1
|
Zheng X, Jiang GJ, Fan TJ. Blue Light Irradiation Elicits Senescence of Corneal Endothelial Cells In Vitro by Provoking Energy Crisis, Inflammasome Assembly and DNA Damage. Curr Eye Res 2025:1-12. [PMID: 40336349 DOI: 10.1080/02713683.2025.2497330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
PURPOSE The blue light from the digital screens endangers the visual system among which the corneas at the outmost of eyes are vulnerable to the irradiation. Therein, the human corneal endothelial (HCE) cells are crucial to maintain corneal transparency and their damage leads to HCE decompensation resulting in blindness ultimately. Thus, understanding the phototoxic effects of the blue light on the HCE cells and the underlying mechanisms is important for taking measures to protect the vision clarity from the blue-light hazard. METHODS We pulse-irradiated the HCE cell line cells at logarithmic phase for 3 passages using 440 nm blue light and examined the levels of reactive oxygen species (ROS), ATP, nicotinamide adenine dinucleotide (NAD+) and autophagy using cytochemistry assay to investigate the alterations of energy metabolism. Moreover, we examined the γH2AX+ cells using immunofluorescence and expression of poly(ADP-Ribose)polymerase1 (PARP1) using western blotting to investigate the degrees of DNA damage and repair. We also monitored the levels of inflammasome using western blotting and senescence associated secretory phenotypes (SASPs) of interleukin (IL)-8, IL-1β and IL-6 using qPCR and ELISA to investigate the inflammasome assembly and secretion of SASPs. We detected the senescent features with senescence-associated-β-galactosidase assay, p16 levels by western blotting, Lamin B1 localization by immunofluorescence observation, cell growth by EdU incorporation assay and confluence forming time and alterations of the cell morphology and relative areas by microscopy observation. RESULTS The HCE cells exhibited senescent features after blue-light-pulse-irradiation. The blue light provokes overproduction of ROS to decrease the levels of ATP, NAD+ and autophagy leading to energy crisis. Moreover, the excess ROS injure DNA and downregulate PARP1 resulting in stable cell-cycle arrest. The excess ROS also facilitate inflammasome assembly leading to hypersecretion of SASPs. CONCLUSION The blue light elicits HCE cell senescence via inducing energy crisis, stable cell-cycle arrest and SASP hypersecretion.
Collapse
Affiliation(s)
- Xin Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Guo-Jian Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ting-Jun Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Alqahtani S, Alqahtani T, Venkatesan K, Sivadasan D, Ahmed R, Sirag N, Elfadil H, Abdullah Mohamed H, T.A. H, Elsayed Ahmed R, Muralidharan P, Paulsamy P. SASP Modulation for Cellular Rejuvenation and Tissue Homeostasis: Therapeutic Strategies and Molecular Insights. Cells 2025; 14:608. [PMID: 40277933 PMCID: PMC12025513 DOI: 10.3390/cells14080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Cellular senescence regulates aging, tissue maintenance, and disease progression through the Senescence-Associated Secretory Phenotype (SASP), a secretory profile of cytokines, chemokines, growth factors, and matrix-remodeling enzymes. While transient SASP aids wound healing, its chronic activation drives inflammation, fibrosis, and tumorigenesis. This review examines SASP's molecular regulation, dual roles in health and pathology, and therapeutic potential. The following two main strategies are explored: senescence clearance, which eliminates SASP-producing cells, and SASP modulation, which refines secretion to suppress inflammation while maintaining regenerative effects. Key pathways, including NF-κB, C/EBPβ, and cGAS-STING, are discussed alongside pharmacological, immunotherapeutic, gene-editing, and epigenetic interventions. SASP heterogeneity necessitates tissue-specific biomarkers for personalized therapies. Challenges include immune interactions, long-term safety, and ethical considerations. SASP modulation emerges as a promising strategy for aging, oncology, and tissue repair, with future advancements relying on multi-omics and AI-driven insights to optimize clinical outcomes.
