1
|
Gremke N, Besong I, Stroh A, von Wichert L, Witt M, Elmshäuser S, Wanzel M, Fromm MF, Taudte RV, Schmatloch S, Karn T, Reinisch M, Hirmas N, Loibl S, Wündisch T, Litmeyer AS, Jank P, Denkert C, Griewing S, Wagner U, Stiewe T. Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs. Signal Transduct Target Ther 2025; 10:92. [PMID: 40113784 PMCID: PMC11926384 DOI: 10.1038/s41392-025-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Activating PIK3CA mutations, present in up to 40% of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (Her2-) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR+, Her2-, and PIK3CA-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1T37/46 phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1T37/46 phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.
Collapse
Affiliation(s)
- Niklas Gremke
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany.
| | - Isabelle Besong
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Alina Stroh
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Luise von Wichert
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Marie Witt
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Verena Taudte
- Core Facility for Metabolomics, Philipps University, Marburg, Germany
| | | | - Thomas Karn
- UCT Frankfurt-Marburg, Department of Gynecology and Obstetrics, Goethe University, Frankfurt, Germany
| | - Mattea Reinisch
- Breast Unit, University Hospital Mannheim, Mannheim, Germany
- Department of Gynecology with Breast Center, University Medicine Berlin, Berlin, Germany
| | - Nader Hirmas
- German Breast Group (GBG), Neu-Isenburg, Germany
| | | | - Thomas Wündisch
- UCT Frankfurt-Marburg, Comprehensive Cancer Center Marburg, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Anne-Sophie Litmeyer
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Paul Jank
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sebastian Griewing
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Uwe Wagner
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Genomics Core Facility, Philipps-University, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, Gießen, Germany
| |
Collapse
|
2
|
Ding M, Ma C, Lin Y, Fang H, Xu Y, Wang S, Chen Y, Zhou J, Gao H, Shan Y, Yang L, Sun H, Tang Y, Wu X, Zhu L, Zheng L, Assaraf YG, Zhou BBS, Gu S, Li H. Therapeutic targeting de novo purine biosynthesis driven by β-catenin-dependent PPAT upregulation in hepatoblastoma. Cell Death Dis 2025; 16:179. [PMID: 40097378 PMCID: PMC11914223 DOI: 10.1038/s41419-025-07502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
De novo purine biosynthesis (DNPS) was previously shown to be aberrantly activated in many cancers. However, the activity of DNPS pathway and its underlying regulatory mechanism in hepatoblastoma (HB) remain poorly understood. Herein, we discovered that the expression of PPAT, the rate-limiting enzyme in DNPS, was markedly upregulated in HB, leading to an augmented purine flux via DNPS, thereby promoting both HB cell proliferation and migration. Furthermore, we found that activated mutant β-catenin, a dominant driver of HB, transcriptionally activated PPAT expression, hence stimulating DNPS and constituting a druggable metabolic vulnerability in HB. Consistently, pharmacological targeting using a DNPS inhibitor lometrexol or genetic repressing the enhanced DNPS markedly blocked HB progression in vitro and in vivo. Our findings suggest that HB patients harboring activated β-catenin mutations and consequent DNPS upregulation, may be treated efficaciously with DNPS enzyme inhibitors like lometrexol. These novel findings bear major therapeutic implications for targeted precision medicine of HB.
Collapse
Affiliation(s)
- Ming Ding
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, 350014, China
| | - Chunshuang Ma
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanyan Lin
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Houshun Fang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yan Xu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuxuan Wang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yao Chen
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiquan Zhou
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hongxiang Gao
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuhua Shan
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liyuan Yang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yabin Tang
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, 350014, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Bin-Bing S Zhou
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, 350014, China.
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Song Gu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Hui Li
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, 350014, China.
