Affiliation(s)
- Cui Bao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiao Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuwen Hong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Jiang Y, Ha-Duong T. Temperature-Dependent Coarse-Grained Model for Simulations of Intrinsically Disordered Protein LCST and UCST Liquid-Liquid Phase Separations. J Chem Theory Comput 2025; 21:4939-4952. [PMID: 40278867 DOI: 10.1021/acs.jctc.5c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Many intrinsically disordered proteins (IDPs) can undergo a liquid-liquid phase separation (LLPS) in water, depending on solution conditions (temperature, pH, and ionic strength). There are two types of LLPS that are controlled by temperature: those occurring above a lower critical solution temperature (LCST) and those occurring below an upper critical solution temperature (UCST). IDP coarse-grained (CG) models are particularly appropriate for investigating the physical and chemical factors that govern their LLPS and supramolecular organization. However, the development of CG models allowing simulations of both LCST and UCST behavior of temperature-sensitive IDPs is still in its infancy. In this context, we present here a novel temperature-dependent (TD) CG model for IDP simulations based on the MARTINI 3 force field. The model was developed by modifying the Lennard-Jones potentials between apolar or charged solute beads and water with a TD rescaling factor. It was parametrized to fit the TD potentials of mean force (PMF) between two apolar or two charged molecules computed using all-atom (AA) simulations. We show that the TD CG model is able to reproduce the experimentally known LLPS of both LCST and UCST low-complexity sequences and to estimate phase transition temperatures comparable to experimental measurements.
Collapse
Affiliation(s)
- Yingmin Jiang
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Tâp Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| |
Collapse
|
18
|
Yuan L, Mao LH, Huang YY, Outeiro TF, Li W, Vieira TCRG, Li JY. Stress granules: emerging players in neurodegenerative diseases. Transl Neurodegener 2025; 14:22. [PMID: 40355949 PMCID: PMC12067921 DOI: 10.1186/s40035-025-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Stress granules (SGs) are membraneless organelles formed in the cellular cytoplasm under stressful conditions through liquid-liquid phase separation (LLPS). SG assembly can be both dependent and independent of the eIF2α pathway, whereas cellular protein quality control systems mediate SG disassembly. Chaperones and specific domains of RNA-binding proteins strongly contribute to the regulation SG dynamics. Chronic stress, arising in association with aging, may promote persistent SGs that are difficult to disassemble, thereby acting as a potential pathological nidus for protein aggregation in neurodegenerative diseases (NDDs). In this review, we discuss the dynamics of SGs and the factors involved with SG assembly and disassembly. We also highlight the relationship among LLPS, SGs, and the pathogenesis of different NDDs. More importantly, we summarize SG assembly-disassembly, which may be a double-edged sword in the pathophysiology of NDDs. This review aims to provide new insights into the biology and pathology of LLPS, SGs, and NDDs.
Collapse
Affiliation(s)
- Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China.
| | - Li-Hong Mao
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China
| | - Yong-Ye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Wen Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jia-Yi Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center, BMC, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
19
|
Quezada E, Knoch KP, Vasiljevic J, Seiler A, Pal A, Gunasekaran A, Münster C, Friedland D, Schöniger E, Sönmez A, Roch P, Wegbrod C, Ganß K, Kipke N, Alberti S, Nano R, Piemonti L, Aust D, Weitz J, Distler M, Solimena M. Aldolase-regulated G3BP1/2 + condensates control insulin mRNA storage in beta cells. EMBO J 2025:10.1038/s44318-025-00448-7. [PMID: 40355555 DOI: 10.1038/s44318-025-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/13/2025] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Upregulation of insulin mRNA translation upon hyperglycemia in pancreatic islet β-cells involves several RNA-binding proteins. Here, we found that G3BP1, a stress granule marker downregulated in islets of subjects with type 2 diabetes, binds to insulin mRNA in glucose concentration-dependent manner. We show in mouse insulinoma MIN6-K8 cells exposed to fasting glucose levels that G3BP1 and its paralog G3BP2 colocalize to cytosolic condensates with eIF3b, phospho-AMPKαThr172 and Ins1/2 mRNA. Glucose stimulation dissolves G3BP1+/2+ condensates with cytosolic redistribution of their components. The aldolase inhibitor aldometanib prevents the glucose- and pyruvate-induced dissolution of G3BP1+/2+ condensates, increases phospho-AMPKαThr172 levels and reduces those of phospho-mTORSer2448. G3BP1 or G3BP2 depletion precludes condensate assembly. KO of G3BP1 decreases Ins1/2 mRNA abundance and translation as well as proinsulin levels, and impaires glucose-stimulated insulin secretion. Further, other insulin secretagogues such as exendin-4 and palmitate, but not high KCl, prompts the dissolution of G3BP1+/2+ condensates. G3BP1+/2+/Ins mRNA+ condensates are also found in primary mouse and human β-cells. Hence, G3BP1+/2+ condensates represent a conserved glycolysis/aldolase-regulated compartment for the physiological storage and protection of insulin mRNA in resting β-cells.