Collapse
Affiliation(s)
- Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hanem Abdullah Mohamed
- Pediatric Nursing, College of Nursing, King Khalid University, Abha 62521, Saudi Arabia;
- Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Haseena T.A.
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| | - Rasha Elsayed Ahmed
- Medical Surgical Nursing, Tanta University, Tanta 31527, Egypt;
- College of Nursing, King Khalid University, Khamis Mushait 61421, Saudi Arabia
| | - Pooja Muralidharan
- Undergraduate Program, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, India;
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| |
Collapse
|
3
|
De Nunzio V, Aloisio Caruso E, Centonze M, Pinto G, Cofano M, Saponara I, Notarnicola M. Delta-9 desaturase reduction in gastrointestinal cells induced to senescence by doxorubicin. FEBS Open Bio 2025; 15:462-473. [PMID: 39657036 PMCID: PMC11891767 DOI: 10.1002/2211-5463.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The condition of cellular senescence has specific features, including an altered lipid metabolism. Delta-9 desaturase (Δ9) catalyzes the conversion of saturated fatty acids, such as palmitic acid and stearic acid, into their monounsaturated forms, palmitoleic and oleic acid, respectively. Δ9 activity is important for most lipid functions, such as membrane fluidity, lipoprotein metabolism and energy storage. The present study aimed to investigate differences in the expression of Δ9 in senescence-induced pancreatic (MIA-PaCa-2 and PANC-1) and hepatic (Hepa-RG and HLF) cancer cell lines. Cellular senescence was induced by growing cells in the presence of the chemotherapic drug doxorubicin. Senescence status was determined by the senescence-associated beta-galactosidase activity assay kit combined with the p21 and senescence associated secretory phenotype protein assay. Δ9 was downregulated in all senescence-induced cell lines compared to control cells, in both the lipidomic analysis and when measuring protein levels via western blotting. Hence, our findings demonstrate that the study of membrane lipid composition and the expression levels of Δ9 could potentially form the basis for future applications investigating the state of cellular senescence.
Collapse
Affiliation(s)
- Valentina De Nunzio
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Emanuela Aloisio Caruso
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Matteo Centonze
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Giuliano Pinto
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Miriam Cofano
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Ilenia Saponara
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| | - Maria Notarnicola
- Laboratory of Nutritional BiochemistryNational Institute of Gastroenterology IRCCS “Saverio de Bellis”Castellana GrotteItaly
| |
Collapse
|
4
|
Futami K, Ito H, Katagiri T. Resistance to premature senescence in the Epithelioma papulosum cyprini fish cell line is associated with the absence of PML nuclear bodies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:11. [PMID: 39614967 DOI: 10.1007/s10695-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/12/2024] [Indexed: 01/16/2025]
Abstract
Cell lines derived from fish tissues are resistant to premature senescence under typical culture conditions. Previously, we demonstrated that fish genomes do not have a p16INK4a/Arf locus and that the absence of this locus underlies the lack of senescence in cultured fish cells. However, other factors may also contribute to this resistance. In amniotes, promyelocytic leukemia (PML)-IV proteins are involved in the generation of PML nuclear bodies (PML NBs), which are connected with premature senescence. The lack of a pml gene in fish genomes may be involved in the mechanism of resistance to cellular senescence. Heterologous expression of human PML-IV in an Epithelioma papulosum cyprini cell line induced the formation of PML NB-like speckled structures. The cells displayed characteristic features of cellular senescence, namely, growth suppression, a large, flattened morphology, and increased SA-β-gal activity. Additionally, the levels of proinflammatory senescence-associated secretory phenotype (SASP) factors increased in the cells, suggesting a link between the absence of PML NBs and cellular resistance to senescence. Expression of the CCAT enhancer binding protein beta gene, which encodes a transcription factor of proinflammatory SASPs, was not increased, nor was there any elevation in the activity of NF-κB, a transcription factor for proinflammatory SASP factors and C/EBPβ. Epigenetic regulatory mechanisms may contribute to the induction of proinflammatory SASP factors by PML NBs.