| |
Collapse
|
3
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
4
|
Zhang Y, Zhang D, Xie Z, Xia T, Zou L, Wang T, Zhong L, Zeng Z, Wang L, Chen G, Liang X. Integrated transcriptomic and metabolomic analysis reveals the effects of EMMPRIN on nucleotide metabolism and 1C metabolism in AS mouse BMDMs. Front Mol Biosci 2025; 11:1460186. [PMID: 40125455 PMCID: PMC11927532 DOI: 10.3389/fmolb.2024.1460186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN) has been considered as a key promoting factor in atherosclerosis (AS). Some studies have shown that regulating EMMPRIN expression in bone marrow-derived macrophages (BMDMs) of ApoE-/- mice can affect plaque stability, but the mechanism was not clear. Methods AS model mice were built from high-fat-feeding ApoE -/- mice, and were divided into siE group and CON group. The BMDMs and aortas from AS mice were harvested following in vivo treatment with either EMMPRIN short interfering (si)RNA (siEMMPRIN) or negative control siRNA. Transcriptomic and metabolomic profiles were analyzed using RNA-sequencing and Liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. The efficacy of siEMMPRIN was assessed through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Immunofluorescence staining was employed to measure EMMPRIN expression within aortic atherosclerotic plaques. Cell proliferation was monitored using the Cell Counting Kit-8 (CCK8), while flow cytometry was utilized to analyze the cell cycle. Additionally, seahorse analysis and oil red O staining were conducted to verify glucose and lipid metabolism, respectively. Results A total of 3,282 differentially expressed metabolites (DEMs) and 16,138 differentially expressed genes (DEGs) were identified between the CON group and siE group. The nucleotide metabolism and one-carbon (1C) metabolism were identified as major altered pathways at both the transcriptional and metabolic levels. Metabolomic results identified increased levels of glycine, serine, betaine and S-adenosyl-L-methionine (SAM) to S-adenosyl-L-homocysteine (SAH) ratio and decreased levels of dimethylglycine (DMG) and SAH in 1C metabolism, accompanied by the accumulation of nucleotides, nucleosides, and bases in nucleotide metabolism. Transcriptomics results shown that Dnmt, Mthfd2 and Dhfr were downregulated, while Mthfr were upregulated in 1C metabolism. And numerous genes involved in de novo nucleotide synthesis, pentose phosphate pathway (PPP) and dNTP production were significantly inhibited, which may be associated with decreased BMDMs proliferation and cell cycle arrest in the G0/G1 phase in siE group. Multi-omics results also showed changes in glucose and lipid metabolism. Seahorse assay confirmed reduced glycolysis and oxidative phosphorylation (OXPHOS) levels and the Oil Red O staining confirmed the decrease of lipid droplets in siE group. Conclusion The integrated metabolomic and transcriptomic analysis suggested that nucleotide metabolism and 1C metabolism may be major metabolic pathways affected by siEMMPRIN in AS mouse BMDMs. Our study contributes to a better understanding of the role of EMMPRIN in AS development.
Collapse
Affiliation(s)
- Yun Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Diyuan Zhang
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Xia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zeng
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Lingying Wang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Liang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Schneider JL, Kurmi K, Dai Y, Dhiman I, Joshi S, Gassaway BM, Johnson CW, Jones N, Li Z, Joschko CP, Fujino T, Paulo JA, Yoda S, Baquer G, Ruiz D, Stopka SA, Kelley L, Do A, Mino-Kenudson M, Sequist LV, Lin JJ, Agar NYR, Gygi SP, Haigis KM, Hata AN, Haigis MC. GUK1 activation is a metabolic liability in lung cancer. Cell 2025; 188:1248-1264.e23. [PMID: 39919745 DOI: 10.1016/j.cell.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Little is known about metabolic vulnerabilities in oncogene-driven lung cancer. Here, we perform a phosphoproteomic screen in anaplastic lymphoma kinase (ALK)-rearranged ("ALK+") patient-derived cell lines and identify guanylate kinase 1 (GUK1), a guanosine diphosphate (GDP)-synthesizing enzyme, as a target of ALK signaling in lung cancer. We demonstrate that ALK binds to and phosphorylates GUK1 at tyrosine 74 (Y74), resulting in increased GDP biosynthesis. Spatial imaging of ALK+ patient tumor specimens shows enhanced phosphorylation of GUK1 that significantly correlates with guanine nucleotides in situ. Abrogation of GUK1 phosphorylation reduces intracellular GDP and guanosine triphosphate (GTP) pools and decreases mitogen-activated protein kinase (MAPK) signaling and Ras-GTP loading. A GUK1 variant that cannot be phosphorylated (Y74F) decreases tumor proliferation in vitro and in vivo. Beyond ALK, other oncogenic fusion proteins in lung cancer also regulate GUK1 phosphorylation. These studies may pave the way for the development of new therapeutic approaches by exploiting metabolic dependencies in oncogene-driven lung cancers.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yutong Dai
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Boston, MA, USA
| | - Ishita Dhiman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brandon M Gassaway
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nicole Jones
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zongyu Li
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christian P Joschko
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Toshio Fujino
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Satoshi Yoda
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela Ruiz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam Kelley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Do