Collapse
Affiliation(s)
- Esteban Quezada
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jovana Vasiljevic
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Annika Seiler
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Akshaye Pal
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Abishek Gunasekaran
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Daniela Friedland
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Eyke Schöniger
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Anke Sönmez
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Pascal Roch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Carolin Wegbrod
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nicole Kipke
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Daniela Aust
- Department of Pathology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden Germany, TU Dresden, Dresden, Germany
| | - Jürgen Weitz
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marius Distler
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
20
|
Wang W, Han F, Qi Z, Yan C, Su B, Wang J. Phase Separation: Orchestrating Biological Adaptations to Environmental Fluctuations. Int J Mol Sci 2025; 26:4614. [PMID: 40429758 PMCID: PMC12110863 DOI: 10.3390/ijms26104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Organisms have evolved various protective mechanisms to survive in complex and dynamic environments. Phase separation is a ubiquitous mechanism in plants, animals, and microorganisms. It facilitates the aggregation of biomolecules through weak interactions, forming membrane-less organelles that help organisms respond effectively to stress signals. These biomolecular condensates include DNA, RNA, and proteins. Proteins are categorized into scaffold and client proteins, whose coordinated actions ensure the compartmentalization of cellular signals, thereby regulating various biological processes. Studies indicate that, in response to stress, phase separation modulates gene expression, signal transduction, cytoskeleton dynamics, and protein homeostasis, ensuring the precise spatiotemporal control of cellular functions. These insights underscore the crucial role of phase separation in maintaining cellular integrity and adaptability.
Collapse
Affiliation(s)
- Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Fangbing Han
- College of Agriculture, Henan University, Kaifeng 475004, China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Bodan Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Tsoy S, Liu J. Regulation of Protein Synthesis at the Translational Level: Novel Findings in Cardiovascular Biology. Biomolecules 2025; 15:692. [PMID: 40427584 PMCID: PMC12108789 DOI: 10.3390/biom15050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Translational regulation plays a pivotal role in cardiac gene expression, influencing protein synthesis in response to physiological and pathological stimuli. Although transcription regulates gene expression, translation ultimately determines protein levels, making it a crucial research focus. In cardiomyocytes, disruptions in this process contribute to various cardiac diseases, including hypertrophy, fibrosis, dilated cardiomyopathy, ischemic heart disease, and diabetic cardiomyopathy. Emerging evidence highlights the significance of translational regulation across multiple cardiac cell types, such as cardiomyocytes and fibroblasts, and its role in disease progression. During cardiac remodeling, transcriptomic changes are often modest, suggesting that post-transcriptional mechanisms, particularly translation, play a dominant role in cellular adaptation. This review discusses key methodologies for studying translational regulation and novel mechanisms of translational regulation related to different cardiac pathologies and highlights relevant therapeutic avenues for targeting these pathways.
Collapse
Affiliation(s)
- Sergey Tsoy
- Medical Scientist Training Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Verde EM, Secco V, Ghezzi A, Mandrioli J, Carra S. Molecular Mechanisms of Protein Aggregation in ALS-FTD: Focus on TDP-43 and Cellular Protective Responses. Cells 2025; 14:680. [PMID: 40422183 DOI: 10.3390/cells14100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and dipeptide repeat proteins resulting from C9orf72 hexanucleotide expansions. Genetic mutations linked to ALS-FTD disrupt protein stability, phase separation, and interaction networks, promoting misfolding and insolubility. This review explores the molecular mechanisms underlying protein aggregation in ALS-FTD, with a particular focus on TDP-43, as it represents the main aggregated species inside pathological inclusions and can also aggregate in its wild-type form. Moreover, this review describes the protective mechanisms activated by the cells to prevent protein aggregation, including molecular chaperones and post-translational modifications (PTMs). Understanding these regulatory pathways could offer new insights into targeted interventions aimed at mitigating cell toxicity and restoring cellular function.
Collapse
Affiliation(s)
- Enza Maria Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
23
|
Zhao Y, Li S, Liu Y, Li C, Zhao J, Ren Y, Zhao W, Zhang X, Cui X, Tang X, Ren P, Han X. Artificial Cells Capable of NO Generation with Light Controllable Membraneless Organelles for Melanoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500242. [PMID: 40326248 DOI: 10.1002/adma.202500242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation exhibit diverse important biofunctions in cells. The construction of artificial cells containing MLOs with enhanced complexity and functions is still challenging. Here a light-responsive protein, Cry2olig-IDRs, is designed and purified to form MLOs upon light (488 nm) irradiation. They are capable of rapidly recruiting positively charged inducible nitric oxide synthase (iNOS+) from surroundings to regulate its activity for NO production. NO-artificial cells are constructed by encapsulating Cry2olig-IDRs and iNOS+ into giant unilamellar vesicles, which are capable of rapid production of NO with high concentration due to the formation of MLOs upon light irradiation. NO-artificial cells are confirmed to possess the ability for melanoma tumor therapy in mice. These findings provide an efficient method for remotely regulating enzyme activity inside artificial cells, paving the path to build more sophisticated artificial cells for their biomedical applications.