Collapse
Affiliation(s)
- Kunihiko Futami
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan.
| | - Hayato Ito
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Takayuki Katagiri
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
5
|
Tavenier J, Nehlin JO, Houlind MB, Rasmussen LJ, Tchkonia T, Kirkland JL, Andersen O, Rasmussen LJH. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev 2024; 222:111995. [PMID: 39384074 DOI: 10.1016/j.mad.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Fisetin, a flavonoid naturally occurring in plants, fruits, and vegetables, has recently gained attention for its potential role as a senotherapeutic agent for the treatment of age-related chronic diseases. Senotherapeutics target senescent cells, which accumulate with age and disease, in both circulating immune cell populations and solid organs and tissues. Senescent cells contribute to development of many chronic diseases, primarily by eliciting systemic chronic inflammation through their senescence-associated secretory phenotype. Here, we explore whether fisetin as a senotherapeutic can eliminate senescent cells, and thereby alleviate chronic diseases, by examining current evidence from in vitro studies and animal models that investigate fisetin's impact on age-related diseases, as well as from phase I/II trials in various patient populations. We discuss the application of fisetin in humans, including challenges and future directions. Our review of available data suggests that targeting senescent cells with fisetin offers a promising strategy for managing multiple chronic diseases, potentially transforming future healthcare for older and multimorbid patients. However, further studies are needed to establish the safety, pharmacokinetics, and efficacy of fisetin as a senotherapeutic, identify relevant and reliable outcome measures in human trials, optimize dosing, and better understand the possible limitations of fisetin as a senotherapeutic agent.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; The Hospital Pharmacy, Marielundsvej 25, Herlev 2730, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Tamara Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark; The Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 West Main Street Suite 201, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Etoh K, Araki H, Koga T, Hino Y, Kuribayashi K, Hino S, Nakao M. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep 2024; 43:114496. [PMID: 39043191 DOI: 10.1016/j.celrep.2024.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
The senescent microenvironment and aged cells per se contribute to tissue remodeling, chronic inflammation, and age-associated dysfunction. However, the metabolic and epigenomic bases of the senescence-associated secretory phenotype (SASP) remain largely unknown. Here, we show that ATP-citrate lyase (ACLY), a key enzyme in acetyl-coenzyme A (CoA) synthesis, is essential for the pro-inflammatory SASP, independent of persistent growth arrest in senescent cells. Citrate-derived acetyl-CoA facilitates the action of SASP gene enhancers. ACLY-dependent de novo enhancers augment the recruitment of the chromatin reader BRD4, which causes SASP activation. Consistently, specific inhibitions of the ACLY-BRD4 axis suppress the STAT1-mediated interferon response, creating the pro-inflammatory microenvironment in senescent cells and tissues. Our results demonstrate that ACLY-dependent citrate metabolism represents a selective target for controlling SASP designed to promote healthy aging.
Collapse
Affiliation(s)
- Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
7
|
Sfera A, Imran H, Sfera DO, Anton JJ, Kozlakidis Z, Hazan S. Novel Insights into Psychosis and Antipsychotic Interventions: From Managing Symptoms to Improving Outcomes. Int J Mol Sci 2024; 25:5904. [PMID: 38892092 PMCID: PMC11173215 DOI: 10.3390/ijms25115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
For the past 70 years, the dopamine hypothesis has been the key working model in schizophrenia. This has contributed to the development of numerous inhibitors of dopaminergic signaling and antipsychotic drugs, which led to rapid symptom resolution but only marginal outcome improvement. Over the past decades, there has been limited research on the quantifiable pathological changes in schizophrenia, including premature cellular/neuronal senescence, brain volume loss, the attenuation of gamma oscillations in electroencephalograms, and the oxidation of lipids in the plasma and mitochondrial membranes. We surmise that the aberrant activation of the aryl hydrocarbon receptor by toxins derived from gut microbes or the environment drives premature cellular and neuronal senescence, a hallmark of schizophrenia. Early brain aging promotes secondary changes, including the impairment and loss of mitochondria, gray matter depletion, decreased gamma oscillations, and a compensatory metabolic shift to lactate and lactylation. The aim of this narrative review is twofold: (1) to summarize what is known about premature cellular/neuronal senescence in schizophrenia or schizophrenia-like disorders, and (2) to discuss novel strategies for improving long-term outcomes in severe mental illness with natural senotherapeutics, membrane lipid replacement, mitochondrial transplantation, microbial phenazines, novel antioxidant phenothiazines, inhibitors of glycogen synthase kinase-3 beta, and aryl hydrocarbon receptor antagonists.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Hassan Imran