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Nengroo MA, Klein AT, Carr HS, Vidal-Cruchez O, Sahu U, McGrail DJ, Sahni N, Gao P, Asara JM, Shah H, Mendillo ML, Ben-Sahra I. Succinate dehydrogenase activity supports de novo purine synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640389. [PMID: 40060604 PMCID: PMC11888382 DOI: 10.1101/2025.02.26.640389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The de novo purine synthesis pathway is fundamental for nucleic acid production and cellular energetics, yet the role of mitochondrial metabolism in modulating this process remains underexplored. In many cancers, metabolic reprogramming supports rapid proliferation and survival, but the specific contributions of the tricarboxylic acid (TCA) cycle enzymes to nucleotide biosynthesis are not fully understood. Here, we demonstrate that the TCA cycle enzyme succinate dehydrogenase (SDH) is essential for maintaining optimal de novo purine synthesis in normal and cancer cells. Genetic or pharmacological inhibition of SDH markedly attenuates purine synthesis, leading to a significant reduction in cell proliferation. Mechanistically, SDH inhibition causes an accumulation of succinate, which directly impairs the purine biosynthetic pathway. In response, cancer cells compensate by upregulating the purine salvage pathway, a metabolic adaptation that represents a potential therapeutic vulnerability. Notably, co-inhibition of SDH and the purine salvage pathway induces pronounced antiproliferative and antitumoral effects in preclinical models. These findings not only reveal a signaling role for mitochondrial succinate in regulating nucleotide metabolism but also provide a promising therapeutic strategy for targeting metabolic dependencies in cancer.
Collapse
Affiliation(s)
- Mushtaq A Nengroo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Austin T Klein
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Heather S Carr
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Olivia Vidal-Cruchez
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Umakant Sahu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno Oncology, Cleveland Clinic, Cleveland, OH, 441796, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Gao
- Metabolomics Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hardik Shah
- Metabolomics Platform, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, 60637, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| |
Collapse
|
7
|
Sharma N, Otsuka Y, Scampavia L, Spicer TP, French JB. A high throughput assay for phosphoribosylformylglycinamidine synthase. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100212. [PMID: 39824442 DOI: 10.1016/j.slasd.2025.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in de novo purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity. Here, we describe a new continuous, spectrophotometric assay for the synthase domain of PFAS that is amenable to high-throughput screening (HTS). This mechanism-based fluorescent assay makes use of the acid phosphatase substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). PFAS catalyzes the turnover of DiFMUP with a KM of 108 ± 7 µM. After optimization and miniaturization of the assay for 1,536-well format, we conducted a pilot HTS using the LOPAC1280 library. The assay performed extremely well, with an average Z' of 0.94 ± 0.02, average signal to noise of 5.01 ± 0.06, excellent inter plate correlation, and a hit rate of 1.18 %. This assay provides a critically needed tool to advance the study of PFAS enzymology and will be foundational for the discovery of small molecule inhibitors both as functional probes and for the basis of new drug development.
Collapse
Affiliation(s)
- Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yuka Otsuka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
8
|
Huang H, Ren L, Zhou Y, Chen P, Zhao H, Li S, Wang H, Li X. KAT7-acetylated YBX1 promotes hepatocellular carcinoma proliferation by reprogramming nucleotide metabolism. BMC Cancer 2025; 25:311. [PMID: 39984921 PMCID: PMC11844059 DOI: 10.1186/s12885-025-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Lysine acetylation is a critical post-translational modification regulating tumor initiation and progression. Lysine acetyltransferase 7 (KAT7)-mediated lysine acetylation is frequently dysregulated in cancer. However, the role of KAT7-mediated lysine acetylation in hepatocellular carcinoma (HCC) progression remains unclear. METHODS Bioinformatic analysis was used to investigate the expression, clinicopathological characteristics and diagnostic prognostic value of KAT7 in HCC. CCK-8 assays, colony-forming assays, apoptosis assays and nude mouse xenograft models were utilized to detect the oncogenic functions of KAT7 in HCC. Immunoprecipitation (IP) assay and mass spectrometry (MS) analysis were performed to identify the KAT7-binding protein Y-box binding protein 1 (YBX1). Transcriptome sequencing and functional enrichment analysis were employed to elucidate the downstream pathway regulated by KAT7 and YBX1. Chromatin immunoprecipitation (ChIP) assay was used to evaluate YBX1 binding to the promoter regions of ribonucleotide reductase regulatory subunit M2 (RRM2) and thymidine kinase 1 (TK1). Weighted gene co-expression network analysis and selection operator regression analysis were used to build risk prediction models. RESULTS This study demonstrated that elevated KAT7 expression is associated with poor prognosis in HCC patients. Knockdown of endogenous KAT7 in HCC cells attenuated tumorigenic phenotypes associated with cell proliferation, colony formation and orthotopic xenograft tumor growth, indicating a pro-tumorigenic role of KAT7 in HCC. YBX1 was identified as a novel non-histone substrate for KAT7, and the E508 residue of KAT7 is essential for binding. Following the functional enrichment analysis, KAT7 and YBX1 were correlated with nucleotide metabolism. Furthermore, KAT7 binds to YBX1 and modulates its post-translational expression, which enhances the transcriptional activity of the central nucleotide metabolism enzymes RRM2 and TK1. Additionally, we constructed a novel prognostic prediction model based on KAT7, YBX1, RRM2 and TK1, which validated the predictive accuracy and prognostic value of KAT7-mediated acetylation is consistent with clinical outcomes in HCC. CONCLUSIONS Our findings highlight that KAT7 acetylates YBX1 and promotes HCC progression by reprogramming nucleotide metabolism, offering therapeutic implications.