Collapse
Affiliation(s)
- Yingming Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Yanhao Liu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Wan Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Xuefeng Tang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Peipei Ren
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
24
|
Kumar H, Dhanjal DS, Dhalaria R, Kimta N, Cimler R, Kuča K. Dysbiosis significantly elevates the probability of altered affective function in Alzheimer disease (AD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:1-24. [PMID: 40414630 DOI: 10.1016/bs.irn.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Changes in the makeup of gut microbiota are linked to many neuropsychiatric diseases. Although the exact connection between gut dysbiosis and brain dysfunction is not yet fully understood, but recent data suggests that gut dysbiosis may contribute to the development of Alzheimer's disease (AD) by promoting neuroinflammation, insulin resistance, oxidative stress, and amyloid-beta (Aβ) aggregation. Gut dysbiosis in animal models is primarily characterized by an elevated ratio of Firmicutes/Bacteroidetes which may lead to the accumulation of amyloid precursor protein (APP) in the intestine, in the early stages of AD. Probiotics play a significant role in preventing against the symptoms of AD by restoring gut-brain homeostasis. This chapter provides an overview of the gut microbiota and its dysregulation in etiology of AD. Moreover, novel insights into alteration of the composition of gut microbiota as a preventive or therapeutic approach to AD are discussed.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
25
|
Van Alstyne M, Pratt J, Parker R. Diverse influences on tau aggregation and implications for disease progression. Genes Dev 2025; 39:555-581. [PMID: 40113250 PMCID: PMC12047666 DOI: 10.1101/gad.352551.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Tau is an intrinsically disordered protein that accumulates in fibrillar aggregates in neurodegenerative diseases. The misfolding of tau can be understood as an equilibrium between different states and their propensity to form higher-order fibers, which is affected by several factors. First, modulation of the biochemical state of tau due to ionic conditions, post-translational modifications, cofactors, and interacting molecules or assemblies can affect the formation and structure of tau fibrils. Second, cellular processes impact tau aggregation through modulating stability, clearance, disaggregation, and transport. Third, through interactions with glial cells, the neuronal microenvironment can affect intraneuronal conditions with impacts on tau fibrilization and toxicity. Importantly, tau fibrils propagate through the brain via a "prion-like" manner, contributing to disease progression. This review highlights the biochemical and cellular pathways that modulate tau aggregation and discusses implications for pathobiology and tau-directed therapeutic approaches.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - James Pratt
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA;
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| |
Collapse
|
26
|
Ma R, Zheng L, Yu H, Huo D, Zhao H, Zhang H. Chirality engineering-regulated liquid-liquid phase separation of stress granules and its role in chemo-sensitization and side effect mitigation. J Colloid Interface Sci 2025; 685:637-647. [PMID: 39862843 DOI: 10.1016/j.jcis.2025.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism. The role and mechanism of chiral nanomaterials in modulating stress granules remain unclear. This study aimed to investigate the expression and structural characteristics of stress granules under the influence of chiral nanomaterials, both individually and in combination with chemotherapy. A library of chiral ligand-modified materials was constructed, and techniques such as immunofluorescence, live-cell imaging, fluorescence recovery after photobleaching assays, and proximity labeling combined with proteomics analysis were employed. These methods helped identify the protein corona adsorbed on the surface of the nanomaterials and explore their relationship with nanomaterial chirality. The findings suggest that the assembly of stress granules is influenced by chirality and can be regulated by chiral nanomaterials. Additionally, chemotherapy sensitivity in cancer cells was enhanced, and normal cells were protected by leveraging the chiral-dependent modulation of material assembly in stress granules. This study offers insights into the regulation of membraneless cellular structures based on chiral biological effects.
Collapse
Affiliation(s)
- Ruxuan Ma
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China
| | - Liuting Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Han Yu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Da Huo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, PR China.
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
27
|
Wang Z, Yang C, Wang X, Lyu W, Liao H, Liu X, Liu H, Zhang J, Shen H, Zhang L, Wang H. Decoding stress granules dynamics: Implications for neurodegenerative disease. Prog Neurobiol 2025; 248:102758. [PMID: 40132681 DOI: 10.1016/j.pneurobio.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic structures formed by cells in response to external stress, primarily composed of mRNA and proteins. The dynamic properties of their assembly, maintenance, and disassembly play crucial roles in cellular homeostasis. Recent studies have increasingly revealed that aberrations in SGs dynamics are closely related to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review summarizes the latest research progress on SGs dynamics in neurodegenerative diseases. It begins with an overview of the basic biological characteristics of SGs and their functions in neurons, followed by an in-depth exploration of the mechanisms and regulatory pathways of SGs dynamics. The review then summarizes potential therapeutic strategies targeting SGs dynamics abnormalities, particularly through small molecule drugs to modulate SGs formation and disassembly, aiming to delay or halt the progression of neurodegenerative diseases. The review also highlights the application prospects of these interventions in treating neurodegenerative diseases. Finally, the review introduces current techniques used to study SGs dynamics, discussing their advantages, limitations, and future development possibilities. This review aims to provide researchers with a comprehensive perspective to advance the understanding and clinical application of SGs dynamics in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixuan Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Chenyi Yang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xinyi Wang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Wenyuan Lyu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Huihui Liao
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xing Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Jingwei Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huai Shen
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Lin Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China.
| |
Collapse
|
28
|
Xu S, Yin K, Xu X, Fu L, Wu R. O-GlcNAcylation reduces proteome solubility and regulates the formation of biomolecular condensates in human cells. Nat Commun 2025; 16:4068. [PMID: 40307207 PMCID: PMC12043995 DOI: 10.1038/s41467-025-59371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
O-GlcNAcylation plays critical roles in the regulation of protein functions and cellular activities, including protein interactions with other macromolecules. While the formation of biomolecular condensates (or biocondensates) regulated by O-GlcNAcylation in a few individual proteins has been reported, systematic investigation of O-GlcNAcylation on the regulation of biocondensate formation remains to be explored. Here we systematically study the roles of O-GlcNAcylation in regulating protein solubility and its impacts on RNA-protein condensates using mass spectrometry-based chemoproteomics. Unexpectedly, we observe a system-wide decrease in the solubility of proteins modified by O-GlcNAcylation, with glycoproteins involved in focal adhesion and actin binding exhibiting the most significant decrease. Furthermore, O-GlcNAcylation sites located in disordered regions and with fewer acidic and aromatic residues nearby are related to a greater drop in protein solubility. Additionally, we discover that a specific group of O-GlcNAcylation events promotes the dissociation of RNA-protein condensates under heat stress, while some enhance the formation of RNA-protein condensates during the recovery phase. Using site mutagenesis, inhibition of O-GlcNAc transferase, and fluorescence microscopy, we validate that O-GlcNAcylation regulates the formation of biocondensates for YTHDF3 and NUFIP2. This work advances our understanding of the functions of protein O-GlcNAcylation and its roles in the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- The Scripps Research Institute, La Jolla, CA, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Longping Fu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Mohanty D, Sharma GS. Function in disorder: A review on the roles of the disordered dehydrin proteins in conferring stress tolerance. Int J Biol Macromol 2025; 311:143672. [PMID: 40316120 DOI: 10.1016/j.ijbiomac.2025.143672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Water scarcity as a result of drought is considered to be among the most common forms of abiotic stress which directly hampers plant health. Such conditions often lead to various interlinked physiological conditions, including oxidative stress resulting from increased ROS levels that in turn, induce membranes dysfunction, leading to disruption in cellular ionic balance, and oxidation of macromolecules. Plants employ several mechanisms to counter these hostile conditions, which help them adapt to such unforgiving environments. Accumulation of specific types of proteins called dehydrins (DHNs) represents one such mechanism of adaptation. DHNs are ubiquitous in distribution and have been reported in different life forms; accumulating under a wide spectrum of stress. An important role of DHNs is to protect and maintain cell's macromolecular structure and function, thereby preserving membrane integrity, stabilizing proteins and nucleic acid, and conferring protection against oxidative stress. The present article explores different aspects of DHNs, including their structural compositions, architectures and conformational flexibility, and their role in combating a plethora of stress environments, with specific focus towards drought. Possible involvements of DHNs in intracellular biocondensates formation through phase separation and their role in stress sensing are also provided.