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Dan O. Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | |
Collapse
|
8
|
Hambright WS, Duke VR, Goff AD, Goff AW, Minas LT, Kloser H, Gao X, Huard C, Guo P, Lu A, Mitchell J, Mullen M, Su C, Tchkonia T, Espindola Netto JM, Robbins PD, Niedernhofer LJ, Kirkland JL, Bahney CS, Philippon M, Huard J. Clinical validation of C 12FDG as a marker associated with senescence and osteoarthritic phenotypes. Aging Cell 2024; 23:e14113. [PMID: 38708778 PMCID: PMC11113632 DOI: 10.1111/acel.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Chronic conditions associated with aging have proven difficult to prevent or treat. Senescence is a cell fate defined by loss of proliferative capacity and the development of a pro-inflammatory senescence-associated secretory phenotype comprised of cytokines/chemokines, proteases, and other factors that promotes age-related diseases. Specifically, an increase in senescent peripheral blood mononuclear cells (PBMCs), including T cells, is associated with conditions like frailty, rheumatoid arthritis, and bone loss. However, it is unknown if the percentage of senescent PBMCs associated with age-associated orthopedic decline could be used for potential diagnostic or prognostic use in orthopedics. Here, we report senescent cell detection using the fluorescent compound C12FDG to quantify PBMCs senescence across a large cohort of healthy and osteoarthritic patients. There is an increase in the percent of circulating C12FDG+ PBMCs that is commensurate with increases in age and senescence-related serum biomarkers. Interestingly, C12FDG+ PBMCs and T cells also were found to be elevated in patients with mild to moderate osteoarthritis, a progressive joint disease that is strongly associated with inflammation. The percent of C12FDG+ PBMCs and age-related serum biomarkers were decreased in a small subgroup of study participants taking the senolytic drug fisetin. These results demonstrate quantifiable measurements in a large group of participants that could create a composite score of healthy aging sensitive enough to detect changes following senolytic therapy and may predict age-related orthopedic decline. Detection of peripheral senescence in PBMCs and subsets using C12FDG may be clinically useful for quantifying cellular senescence and determining how and if it plays a pathological role in osteoarthritic progression.
Collapse
Affiliation(s)
- William S. Hambright
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Victoria R. Duke
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Adam D. Goff
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Alex W. Goff
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Lucas T. Minas
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Heidi Kloser
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Xueqin Gao
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Charles Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Ping Guo
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Aiping Lu
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - John Mitchell
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Michael Mullen
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Charles Su
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | | | - Paul D. Robbins
- Department of Biochemistry and Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Laura J. Niedernhofer
- Department of Biochemistry and Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Division of General Internal Medicine, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Chelsea S. Bahney
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- Orthopaedic Trauma InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marc Philippon
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- The Steadman ClinicVailColoradoUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| |
Collapse
|
9
|
Riviere-Cazaux C, Carlstrom LP, Neth BJ, Olson IE, Rajani K, Rahman M, Ikram S, Mansour MA, Mukherjee B, Warrington AE, Short SC, von Zglinicki T, Brown DA, Burma S, Tchkonia T, Schafer MJ, Baker DJ, Kizilbash SH, Kirkland JL, Burns TC. An untapped window of opportunity for glioma: targeting therapy-induced senescence prior to recurrence. NPJ Precis Oncol 2023; 7:126. [PMID: 38030881 PMCID: PMC10687268 DOI: 10.1038/s41698-023-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Ian E Olson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Rochester, MN, USA
| | - Samar Ikram
- Department of Neurological Surgery, Rochester, MN, USA
| | | | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Rochester, MN, USA
- Department of Neurology, Rochester, MN, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St. James's, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Desmond A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Rochester, MN, USA
| | | | - James L Kirkland
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Medicine, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Rochester, MN, USA.