Collapse
Affiliation(s)
- He Huang
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Pengyu Chen
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haixia Zhao
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Shang Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, PR China.
- National Clinical Key Specialty of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, 730000, PR China.
- Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, 730000, PR China.
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Jie H, Wei J, Li Z, Yi M, Qian X, Li Y, Liu C, Li C, Wang L, Deng P, Liu L, Cen X, Zhao Y. Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH. Cancer Metab 2025; 13:10. [PMID: 39948566 PMCID: PMC11827256 DOI: 10.1186/s40170-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Hui Jie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhuoling Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yi
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinying Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
11
|
Wu J, Liu Y, Zhang Y, Wang X, Yan H, Zhu Y, Song J, Yu DJ. Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models. J Chem Inf Model 2025; 65:1040-1052. [PMID: 39788787 DOI: 10.1021/acs.jcim.4c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.
Collapse
Affiliation(s)
- Jiashun Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225100, China
| | - Ying Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Wang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China
| | - Yiheng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
12
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
13
|
Tarullo M, Fernandez Rodriguez G, Iaiza A, Venezia S, Macone A, Incocciati A, Masciarelli S, Marchioni M, Giorgis M, Lolli ML, Fornaseri F, Proietti L, Grebien F, Rosignoli S, Paiardini A, Rotili D, Mai A, Bochenkova E, Caflisch A, Fazi F, Fatica A. Off-Target Inhibition of Human Dihydroorotate Dehydrogenase ( hDHODH) Highlights Challenges in the Development of Fat Mass and Obesity-Associated Protein (FTO) Inhibitors. ACS Pharmacol Transl Sci 2024; 7:4096-4111. [PMID: 39698280 PMCID: PMC11651170 DOI: 10.1021/acsptsci.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
FTO, an N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (hDHODH). Notably, structural similarities between the catalytic pockets of FTO and hDHODH enabled FB23-2 to inhibit both enzymes. In contrast, the hDHODH-inactive FB23-2 analog, ZLD115, required FTO for its antiproliferative activity. Similarly, the FTO inhibitor CS2 (brequinar), known as one of the most potent hDHODH inhibitors, exhibited FTO-independent antileukemic effects. Uridine supplementation fully rescued leukemia cells from FB23-2 and CS2-induced growth inhibition, but not ZLD115, confirming the inhibition of pyrimidine synthesis as the primary mechanism of action underlying their antileukemic activity. These findings underscore the importance of considering off-target effects on hDHODH in the development of FTO inhibitors to optimize their therapeutic potential and minimize unintended consequences.
Collapse
Affiliation(s)
- Marco Tarullo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Alessia Iaiza
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Venezia
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Incocciati
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Masciarelli
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Marcella Marchioni
- Institute
of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, 00185 Rome, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Federico Fornaseri
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Ludovica Proietti
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
| | - Florian Grebien
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
- St.
Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Serena Rosignoli
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Science, Roma Tre University, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, 00185 Rome, Italy
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Francesco Fazi
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Alessandro Fatica
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Nengroo MA, Ben-Sahra I. Brain-penetrating molecule might offer a route to treat glioblastoma tumours. Nature 2024; 636:307-308. [PMID: 39567800 DOI: 10.1038/d41586-024-03556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
15
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Vishwasrao PV, Lee TD, Mellado Fritz CA, Richards RM, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. SCIENCE ADVANCES 2024; 10:eadq3591. [PMID: 39365851 PMCID: PMC11451515 DOI: 10.1126/sciadv.adq3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Chemical screens across hundreds of cell lines have shown that the drug sensitivities of human cancers can vary by genotype or lineage. However, most drug discovery studies have relied on culture media that poorly reflect metabolite levels in human blood. Here, we perform drug screens in traditional and Human Plasma-Like Medium (HPLM). Sets of compounds that show conditional anticancer activity span different phases of global development and include non-oncology drugs. Comparisons of the synthetic and serum-derived components that comprise typical media trace sets of conditional phenotypes to nucleotide synthesis substrates. We also characterize a unique dual mechanism for brivudine, a compound approved for antiviral use. Brivudine selectively impairs cell growth in low folate conditions by targeting two enzymes involved in one-carbon metabolism. Cataloged gene essentiality data further suggest that conditional phenotypes for other compounds are linked to off-target effects. Our findings establish general strategies for identifying drug-nutrient interactions and mechanisms of action by exploiting conditional lethality in cancer cells.
Collapse
Affiliation(s)
- Kyle M. Flickinger
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kelli M. Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nicholas J. Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea L. Hunger
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paresh V. Vishwasrao
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Tobie D. Lee
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Rebecca M. Richards
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jason R. Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
16
|
Manning BD, Dibble CC. Growth Signaling Networks Orchestrate Cancer Metabolic Networks. Cold Spring Harb Perspect Med 2024; 14:a041543. [PMID: 38438221 PMCID: PMC11444256 DOI: 10.1101/cshperspect.a041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Normal cells grow and divide only when instructed to by signaling pathways stimulated by exogenous growth factors. A nearly ubiquitous feature of cancer cells is their capacity to grow independent of such signals, in an uncontrolled, cell-intrinsic manner. This property arises due to the frequent oncogenic activation of core growth factor signaling pathway components, including receptor tyrosine kinases, PI3K-AKT, RAS-RAF, mTORC1, and MYC, leading to the aberrant propagation of pro-growth signals independent of exogenous growth factors. The growth of both normal and cancer cells requires the acquisition of nutrients and their anabolic conversion to the primary macromolecules underlying biomass production (protein, nucleic acids, and lipids). The core growth factor signaling pathways exert tight regulation of these metabolic processes and the oncogenic activation of these pathways drive the key metabolic properties of cancer cells and tumors. Here, we review the molecular mechanisms through which these growth signaling pathways control and coordinate cancer metabolism.
Collapse
Affiliation(s)
- Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
18
|
Tran DH, Kim D, Kesavan R, Brown H, Dey T, Soflaee MH, Vu HS, Tasdogan A, Guo J, Bezwada D, Al Saad H, Cai F, Solmonson A, Rion H, Chabatya R, Merchant S, Manales NJ, Tcheuyap VT, Mulkey M, Mathews TP, Brugarolas J, Morrison SJ, Zhu H, DeBerardinis RJ, Hoxhaj G. De novo and salvage purine synthesis pathways across tissues and tumors. Cell 2024; 187:3602-3618.e20. [PMID: 38823389 PMCID: PMC11246224 DOI: 10.1016/j.cell.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
Collapse
Affiliation(s)
- Diem H Tran
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Harrison Brown
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mona Hoseini Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Jason Guo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Houssam Al Saad
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Halie Rion
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rawand Chabatya
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathan J Manales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Megan Mulkey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Sokolov D, Sullivan LB. Thrifty tissues prefer recycled purines over new-cleotides. Mol Cell 2024; 84:2407-2409. [PMID: 38996457 DOI: 10.1016/j.molcel.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In two recent studies appearing in Cell1 and Cell Metabolism,2 Tran et al. and Wu et al. describe underappreciated nuance in organismal and cellular purine nucleotide salvage pathways and identify purine salvage as a metabolic limitation for tumor growth.