Collapse
Affiliation(s)
- Divya Mohanty
- Department of Botany, Hindu College, University of Delhi, North Campus, Delhi 110007, India
| | - Gurumayum Suraj Sharma
- Department of Botany, Hindu College, University of Delhi, North Campus, Delhi 110007, India.
| |
Collapse
|
30
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
31
|
Shiryaeva O, Tolochko C, Alekseeva T, Dyachuk V. Targets and Gene Therapy of ALS (Part 1). Int J Mol Sci 2025; 26:4063. [PMID: 40362304 PMCID: PMC12071412 DOI: 10.3390/ijms26094063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- Almazov Federal Medical Research Centre, 197341 Saint Petersburg, Russia; (O.S.); (C.T.); (T.A.)
| |
Collapse
|
32
|
Miao E, Yang D, Yue X, Zhang Z, Liu H, Qin H, Ye M. Revealing Stress Granule Compositional Heterogeneity through Antibody-Guided Proximity Labeling. Anal Chem 2025; 97:8313-8321. [PMID: 40198209 DOI: 10.1021/acs.analchem.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Stress granules (SGs), transient nonmembranous cytoplasmic condensates that formed in response to cellular stresses, require precise characterization to unravel their cell-type and stress-specific protein compositions. This study introduced a G3BP1 antibody-guided proximity labeling (Ab-PL) method to explore the composition and diversity of SGs, overcoming the challenges of traditional enzyme-mediated proximity labeling techniques across various cell types, especially for the immune cells. Application of Ab-PL to HeLa and RAW264.7 cells under heat shock (HS), sodium arsenate (AS), and sodium chloride stress (SS) revealed two categories of SG proteins: "SG-core" and "SG-shell," characterized by their different abilities to undergo phase separation. The core proteins form the SG scaffold with strong self-segregation, while shell proteins are dynamically recruited based on the type of stress. Cell- and stress-specific SG proteins were also identified, highlighting compositional heterogeneity. Intriguingly, unique nuclear-cytoplasmic shuttling behaviors of SG components were observed under varying conditions, uncovering over 10 novel SG proteins, including REXO4, RBM28, and OGFR. This study provides a versatile tool for SG analysis across diverse cell types and offers insights into SG heterogeneity, which has potential implications for human diseases, paving the way for future studies on RNA metabolism, ribosome assembly, and immune regulation.
Collapse
Affiliation(s)
- Enming Miao
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dian Yang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xuyang Yue
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhuo Zhang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
33
|
Zhang J, Li P, Yue J, Meng L, Li W, Yang C, Kim S, Cheng Z, Kamath A, Siahrostami S, Tian B. Gold-modified nanoporous silicon for photoelectrochemical regulation of intracellular condensates. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01878-4. [PMID: 40234705 DOI: 10.1038/s41565-025-01878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/31/2025] [Indexed: 04/17/2025]
Abstract
Nano-enabled catalysis at the interface of metals and semiconductors has found numerous applications, but its role in mediating cellular responses is still largely unexplored. Here we explore the territory by examining the once elusive mechanism through which a nanoporous silicon-based photocatalyst facilitates the two-electron oxidation of water to generate hydrogen peroxide under physiological conditions. We achieve precise modulation of intracellular stress granule formation by the controlled photoelectrochemical production of hydrogen peroxide in the extracellular environment, thereby enhancing cellular resilience to significant oxidative stress. This photoelectrochemical strategy has been evaluated for its efficacy in treating myocardial ischaemia-reperfusion injury in an ex vivo rodent model. Our data suggest that a pretreatment regimen involving photoelectrochemical generation of hydrogen peroxide at mild concentrations mitigates myocardial ischaemia-reperfusion-induced functional decline and infarction. These findings suggest a viable wireless therapeutic intervention for managing ischaemic disease and highlight the biomedical potential of nanostructured semiconductor-based catalytic devices.