| |
Collapse
|
10
|
Giuliani A, Giudetti AM, Vergara D, Del Coco L, Ramini D, Caccese S, Sbriscia M, Graciotti L, Fulgenzi G, Tiano L, Fanizzi FP, Olivieri F, Rippo MR, Sabbatinelli J. Senescent Endothelial Cells Sustain Their Senescence-Associated Secretory Phenotype (SASP) through Enhanced Fatty Acid Oxidation. Antioxidants (Basel) 2023; 12:1956. [PMID: 38001810 PMCID: PMC10668971 DOI: 10.3390/antiox12111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular senescence is closely linked to endothelial dysfunction, a key factor in age-related vascular diseases. Senescent endothelial cells exhibit a proinflammatory phenotype known as SASP, leading to chronic inflammation (inflammaging) and vascular impairments. Albeit in a state of permanent growth arrest, senescent cells paradoxically display a high metabolic activity. The relationship between metabolism and inflammation is complex and varies across cell types and senescence inductions. While some cell types shift towards glycolysis during senescence, others favor oxidative phosphorylation (OXPHOS). Despite the high availability of oxygen, quiescent endothelial cells (ECs) tend to rely on glycolysis for their bioenergetic needs. However, there are limited data on the metabolic behavior of senescent ECs. Here, we characterized the metabolic profiles of young and senescent human umbilical vein endothelial cells (HUVECs) to establish a possible link between the metabolic status and the proinflammatory phenotype of senescent ECs. Senescent ECs internalize a smaller amount of glucose, have a lower glycolytic rate, and produce/release less lactate than younger cells. On the other hand, an increased fatty acid oxidation activity was observed in senescent HUVECs, together with a greater intracellular content of ATP. Interestingly, blockade of glycolysis with 2-deoxy-D-glucose in young cells resulted in enhanced production of proinflammatory cytokines, while the inhibition of carnitine palmitoyltransferase 1 (CPT1), a key rate-limiting enzyme of fatty acid oxidation, ameliorated the SASP in senescent ECs. In summary, metabolic changes in senescent ECs are complex, and this research seeks to uncover potential strategies for modulating these metabolic pathways to influence the SASP.
Collapse
Affiliation(s)
- Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
| | - Sara Caccese
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Matilde Sbriscia
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
11
|
Jiang GJ, You XG, Fan TJ. Carteolol triggers senescence via activation of β-arrestin-ERK-NOX4-ROS pathway in human corneal endothelial cells in vitro. Chem Biol Interact 2023; 380:110511. [PMID: 37120125 DOI: 10.1016/j.cbi.2023.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Carteolol is a commonly-used topical medication for primary open-angle glaucoma. However, long-term and frequent ocular application of carteolol entails its residuals at low concentration in the aqueous humor for a long duration and may exert latent toxicity in the human corneal endothelial cells (HCEnCs). Here, we treated the HCEnCs in vitro with 0.0117% carteolol for 10 days. Thereafter, we removed the cartelolol and normally cultured the cells for 25 days to investigate the chronical toxicity of carteolol and the underlying mechanism. The results exhibited that 0.0117% carteolol induces senescent features in the HCEnCs, such as increased senescence-associated β-galactosidase positive rates, enlarged relative cell area and upregulated p16INK4A and senescence-associated secretory phenotypes, including IL-1α, TGF-β1, IL-10, TNF-α, CCL-27, IL-6 and IL-8, as well as decreased Lamin B1 expression and cell viability and proliferation. Thereby, further exploration demonstrated that the carteolol activates β-arrestin-ERK-NOX4 pathway to increase reactive oxygen species (ROS) production that imposes oxidative stress on energetic metabolism causing a vicious cycle between declining ATP and increasing ROS production and downregulation of NAD+ resulting in metabolic disturbance-mediated senescence of the HCEnCs. The excess ROS also impair DNA to activate the DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with diminished poly(ADP-Ribose) polymerase (PARP) 1, a NAD+-dependent enzyme for DNA damage repair, resulting in cell cycle arrest and subsequent DDR-mediated senescence. Taken together, carteolol induces excess ROS to trigger HCEnC senescence via metabolic disturbance and DDR pathway.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China
| | - Xin-Guo You
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong province, 261053, China
| | - Ting-Jun Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China.