Collapse
Affiliation(s)
- David Sokolov
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, He X, Shi R. Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1441. [PMID: 38891250 PMCID: PMC11175106 DOI: 10.3390/plants13111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
Collapse
Affiliation(s)
- Xinru Yan
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Ao Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Jinlong Jiao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, 68 Hamaccabim Road, Rishon LeZion 7505101, Israel;
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| |
Collapse
|
21
|
El-Meligy MA, Abd El-Monaem EM, Eltaweil AS, Mohy-Eldin MS, Ziora ZM, Heydari A, Omer AM. Recent Advancements in Metallic Au- and Ag-Based Chitosan Nanocomposite Derivatives for Enhanced Anticancer Drug Delivery. Molecules 2024; 29:2393. [PMID: 38792255 PMCID: PMC11124311 DOI: 10.3390/molecules29102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The rapid advancements in nanotechnology in the field of nanomedicine have the potential to significantly enhance therapeutic strategies for cancer treatment. There is considerable promise for enhancing the efficacy of cancer therapy through the manufacture of innovative nanocomposite materials. Metallic nanoparticles have been found to enhance the release of anticancer medications that are loaded onto them, resulting in a sustained release, hence reducing the dosage required for drug administration and preventing their buildup in healthy cells. The combination of nanotechnology with biocompatible materials offers new prospects for the development of advanced therapies that exhibit enhanced selectivity, reduced adverse effects, and improved patient outcomes. Chitosan (CS), a polysaccharide possessing distinct physicochemical properties, exhibits favorable attributes for controlled drug delivery due to its biocompatibility and biodegradability. Chitosan nanocomposites exhibit heightened stability, improved biocompatibility, and prolonged release characteristics for anticancer medicines. The incorporation of gold (Au) nanoparticles into the chitosan nanocomposite results in the manifestation of photothermal characteristics, whereas the inclusion of silver (Ag) nanoparticles boosts the antibacterial capabilities of the synthesized nanocomposite. The objective of this review is to investigate the recent progress in the utilization of Ag and Au nanoparticles, or a combination thereof, within a chitosan matrix or its modified derivatives for the purpose of anticancer drug delivery. The research findings for the potential of a chitosan nanocomposite to deliver various anticancer drugs, such as doxorubicin, 5-Fluroacil, curcumin, paclitaxel, and 6-mercaptopurine, were investigated. Moreover, various modifications carried out on the chitosan matrix phase and the nanocomposite surfaces to enhance targeting selectivity, loading efficiency, and pH sensitivity were highlighted. In addition, challenges and perspectives that could motivate further research related to the applications of chitosan nanocomposites in cancer therapy were summarized.
Collapse
Affiliation(s)
- Mahmoud A. El-Meligy
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
- Genomic Signature Cancer Center, Global Teaching Hospital, University of Tanta, Tanta 31527, Egypt
| | - Eman M. Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (E.M.A.E.-M.); (A.S.E.)
| | - Abdelazeem S. Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (E.M.A.E.-M.); (A.S.E.)
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra 400, Oman
| | - Mohamed S. Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934, Alexandria, Egypt;
| | - Zyta M. Ziora
- The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Ahmed M. Omer
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934, Alexandria, Egypt;
| |
Collapse
|
22
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Chen S, Ren X, Yu Y, Cheng L, Ding G, Yang H, Zhang H, Chen J, Geng N. Metabolic disturbance of short- and medium-chain chlorinated paraffins to zebrafish larva. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171372. [PMID: 38431168 DOI: 10.1016/j.scitotenv.2024.171372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were listed as Persistent Organic Pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. The present study explored the developmental toxicity and metabolic disruption caused by SCCPs and MCCPs in zebrafish (Danio rerio) larvae. CPs exposure at environmentally relevant levels caused no obvious phenotypic changes with zebrafish larvae except that the body length shortening was observed after exposure to CPs at 1-200 μg/L for 7 day post fertilization. A further metabolomic approach was conducted to explore the early biological responses of developmental toxicity induced by CPs at low dose (1, 5, and 10 μg/L). The results of metabolic disorder, pathway analysis and chronic values indicated that, compared with SCCPs, MCCPs exhibited more risks to zebrafish larvae at low doses. Lipid metabolism was markedly affected in SCCPs exposure group, whereas MCCPs primarily disturbed lipid metabolism, amino acid, and nucleotide metabolisms. Compare with SCCPs, the relatively higher lipid solubility, protein affinity and metabolic rate of MCCPs can probably explain why MCCP-mediated metabolic disruption was significantly higher than that of SCCP. Notably, SCCPs and MCCPs have the same potential to cause cancer, but no evidence indicates the mutagenicity. In summary, our study provides insight into the potential adverse outcome for SCCP and MCCP at low doses.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoqian Ren
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Hairong Yang
- Safety Evaluation Center of Shenyang SYRICI Testing Co., Ltd., Shenyang, Liaoning 110141, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
24
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
25
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
26
|
Weng RY, Zhang L, Liu JL. Connecting Hippo Pathway and Cytoophidia in Drosophila Posterior Follicle Cells. Int J Mol Sci 2024; 25:1453. [PMID: 38338731 PMCID: PMC10855297 DOI: 10.3390/ijms25031453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
CTP synthase (CTPS), the rate-limiting enzyme in the de novo synthesis of CTP, assembles into a filamentous structure termed the cytoophidium. The Hippo pathway regulates cell proliferation and apoptosis. The relationship of the nucleotide metabolism with the Hippo pathway is little known. Here, we study the impact of the Hippo pathway on the cytoophidium in Drosophila melanogaster posterior follicle cells (PFCs). We find that the inactivation of the Hippo pathway correlates with reduced cytoophidium length and number within PFCs. During the overexpression of CTPS, the presence of Hippo mutations also reduces the length of cytoophidia in PFCs. In addition, we observe that knocking down CTPS mitigates hpo (Hippo)-associated over-proliferation. In summary, our results suggest that there is a connection between the Hippo pathway and the nucleotide biosynthesis enzyme CTPS in PFCs.