Collapse
Affiliation(s)
- Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Saehyun Kim
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Ananth Kamath
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Samira Siahrostami
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Zhao R, Zhu Z, Wang W, Wen W, Zhang Z, Favoreel HW, Li X. Pseudorabies virus IE180 protein hijacks G3BPs into the nucleus to inhibit stress granule formation. J Virol 2025; 99:e0208824. [PMID: 40145738 PMCID: PMC11998503 DOI: 10.1128/jvi.02088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Pseudorabies virus (PRV) is a porcine alphaherpesvirus that can infect different animal species and cause pruritus and lethal encephalitis. Stress granules (SGs) are membrane-free cytoplasmic structures formed by liquid-liquid phase separation of G3BP proteins during cell translation inhibition, which generally plays an antiviral role in various viral infections. In this study, we found that infection with different PRV strains inhibits the formation of SGs in host cells. We found that IE180, the only immediate early protein of PRV, has a distinct inhibitory effect on SG formation and colocalizes with SG-nucleating G3BP proteins (G3BP1/2) in the nucleus during PRV infection. Co-immunoprecipitation assays demonstrated an interaction between IE180 and G3BP1/G3BP2, and this interaction appears to depend on the Herpesvirus ICP4-like protein N-terminal (ICP4L-N) domain of IE180 and both NTF2L and RBD domains of G3BP1. Since G3BPs mainly function in the cytoplasm to induce SG formation, we constructed several IE180 protein truncations lacking a nuclear localization sequence to alter the subcellular localization of IE180 to the cytoplasm. Mutant IE180 protein was mainly expressed in the cytoplasm and still suppressed SG formation induced by arsenite or poly(I:C), but its ability to inhibit SG formation was weakened. Importantly, knockout of G3BPs facilitated PRV replication in H1299 cells, while exogenous expression of G3BPs and formation of SGs in wild-type H1299 cells suppressed PRV replication. In summary, our study indicates that PRV IE180 suppresses SG formation and hijacks G3BPs into the nucleus to benefit virus replication.IMPORTANCEHerpesviruses, including pseudorabies virus (PRV), have evolved different strategies to compromise host immune responses. Stress granules (SGs) are one of the targets that viruses can overcome in order to increase replication. The related herpes simplex virus 1 (HSV-1) inhibits SG formation to promote virus replication, but the underlying mechanisms remain unknown. In this study, we confirmed that infection with different PRV strains inhibits SG formation. Interestingly, we found that the PRV immediate early protein IE180 interacts with G3BP proteins and hijacks these proteins into the nucleus to prevent SG formation. In line with the antiviral effect of SGs on PRV replication, exogenous expression of G3BPs and formation of SGs in G3BP1/2 knockout H1299 cells significantly compromised PRV replication. The reported mechanism appears to be also utilized by HSV-1 to prevent SG formation. Therefore, our study elucidates a novel mechanism by which alphaherpesviruses inhibit SG formation, which provides a new perspective to inquire into the immune escape of PRV and other alphaherpesviruses.
Collapse
Affiliation(s)
- Ruihan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Wenqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Wei Wen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Zhendong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Yang G, Wang Y, Guo J, Rui T. Connecting the Dots: Stress Granule and Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10619-w. [PMID: 40229624 DOI: 10.1007/s12265-025-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic assemblies composed of mRNAs and RNA-binding proteins (RBPs) that transiently form to cope with various cellular stressors by halting mRNA translation and, consequently, protein synthesis. SG formation plays a crucial role in regulating multiple cellular processes, including cellular senescence, inflammatory responses, and adaptation to oxidative stress under both physiological and pathological conditions. Dysregulation of SG assembly and disassembly has been implicated in the pathogenesis of various diseases, including cardiovascular diseases (CVDs), cancer, viral and bacterial infections, and degenerative diseases. In this review, we survey the key aspects of SGs biogenesis and biological functions, with a particular focus on their causal involvement in CVDs. Furthermore, we summarized several SG-modulating compounds and discussed the therapeutic potential of small molecules targeting SG-related diseases in clinical settings.
Collapse
Affiliation(s)
- Gaowei Yang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Yiming Wang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Junfang Guo
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China.
| |
Collapse
|
36
|
Baluapuri A, Zhao NC, Marina RJ, Huang KL, Kuzkina A, Amodeo ME, Stein CB, Ahn LY, Farr JS, Schaffer AE, Khurana V, Wagner EJ, Adelman K. Integrator loss leads to dsRNA formation that triggers the integrated stress response. Cell 2025:S0092-8674(25)00343-5. [PMID: 40233738 DOI: 10.1016/j.cell.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Integrator (INT) is a metazoan-specific complex that targets promoter-proximally paused RNA polymerase II (RNAPII) for termination, preventing immature RNAPII from entering gene bodies and functionally attenuating transcription of stress-responsive genes. Mutations in INT subunits are associated with many human diseases, including cancer, ciliopathies, and neurodevelopmental disorders, but how reduced INT activity contributes to disease is unknown. Here, we demonstrate that the loss of INT-mediated termination in human cells triggers the integrated stress response (ISR). INT depletion causes upregulation of short genes such as the ISR transcription factor activating transcription factor 3 (ATF3). Further, immature RNAPII that escapes into genes upon INT depletion is prone to premature termination, generating incomplete pre-mRNAs with retained introns. Retroelements within retained introns form double-stranded RNA (dsRNA) that is recognized by protein kinase R (PKR), which drives ATF4 activation and prolonged ISR. Critically, patient cells with INT mutations exhibit dsRNA accumulation and ISR activation, thereby implicating chronic ISR in diseases caused by INT deficiency.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Nicole ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anastasia Kuzkina
- APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria E Amodeo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vikram Khurana
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Kim SW, Lee J, Jo KW, Jeong YH, Shin WS, Kim KT. RNF144A-VRK2-G3BP1 axis regulates stress granule assembly. Cell Death Discov 2025; 11:158. [PMID: 40204710 PMCID: PMC11982375 DOI: 10.1038/s41420-025-02460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Under the cellular stress, stress granules (SGs) help survival and proliferation of the cell. Unfortunately, the same SGs help unwanted cancer cells under stressful environment, including anti-cancer chemotherapy treatment. While SGs elevate the cancer cell's resistance to chemotherapy, the mechanism behind the formation of SGs in cancer cell under chemotherapy treatment is still to be revealed. Here, we identified that the level of VRK2 and the phosphorylation of its novel substrate, G3BP1, are reduced when the cellular stress was increased by sodium arsenite (SA) or cisplatin treatment. We also demonstrated that the level of RNF144A is increased in response to the stress and further downregulates VRK2 through proteasomal degradation in various types of cancer cells. Furthermore, inhibition of SG formation by the overexpression of VRK2 sensitized the cells to the stress and chemotherapy. Together, our study establishes an RNF144A-VRK2-G3BP1 axis that regulates SG formation and suggest its potential usage in anti-cancer therapy.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyung Won Jo