| |
Collapse
|
12
|
Yasuda T, Baba H, Ishimoto T. Cellular senescence in the tumor microenvironment and context-specific cancer treatment strategies. FEBS J 2023; 290:1290-1302. [PMID: 34653317 DOI: 10.1111/febs.16231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by senescence-associated secretory phenotype induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy. This review summarizes the molecular mechanisms regarding cellular senescence, focusing on the dual roles played by senescence, and offers some direction toward successful treatments targeting harmful senescent cells.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
13
|
Saha C, Li J, Sun X, Liu X, Huang G. A novel role of Fas in delaying cellular senescence. Heliyon 2023; 9:e13451. [PMID: 36825177 PMCID: PMC9941949 DOI: 10.1016/j.heliyon.2023.e13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Fas-mediated apoptosis is a major player of many physiological and pathological cellular processes. Fas-regulated immune regulation exhibits either the beneficial or the harmful effects which is associated with the onset or development of immune disorders. Alterations in apoptosis may contribute to age-associated changes. However, the role of apoptosis in the ageing process remains ambiguous. Here we demonstrated Fas signaling-mediated premature senescence in young mouse embryonic fibroblast (MEF) cells. Activated Fas signaling by agonist Jo-2 resulted in declined senescence in young and aged MEFs. Premature senescence induced the early activation of senescence markers, including the increase in the percentage of SA-β-galactosidase (SA-β-gal) cells, the induction of p53 phosphorylation, and the enhanced expression of p16 and p21 protein and elevated IL-6 pro-inflammatory cytokine in the absence of Fas. The elevated production of reactive oxygen species (ROS) in Fas-deficient MEFs was associated with dysfunctional mitochondria. Further, we determined that the known ROS scavenger NAC (N-acetyl-l-cysteine) could reverse the process of premature senescence in absence of Fas. Therefore, this study signifies a novel role of Fas in the control of cellular senescence.
Collapse
Affiliation(s)
- Chaitrali Saha
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China,School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China,Corresponding author.
| |
Collapse
|
14
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
15
|
Hino Y, Nagaoka K, Oki S, Etoh K, Hino S, Nakao M. Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation. Nucleic Acids Res 2022; 50:9765-9779. [PMID: 36095121 PMCID: PMC9508833 DOI: 10.1093/nar/gkac735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleus–mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions.
Collapse
Affiliation(s)
- Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Katsuya Nagaoka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
16
|
Torres P, Anerillas C, Ramírez-Núñez O, Fernàndez A, Encinas M, Povedano M, Andrés-Benito P, Ferrer I, Ayala V, Pamplona R, Portero-Otín M. The motor neuron disease mouse model hSOD1-G93A shows a non-canonical profile of senescence biomarkers. Dis Model Mech 2022; 15:276182. [PMID: 35916061 PMCID: PMC9459393 DOI: 10.1242/dmm.049059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
To evaluate senescence mechanisms, including senescence-associated secretory phenotype (SASP), in the motor-neuron disease model hSOD1-G93A, we quantified the expression of p16 and p21 and the senescence-associated β galactosidase (SA-β-gal) in nervous tissue. As SASP markers, we measured the mRNA levels of Il1a, Il6, Ifna, and Ifnb. Furthermore, we explored if an alteration of alternative splicing is associated with senescence by measuring the Adipor2 cryptic exon inclusion levels, a specific splicing variant repressed by TAR-DNA binding of 43 kDa (Tdp-43). Transgenic mice show an atypical senescence profile with high p16 and p21 mRNA and protein in glia, without the canonical increase in SA-β-gal activity. Consistent with SASP, there is an increase in Il1a and Il6 expression, associated with increased TNFR and M-CSF protein levels, with females being partially protected. TDP-43 splicing activity is compromised in this model. Senolytic drug Navitoclax does not alter the present 'model's disease progression. This lack of effect is reproduced in vitro, in contrast with Dasatinib and quercetin, which diminish p16 and p21. Our findings show a non-canonical profile of senescence biomarkers in the model hSOD1-G93A.