Collapse
Affiliation(s)
- Rui-Yu Weng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
| |
Collapse
|
27
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
28
|
Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, González-Baerga D, Zhao E, Yokoyama Y, Simeone DM, Jones DR, Parker SJ, Wild R, Kimmelman AC. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. NATURE CANCER 2024; 5:85-99. [PMID: 37814010 PMCID: PMC10824664 DOI: 10.1038/s43018-023-00647-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
Collapse
Affiliation(s)
- Joel Encarnación-Rosado
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas E Biancur
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Osorio-Vasquez
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tori Rodrick
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Diana González-Baerga
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Diane M Simeone
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, CA, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Lemberg KM, Ali ES, Krecmerova M, Aguilar JMH, Alt J, Peters DE, Zhao L, Wu Y, Nuha N, Asara JM, Staedtke V, Pratilas CA, Majer P, Rais R, Ben-Sahra I, Slusher BS. Pro-905, a Novel Purine Antimetabolite, Combines with Glutamine Amidotransferase Inhibition to Suppress Growth of Malignant Peripheral Nerve Sheath Tumor. Mol Cancer Ther 2023; 22:1390-1403. [PMID: 37616542 PMCID: PMC10690047 DOI: 10.1158/1535-7163.mct-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.
Collapse
Affiliation(s)
- Kathryn M. Lemberg
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marcela Krecmerova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jesse Alt
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Diane E. Peters
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Liang Zhao
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ying Wu
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Naziba Nuha
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard University School of Medicine, Boston, Massachusetts
| | - Verena Staedtke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christine A. Pratilas
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rana Rais
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Barbara S. Slusher
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Departments of Medicine, Neuroscience, Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
Madsen HB, Peeters MJ, Straten PT, Desler C. Nucleotide metabolism in the regulation of tumor microenvironment and immune cell function. Curr Opin Biotechnol 2023; 84:103008. [PMID: 37863018 DOI: 10.1016/j.copbio.2023.103008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Nucleotide metabolism plays a crucial role in the regulation of the tumor microenvironment (TME) and immune cell function. In the TME, limited availability of nucleotide precursors due to increased consumption by tumor cells and T cells affects both tumor development and immune function. Metabolic reprogramming in tumor cells favors pathways supporting growth and proliferation, including nucleotide synthesis. Additionally, extracellular nucleotides, such as ATP and adenosine, exhibit dual roles in modulating immune function and tumor cell survival. ATP stimulates antitumor immunity by activating purinergic receptors, while adenosine acts as a potent immunosuppressor. Targeting nucleotide metabolism in the TME holds immense promise for cancer therapy. Understanding the intricate relationship between nucleotide metabolism, the TME, and immune responses will pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Helena B Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Marlies Jw Peeters
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark; Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
31
|
Dong X, Xia S, Du S, Zhu MH, Lai X, Yao SQ, Chen HZ, Fang C. Tumor Metabolism-Rewriting Nanomedicines for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2023; 9:1864-1893. [PMID: 37901179 PMCID: PMC10604035 DOI: 10.1021/acscentsci.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/31/2023]
Abstract
Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
Collapse
Affiliation(s)
- Xiao Dong
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shu Xia
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shubo Du
- School
of Bioengineering, Dalian University of
Technology, Dalian 116024, China
| | - Mao-Hua Zhu
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Xing Lai
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hong-Zhuan Chen
- Institute
of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chao Fang
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
- Key
Laboratory of Basic Pharmacology of Ministry of Education & Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
32
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Snyder NW, Lyssiotis CA, Chandran UR, Aird KM. De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549149. [PMID: 37503050 PMCID: PMC10369956 DOI: 10.1101/2023.07.15.549149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hui Wang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Richard Fang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A. Lyons
- Genomics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristine Cooper
- Biostatistics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
33
|
Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, Ngalamika O, Chapple AG, Mwaiselage J, Wood C, West JT, Adamec J. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab 2023; 11:13. [PMID: 37653396 PMCID: PMC10470137 DOI: 10.1186/s40170-023-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a neoplastic disease etiologically associated with infection by the Kaposi sarcoma-associated herpesvirus (KSHV). KS manifests primarily as cutaneous lesions in individuals due to either age (classical KS), HIV infection (epidemic KS), or tissue rejection preventatives in transplantation (iatrogenic KS) but can also occur in individuals, predominantly in sub-Saharan Africa (SSA), lacking any obvious immune suppression (endemic KS). The high endemicity of KSHV and human immunodeficiency virus-1 (HIV) co-infection in Africa results in KS being one of the top 5 cancers there. As with most viral cancers, infection with KSHV alone is insufficient to induce tumorigenesis. Indeed, KSHV infection of primary human endothelial cell cultures, even at high levels, is rarely associated with long-term culture, transformation, or growth deregulation, yet infection in vivo is sustained for life. Investigations of immune mediators that distinguish KSHV infection, KSHV/HIV co-infection, and symptomatic KS disease have yet to reveal consistent correlates of protection against or progression to KS. In addition to viral infection, it is plausible that pathogenesis also requires an immunological and metabolic environment permissive to the abnormal endothelial cell growth evident in KS tumors. In this study, we explored whether plasma metabolomes could differentiate asymptomatic KSHV-infected individuals with or without HIV co-infection and symptomatic KS from each other. METHODS To investigate how metabolic changes may correlate with co-infections and tumorigenesis, plasma samples derived from KSHV seropositive sub-Saharan African subjects in three groups, (A) asymptomatic (lacking neoplastic disease) with KSHV infection only, (B) asymptomatic co-infected with KSHV and HIV, and (C) symptomatic with clinically diagnosed KS, were subjected to analysis of lipid and polar metabolite profiles RESULTS: Polar and nonpolar plasma metabolic differentials were evident in both comparisons. Integration of the metabolic findings with our previously reported KS transcriptomics data suggests dysregulation of amino acid/urea cycle and purine metabolic pathways, in concert with viral infection in KS disease progression. CONCLUSIONS This study is, to our knowledge, the first to report human plasma metabolic differentials between in vivo KSHV infection and co-infection with HIV, as well as differentials between co-infection and epidemic KS.
Collapse
Affiliation(s)
- Sara R Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Salum J Lidenge
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Luke Berry
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John R Ngowi
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology Section, Adult Hospital of the University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - Andrew G Chapple
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
34
|
Gan B. The pyrimidinosome: Orchestrating pyrimidine biosynthesis and ferroptosis defense. Mol Cell 2023; 83:2837-2839. [PMID: 37595553 DOI: 10.1016/j.molcel.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
A recent study by Yang et al.1 uncovers the pyrimidinosome, a multienzyme complex where enzymes from different subcellular compartments collaborate to enable efficient pyrimidine biosynthesis and ferroptosis defense, highlighting the remarkable adaptability of cellular metabolism and new therapeutic opportunities.
Collapse
Affiliation(s)
- Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Zhao Z, Cao K, Watanabe J, Philips CN, Zeidner JM, Ishi Y, Wang Q, Gold SR, Junkins K, Bartom ET, Yue F, Chandel NS, Hashizume R, Ben-Sahra I, Shilatifard A. Therapeutic targeting of metabolic vulnerabilities in cancers with MLL3/4-COMPASS epigenetic regulator mutations. J Clin Invest 2023; 133:e169993. [PMID: 37252797 PMCID: PMC10313365 DOI: 10.1172/jci169993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jun Watanabe
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Yukitomo Ishi
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Katherine Junkins
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| |
Collapse
|
36
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Lee TD, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543621. [PMID: 37333068 PMCID: PMC10274668 DOI: 10.1101/2023.06.04.543621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemical screening studies have identified drug sensitivities across hundreds of cancer cell lines but most putative therapeutics fail to translate. Discovery and development of drug candidates in models that more accurately reflect nutrient availability in human biofluids may help in addressing this major challenge. Here we performed high-throughput screens in conventional versus Human Plasma-Like Medium (HPLM). Sets of conditional anticancer compounds span phases of clinical development and include non-oncology drugs. Among these, we characterize a unique dual-mechanism of action for brivudine, an agent otherwise approved for antiviral treatment. Using an integrative approach, we find that brivudine affects two independent targets in folate metabolism. We also traced conditional phenotypes for several drugs to the availability of nucleotide salvage pathway substrates and verified others for compounds that seemingly elicit off-target anticancer effects. Our findings establish generalizable strategies for exploiting conditional lethality in HPLM to reveal therapeutic candidates and mechanisms of action.
Collapse
|