- Hesed Bio Corporation, Pohang, Gyeongbuk, Republic of Korea
| | - Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Won Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
38
|
Zeng X, Pappu RV. Backbone-mediated weakening of pairwise interactions enables percolation in peptide-based mimics of protein condensates. Commun Chem 2025; 8:106. [PMID: 40188296 PMCID: PMC11972419 DOI: 10.1038/s42004-025-01502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Biomolecular condensates formed by intrinsically disordered proteins (IDPs) are semidilute solutions. These can be approximated as solutions of blob-sized segments, which are peptide-sized motifs. We leveraged the blob picture and molecular dynamics simulations to quantify differences between inter-residue interactions in model compound and peptide-based mimics of dense versus dilute phases. The all-atom molecular dynamics simulations use a polarizable forcefield. In model compound solutions, the interactions between aromatic residues are stronger than interactions between cationic and aromatic residues. This holds in dilute and dense phases. Cooperativity within dense phases enhances pairwise interactions leading to finite-sized nanoscale clusters. The results for peptide-based condensates paint a different picture. Backbone amides add valence to the associating molecules. While this enhances pairwise inter-residue interactions in dilute phases, it weakens pair interactions in dense phases, doing so in a concentration-dependent manner. Weakening of pair interactions enables fluidization characterized by short-range order and long-range disorder. The higher valence afforded by the peptide backbone generates system-spanning networks. As a result, dense phases of peptides are best described as percolated network fluids. Overall, our results show how peptide backbones enhance pairwise interactions in dilute phases while weakening these interactions to enable percolation within dense phases.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, The James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, The James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
39
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Li J, Duong D, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative role of PACT and ADAR1 in preventing aberrant PKR activation by self-derived double-stranded RNA. Nat Commun 2025; 16:3246. [PMID: 40185749 PMCID: PMC11971382 DOI: 10.1038/s41467-025-58412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that PACT-deficient cells hyperactivate PKR in response to different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexander Garcia
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Dana Duong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Dheva Setiaputra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA.
- Center for Virus Research, University of California Irvine, Irvine, California, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
40
|
Fang M, Luo L, Chen Y, Liu Y, Yan Y, Wang F, Zou Y, Zhu H, Wu X, Jin Z, Huang C, Zhang Y, Fan S. Perillaldehyde Improves Parkinson-Like Deficits by Targeting G3BP Mediated Stress Granule Assembly in Preclinical Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412152. [PMID: 39951026 PMCID: PMC11984871 DOI: 10.1002/advs.202412152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/27/2024] [Indexed: 04/12/2025]
Abstract
Stress granules (SGs) fulfill a pivotal role in host defense mechanisms, by sequestering both mRNA and protein via the process of liquid-liquid phase separation (LLPS). In this study, we showed that perillaldehyde (PAE), a natural occurring compound, bound directly to the core protein of SGs, Ras GTPase-activating protein-binding protein 1/2 (G3BP1/2), thereby inducing the assembly of SGs through the LLPS of G3BP/RNA complexes in vitro. Moreover, in Parkinson's disease (PD) models using Caenorhabditis elegans (C. elegans) and mice, PAE administration prompted SG formation, enhanced eIF2α phosphorylation, shielded dopaminergic neurons from toxic insults, mitigated α-synuclein (α-syn) aggregation, and improved PD-like motor disorders. In addition, these findings revealed that the interaction between G3BP1 and histone deacetylase 6 (HDAC6) inhibited the functions of cytoplasmic HDAC6 and reduced α-syn aggregation in cells and worms. Notably, the inhibition of SG assembly via gtbp-1 and tiar-1 RNAi effectively counteracted the beneficial effects of PAE in C. elegans. Collectively, these results imply that PAE may exert neuroprotective effects by targeting G3BP-mediated SG formation, thereby safeguarding dopaminergic neurons from toxic damage.
Collapse
Affiliation(s)
- Minglv Fang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Lingling Luo
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang330006China
| | - Youjia Chen
- College of Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Ying Liu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yingxuan Yan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Fei Wang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yan Zou
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Huanhu Zhu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiaojun Wu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhigang Jin
- College of Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yu Zhang
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200237China
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
41
|
Pan CR, Knutson SD, Huth SW, MacMillan DWC. µMap proximity labeling in living cells reveals stress granule disassembly mechanisms. Nat Chem Biol 2025; 21:490-500. [PMID: 39215100 PMCID: PMC11868469 DOI: 10.1038/s41589-024-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.
Collapse
Affiliation(s)
- Chenmengxiao Roderick Pan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
42
|
Hua X, Jin L, Fang Z, Weng Y, Zhang Y, Zhang J, Xie D, Tang Y, Guo S, Huang Y, Dai Y, Li J, Huang Z, Zhang X. TIA1-Mediated Stress Granules Promote the Neuroinflammation and Demyelination in Experimental Autoimmune Encephalomyelitis through Upregulating IL-31RA Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409086. [PMID: 39804990 PMCID: PMC11984900 DOI: 10.1002/advs.202409086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice. Deletion of TIA1 in the CNS alleviates neuroinflammation, suppresses demyelination and axonal damage, and reduces neuronal loss in EAE mice. Furthermore, alleviation of autophagy dysfunction and reduction of chronic persistent SGs are observed in Tia1Nestin-CKO EAE mice. Mechanistically, IL-31RA levels are decreased in Tia1Nestin-CKO EAE mice, which inhibit the downstream PI3K/AKT signaling pathway associated with IL-31RA, thereby enhancing autophagy and suppressing the NF-κB signaling pathway, further alleviating EAE symptoms. Knockdown of TIA1 in primary neurons and N2a cells treated with sodium arsenite also reduces the formation of SGs. These findings reveal an unrecognized role of TIA1-mediated SGs in promoting neuroinflammation and demyelination, offering novel therapeutic targets for MS.