Collapse
Affiliation(s)
- Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Carlos Anerillas
- Oncogenic Signalling and Development, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Omar Ramírez-Núñez
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Anna Fernàndez
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Mario Encinas
- Oncogenic Signalling and Development, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Mònica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Manuel Portero-Otín
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, Spain
| |
Collapse
|
17
|
Futami K, Sato S, Maita M, Katagiri T. Lack of a p16 INK4a/ARF locus in fish genome may underlie senescence resistance in the fish cell line, EPC. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104420. [PMID: 35417735 DOI: 10.1016/j.dci.2022.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Unlike most mammalian cell lines, fish cell lines are immortal and resistant to cellular senescence. Elevated expression of H-Ras contributes to the induction of senescence in a fish cell line, EPC, but is not sufficient to induce full senescence. Here, we focused on the absence of a p16INK4a/ARF locus in the fish genome, and investigated whether this might be a critical determinant of the resistance of EPC cells to full senescence. We found that transfected EPC cells constitutively overexpressing p16INK4a exhibited large size and flat morphology characteristic of prematurely senescent cells; the cells also showed p53-independent senescence-like growth arrest and senescence-associated β-galactosidase (SA-β-gal) activity. Furthermore, the mRNA levels of proinflammatory senescence-associated secretory phenotype (SASP) factors increased in EPC cells constitutively overexpressing p16INK4a. These results suggest that the lack of p16INK4a in the fish genome may be a critical determinant of senescence resistance in fish cell lines.
Collapse
Affiliation(s)
- Kunihiko Futami
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan.
| | - Shunichi Sato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Masashi Maita
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Takayuki Katagiri
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
18
|
Tan H, Xu J, Liu Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 2022; 31:235-243. [PMID: 35142744 PMCID: PMC9035037 DOI: 10.1097/mnh.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is often viewed as an accelerated and premature ageing of the kidney, as they share common pathological features characterized by cellular senescence. In this review, we summarize the experimental evidence linking cellular senescence to the pathobiology of kidney ageing and CKD, and discuss the strategies for targeting senescent cells in developing therapeutics for ageing-related kidney disorders. RECENT FINDINGS Kidney ageing and CKD are featured with increased cellular senescence, an irreversible state of cell cycle arrest and the cessation of cell division. Senescent cells secrete a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP). Secondary senescence can be induced by primary senescent cells via a mechanism involving direct contact or the SASP. Various senolytic therapies aiming to selectively remove senescent cells in vivo have been developed. Senostatic approaches to suppress senescence or inhibit SASP, as well as nutrient signalling regulators are also validated in animal models of ageing. SUMMARY These recent studies provide experimental evidence supporting the notion that accumulation of senescent cells and their associated SASP is a main driver leading to structural and functional organ degeneration in CKD and other ageing-related disorder.
Collapse
Affiliation(s)
- Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death Dis 2022; 13:155. [PMID: 35169119 PMCID: PMC8847585 DOI: 10.1038/s41419-022-04601-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs. ![]()
Collapse
|
20
|
Igata T, Tanaka H, Etoh K, Hong S, Tani N, Koga T, Nakao M. Loss of the transcription repressor ZHX3 induces senescence-associated gene expression and mitochondrial-nucleolar activation. PLoS One 2022; 17:e0262488. [PMID: 35085309 PMCID: PMC8794122 DOI: 10.1371/journal.pone.0262488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
Cellular senescence is accompanied by metabolic and epigenomic remodeling, but the transcriptional mechanism of this process is unclear. Our previous RNA interference-based screen of chromatin factors found that lysine methyltransferases including SETD8 and NSD2 inhibited the senescence program in cultured fibroblasts. Here, we report that loss of the zinc finger and homeobox protein 3 (ZHX3), a ubiquitously expressed transcription repressor, induced senescence-associated gene expression and mitochondrial–nucleolar activation. Chromatin immunoprecipitation–sequencing analyses of growing cells revealed that ZHX3 was enriched at the transcription start sites of senescence-associated genes such as the cyclin-dependent kinase inhibitor (ARF-p16INK4a) gene and ribosomal RNA (rRNA) coding genes. ZHX3 expression was consistently downregulated in cells with replicative or oncogene-induced senescence. Mass spectrometry-based proteomics identified 28 proteins that interacted with ZHX3, including ATP citrate lyase and RNA metabolism proteins. Loss of ZHX3 or ZHX3-interaction partners by knockdown similarly induced the expression of p16INK4a and rRNA genes. Zhx3-knockout mice showed upregulation of p16INK4a in the testes, thymus and skeletal muscle tissues, together with relatively short survival periods in males. These data suggested that ZHX3 plays an essential role in transcriptional control to prevent cellular senescence.
Collapse
Affiliation(s)
- Tomoka Igata
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Tanaka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seonghyeon Hong
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Tani
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
21
|
Effects and Related Mechanisms of the Senolytic Agent ABT-263 on the Survival of Irradiated A549 and Ca9-22 Cancer Cells. Int J Mol Sci 2021; 22:ijms222413233. [PMID: 34948029 PMCID: PMC8704639 DOI: 10.3390/ijms222413233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Senolytic agents eliminate senescent cells and are expected to reduce senescent cell-mediated adverse effects in cancer therapy. However, the effects of senolytic agents on the survival of irradiated cancer cells remain unknown. Here, the effects of the senolytic agent ABT-263 on the survival of irradiated A549 and Ca9-22 cancer cells were investigated. ABT-263 was added to the culture medium after irradiation. SA-β-gal activity and cell size, which are hallmarks of cell senescence, were evaluated using a flow cytometer. The colony-forming assay and annexin V staining were performed to test cell survival. We first confirmed that radiation increased the proportion of cells with high SA-β-gal activity and that ABT-263 decreased it. Of note, ABT-263 decreased the survival of irradiated cancer cells and increased the proportion of radiation-induced annexin V+ cells. Furthermore, the caspase inhibitor suppressed the ABT-263-induced decrease in the survival of irradiated cells. Intriguingly, ABT-263 decreased the proportion of SA-β-gal low-activity/large cells in the irradiated A549 cells, which was recovered by the caspase inhibitor. Together, these findings suggest that populations maintaining the ability to proliferate existed among the irradiated cancer cells showing senescence-related features and that ABT-263 eliminated the population, which led to decreased survival of irradiated cancer cells.
Collapse
|
22
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
23
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|
24
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|
25
|
Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, dos Reis RR, dos Santos ZA, de Lima CM, de Oliveira MA, Said NM, Freitas SF, Sosthenes MCK, Gomes GF, Henrique EP, Pereira PDC, de Siqueira LS, de Melo MAD, Guerreiro Diniz C, Magalhães NGDM, Diniz JAP, Vasconcelos PFDC, Diniz DG, Anthony DC, Sherry DF, Brites D, Picanço Diniz CW. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front Immunol 2021; 12:683026. [PMID: 34220831 PMCID: PMC8250867 DOI: 10.3389/fimmu.2021.683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Thais Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Nivin Mazen Said
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Sinara Franco Freitas
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick Douglas Côrrea Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Pedro Fernando da Costa Vasconcelos
- Dep. de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Belém, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
26
|
Ahmed R, Nakahata Y, Shinohara K, Bessho Y. Cellular Senescence Triggers Altered Circadian Clocks With a Prolonged Period and Delayed Phases. Front Neurosci 2021; 15:638122. [PMID: 33568972 PMCID: PMC7868379 DOI: 10.3389/fnins.2021.638122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|