Collapse
Affiliation(s)
- Xin Hua
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of NeurologyXuanwu Hospital Capital Medical UniversityNational Center for Neurological DisordersBeijing100053China
| | - Lingting Jin
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zheyu Fang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yiyun Weng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jingjing Zhang
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dewei Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yang Tang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Siyu Guo
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Yingying Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yilin Dai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jia Li
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhihui Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Xu Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
43
|
Major RM, Mills CA, Xing L, Krantz JL, Wolter JM, Zylka MJ. Exploring the Cytoplasmic Retention of CRISPR-Cas9 in Eukaryotic Cells: The Role of Nuclear Localization Signals and Ribosomal Interactions. CRISPR J 2025; 8:120-136. [PMID: 40019800 DOI: 10.1089/crispr.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Cas9 must be localized to the nucleus to access the genome of mammalian cells. For most proteins, adding a single nuclear localization signal (NLS) is sufficient to promote nuclear entry. However, Cas9 nuclear entry appears to be inefficient as multiple NLSs are typically added to Cas9. Here, we found that three different Cas9 variants interact with the ribosome in HEK293T cells, and that this interaction is RNA mediated. Following immunoprecipitation-mass spectrometry of cytoplasmic-localized Cas9-0NLS and nuclear-localized Cas9-4NLS constructs, we identified novel Cas9 interactors in postmitotic neurons, including KEAP1 and additional ribosomal subunits, the latter were enriched in Cas9-0NLS samples. Collectively, our results suggest that Cas9 is sequestered in the cytoplasm of mammalian cells, in part, via interaction with the ribosome. Increasing the number of NLSs on Cas9 and/or increasing the amount of cytoplasmic guide RNA has the potential to outcompete ribosomal RNA binding and promote efficient nuclear localization of CRISPR-Cas9 variants.
Collapse
Affiliation(s)
- Rami M Major
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine A Mills
- Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James L Krantz
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Bian Y, Fukui Y, Ota-Elliott RS, Hu X, Sun H, Bian Z, Zhai Y, Yu H, Hu X, An H, Liu H, Morihara R, Ishiura H, Yamashita T. The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model. Neurosci Res 2025; 213:128-137. [PMID: 39889925 DOI: 10.1016/j.neures.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43-positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
Collapse
Affiliation(s)
- Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ricardo Satoshi Ota-Elliott
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hangping An
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongzhi Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| |
Collapse
|
45
|
Utami KH, Morimoto S, Mitsukura Y, Okano H. The roles of intrinsically disordered proteins in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130772. [PMID: 39954969 DOI: 10.1016/j.bbagen.2025.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Faculty of Science and Technology, Keio University, Kanagawa 223-0061, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Satoru Morimoto
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan.
| | - Yasue Mitsukura
- Faculty of Science and Technology, Keio University, Kanagawa 223-0061, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan; Laboratory of Marmoset Models of Neural Diseases, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Mellgren AEC, Cristea I, Stevenson T, Spriet E, Knappskog PM, Bøe SO, Kranz H, Grellscheid SN, Rødahl E. On subcellular distribution of the zinc finger 469 protein (ZNF469) and observed discrepancy in the localization of endogenous and overexpressed ZNF469. FEBS Open Bio 2025. [PMID: 40156465 DOI: 10.1002/2211-5463.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
The zinc finger 469 gene (ZNF469) is a single-exon gene predicted to encode a protein of 3953 amino acids. Despite pathogenic ZNF469 variants being associated with Brittle Cornea Syndrome (BCS), relatively little is known about ZNF469 beyond its participation in regulating the expression of genes encoding extracellular matrix proteins. In this study, we examined the expression and intracellular localization of ZNF469 in different cell lines. The level of ZNF469 mRNA varied from low levels in HEK293 cells to high levels in HeLa cells and primary fibroblasts. Antibodies against ZNF469 reacted among others with a protein of approximately 400 kDa in immunoblot analysis, which was mainly present in the insoluble fraction of the cytoplasm. Immunofluorescence analysis of interphase cells showed small cytoplasmic puncta and weak nuclear staining. In dividing HeLa cells, the antibodies recognized foci that also stained for proteasomes. In transfected cells, ZNF469 was observed mainly in foci resembling nuclear speckles in interphase and at the midbody during mitosis. The nuclear foci showed overlapping staining with proteasomes. In live cell imaging, liquid-like properties of the nuclear foci were recorded as they changed shape and position and occasionally fused with each other. During stress granule formation, cytoplasmic foci showed overlapping staining with G3BP1. Finally, in silico analysis revealed large intrinsically disordered regions with multiple low complexity domains in ZNF469. Our data indicate that ZNF469 forms aggregates possibly as biomolecular condensates when overexpressed. However, care must be taken when analyzing the intracellular distribution of ZNF469 due to the discrepancy in the localization of endogenous ZNF469 and overexpressed ZNF469 in transfected cells.
Collapse
Affiliation(s)
| | - Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Norway
| | - Thomas Stevenson
- Computational Biology Unit and Department of Biomedicine, University of Bergen, Norway
| | - Endy Spriet
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Per Morten Knappskog
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital, Norway
| | - Harald Kranz
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Sushma N Grellscheid
- Computational Biology Unit and Department of Biomedicine, University of Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Norway
| |
Collapse
|
47
|
Benman W, Iyengar P, Mumford TR, Huang Z, Kapoor M, Liu G, Bugaj LJ. Multiplexed dynamic control of temperature to probe and observe mammalian cells. Cell Syst 2025; 16:101234. [PMID: 40081372 DOI: 10.1016/j.cels.2025.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Temperature is an important biological stimulus, yet there is a lack of approaches to modulate the temperature of biological samples in a dynamic and high-throughput manner. The thermoPlate is a device for programmable control of temperature in a 96-well plate, compatible with cell culture and microscopy. The thermoPlate maintains feedback control of temperature independently in each well, with minutes-scale heating and cooling through ΔT = 15-20°C. We first used the thermoPlate to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then examined stress granule (SG) formation in response to dynamic heat stress, revealing adaptation of SGs to persistent heat and formation of a memory of stress that prevented SG formation in response to subsequent heat shocks. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena. A record of this paper's transparent peer review process is included in the Supplemental information.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pavan Iyengar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manya Kapoor
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Vitiello E, Castagnetti F, Mecarelli LS, D'Ambra E, Tollis P, Ruocco G, Laneve P, Caffarelli E, Mariani D, Bozzoni I. Live-cell imaging of circular and long noncoding RNAs associated with FUS pathological aggregates by Pepper fluorescent RNA. RNA (NEW YORK, N.Y.) 2025; 31:529-548. [PMID: 39779212 PMCID: PMC11912908 DOI: 10.1261/rna.080119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Lately, important advancements in visualizing RNAs in fixed and live cells have been achieved. Although mRNA imaging techniques are well-established, the development of effective methods for studying noncoding RNAs (ncRNAs) in living cells is still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper. Specifically, we showed that circ-HDGFRP3 interacts with p-bodies and is recruited in pathological FUS aggregates in a dynamic fashion, and we super-resolved its distribution in such condensates via structured illumination microscopy. Moreover, we tracked the long noncoding RNA (lncRNA) nHOTAIRM1, a motor neuron-specific constituent of stress granules, monitoring its behavior throughout the oxidative-stress response in physiological and pathological conditions. Overall, as fRNA development progresses, our work demonstrates an effective use of Pepper for monitoring complex processes, such as phase transition, in living cells through the visualization of circular RNAs (circRNAs) and lncRNAs with super-resolution power.
Collapse
Affiliation(s)
- Erika Vitiello
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | | | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora D'Ambra
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Paolo Tollis
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Pietro Laneve
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| |
Collapse
|
49
|
Jennrich J, Farkas Á, Urlaub H, Schwappach B, Bohnsack KE. The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH. J Cell Sci 2025; 138:jcs263616. [PMID: 39976550 PMCID: PMC11959614 DOI: 10.1242/jcs.263616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 03/21/2025] Open
Abstract
The guided-entry of tail-anchored proteins (GET) pathway is a post-translational targeting route to the endoplasmic reticulum (ER). Upon glucose withdrawal, the soluble GET proteins re-localize to dynamic cytosolic foci, here termed GET bodies. Our data reveal that the pre-targeting complex components, Sgt2 and the Get4-Get5 heterodimer, and the Get3 ATPase play important roles in the assembly of these structures in Saccharomyces cerevisiae. More specifically, the TPR region of Sgt2 is required as a GET body scaffold. Systematic compositional analyses of GET bodies reveal their chaperone-rich nature and the presence of numerous proteins involved in metabolic processes. Temporal analyses of GET body assembly demonstrate the sequential recruitment of different chaperones, and we discover the requirement of Sis1 and Sti1 for maintaining the dynamic properties of these structures. In vivo, NADH derived from the oxidation of ethanol to acetaldehyde can induce GET body disassembly in a reaction depending on the alcohol dehydrogenase Adh2 and in vitro, addition of NADH resolves GET bodies. This suggests a mechanistic basis for their formation and disassembly in response to the metabolic shift caused by glucose withdrawal and re-addition.
Collapse
Affiliation(s)
- Jonas Jennrich
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Faßberg 11, 37077 Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Centre Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Yasuda I, von Bülow S, Tesei G, Yamamoto E, Yasuoka K, Lindorff-Larsen K. Coarse-Grained Model of Disordered RNA for Simulations of Biomolecular Condensates. J Chem Theory Comput 2025; 21:2766-2779. [PMID: 40009520 DOI: 10.1021/acs.jctc.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Protein-RNA condensates are involved in a range of cellular activities. Coarse-grained molecular models of intrinsically disordered proteins have been developed to shed light on and predict single-chain properties and phase separation. An RNA model compatible with such models for disordered proteins would enable the study of complex biomolecular mixtures involving RNA. Here, we present a sequence-independent coarse-grained, two-beads-per-nucleotide model of disordered, flexible RNA based on a hydropathy scale. We parametrize the model, which we term CALVADOS-RNA, using a combination of bottom-up and top-down approaches to reproduce local RNA geometry and intramolecular interactions based on atomistic simulations and in vitro experiments. The model semiquantitatively captures several aspects of RNA-RNA and RNA-protein interactions. We examined RNA-RNA interactions by comparing calculated and experimental virial coefficients and nonspecific RNA-protein interaction by studying the reentrant phase behavior of protein-RNA mixtures. We demonstrate the utility of the model by simulating the formation of mixed condensates consisting of the disordered region of MED1 and RNA chains and the selective partitioning of disordered regions from transcription factors into these and compare the results to experiments. Despite the simplicity of our model, we show that it captures several key aspects of protein-RNA interactions and may therefore be used as a baseline model to study several aspects of the biophysics and biology of protein-RNA condensates.
Collapse
Affiliation(s)
- Ikki Yasuda
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|