1
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
2
|
Wu C, Li J, Huang K, Tian X, Guo Y, Skirtach AG, You M, Tan M, Su W. Advances in preparation and engineering of plant-derived extracellular vesicles for nutrition intervention. Food Chem 2024; 457:140199. [PMID: 38955121 DOI: 10.1016/j.foodchem.2024.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.
Collapse
Affiliation(s)
- Caiyun Wu
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Jiaxuan Li
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Kexin Huang
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xueying Tian
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yaqiong Guo
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China.
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Mingliang You
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China
| | - Mingqian Tan
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
3
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
4
|
Wang N, Chen C, Ren J, Dai D. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem 2024; 479:1909-1923. [PMID: 37542599 DOI: 10.1007/s11010-023-04821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Chunyan Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jianmin Ren
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
5
|
Chen L, Gu J, Zhou B. PMiSLocMF: predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Brief Bioinform 2024; 25:bbae386. [PMID: 39154195 PMCID: PMC11330342 DOI: 10.1093/bib/bbae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The microRNAs (miRNAs) play crucial roles in several biological processes. It is essential for a deeper insight into their functions and mechanisms by detecting their subcellular localizations. The traditional methods for determining miRNAs subcellular localizations are expensive. The computational methods are alternative ways to quickly predict miRNAs subcellular localizations. Although several computational methods have been proposed in this regard, the incomplete representations of miRNAs in these methods left the room for improvement. In this study, a novel computational method for predicting miRNA subcellular localizations, named PMiSLocMF, was developed. As lots of miRNAs have multiple subcellular localizations, this method was a multi-label classifier. Several properties of miRNA, such as miRNA sequences, miRNA functional similarity, miRNA-disease, miRNA-drug, and miRNA-mRNA associations were adopted for generating informative miRNA features. To this end, powerful algorithms [node2vec and graph attention auto-encoder (GATE)] and one newly designed scheme were adopted to process above properties, producing five feature types. All features were poured into self-attention and fully connected layers to make predictions. The cross-validation results indicated the high performance of PMiSLocMF with accuracy higher than 0.83, average area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPR) exceeding 0.90 and 0.77, respectively. Such performance was better than all previous methods based on the same dataset. Further tests proved that using all feature types can improve the performance of PMiSLocMF, and GATE and self-attention layer can help enhance the performance. Finally, we deeply analyzed the influence of miRNA associations with diseases, drugs, and mRNAs on PMiSLocMF. The dataset and codes are available at https://github.com/Gu20201017/PMiSLocMF.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Avenue, Pudong New District, Shanghai 201306, China
| | - Jiahui Gu
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Avenue, Pudong New District, Shanghai 201306, China
| | - Bo Zhou
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New District, Shanghai 201318, China
| |
Collapse
|
6
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Improta-Caria AC, Rodrigues LF, Joaquim VHA, De Sousa RAL, Fernandes T, Oliveira EM. MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of the exercise training. Am J Physiol Heart Circ Physiol 2024; 326:H497-H510. [PMID: 38063810 PMCID: PMC11219062 DOI: 10.1152/ajpheart.00410.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024]
Abstract
Cardiovascular and metabolic diseases such as hypertension, type 2 diabetes, and obesity develop long-term fibrotic processes in the heart, promoting pathological cardiac remodeling, including after myocardial infarction, reparative fibrotic processes also occur. These processes are regulated by many intracellular signaling pathways that have not yet been completely elucidated, including those associated with microRNA (miRNA) expression. miRNAs are small RNA transcripts (18-25 nucleotides in length) that act as posttranscriptionally regulators of gene expression, inhibiting or degrading one or more target messenger RNAs (mRNAs), and proven to be involved in many biological processes such as cell cycle, differentiation, proliferation, migration, and apoptosis, directly affecting the pathophysiology of several diseases, including cardiac fibrosis. Exercise training can modulate the expression of miRNAs and it is known to be beneficial in various cardiovascular diseases, attenuating cardiac fibrosis processes. However, the signaling pathways modulated by the exercise associated with miRNAs in cardiac fibrosis were not fully understood. Thus, this review aims to analyze the expression of miRNAs that modulate signaling pathways in cardiac fibrosis processes that can be regulated by exercise training.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Victor Hugo Antonio Joaquim
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | | | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
- Departments of Internal Medicine, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
8
|
Perales S, Sigamani V, Rajasingh S, Gurusamy N, Bittel D, Czirok A, Radic M, Rajasingh J. scaRNA20 promotes pseudouridylatory modification of small nuclear snRNA U12 and improves cardiomyogenesis. Exp Cell Res 2024; 436:113961. [PMID: 38341080 PMCID: PMC10964393 DOI: 10.1016/j.yexcr.2024.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Non-coding RNAs, particularly small Cajal-body associated RNAs (scaRNAs), play a significant role in spliceosomal RNA modifications. While their involvement in ischemic myocardium regeneration is known, their role in cardiac development is unexplored. We investigated scaRNA20's role in iPSC differentiation into cardiomyocytes (iCMCs) via overexpression and knockdown assays. We measured scaRNA20-OE-iCMCs and scaRNA20-KD-iCMCs contractility using Particle Image Velocimetry (PIV), comparing them to control iCMCs. We explored scaRNA20's impact on alternative splicing via pseudouridylation (Ψ) of snRNA U12, analyzing its functional consequences in cardiac differentiation. scaRNA20-OE-iPSC differentiation increased beating colonies, upregulated cardiac-specific genes, activated TP53 and STAT3, and preserved contractility under hypoxia. Conversely, scaRNA20-KD-iCMCs exhibited poor differentiation and contractility. STAT3 inhibition in scaRNA20-OE-iPSCs hindered cardiac differentiation. RNA immunoprecipitation revealed increased Ψ at the 28th uridine of U12 RNA in scaRNA20-OE iCMCs. U12-KD iCMCs had reduced cardiac differentiation, which improved upon U12 RNA introduction. In summary, scaRNA20-OE in iPSCs enhances cardiomyogenesis, preserves iCMC function under hypoxia, and may have implications for ischemic myocardium regeneration.
Collapse
Affiliation(s)
- Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Bittel
- Department of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marko Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
9
|
Zhao Y, Liu N, Zhang J, Zhao L. PCSK9i promoting the transformation of AS plaques into a stable plaque by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 in ApoE-/- mice. Front Med (Lausanne) 2024; 11:1284199. [PMID: 38596793 PMCID: PMC11002805 DOI: 10.3389/fmed.2024.1284199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Atherosclerosis (AS) is a multifaceted disease characterized by disruptions in lipid metabolism, vascular inflammation, and the involvement of diverse cellular constituents. Recent investigations have progressively underscored the role of microRNA (miR) dysregulation in cardiovascular diseases, notably AS. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) can effectively reduce circulating levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp (a)], potentially fostering a more enduring phenotype for AS plaques. However, the underlying mechanisms by which PCSK9i enhances plaque stability remain unclear. In this study, we used microarray and bioinformatics techniques to analyze the regulatory impacts on gene expression pertinent to AS, thereby unveiling potential mechanisms underlying the plaque-stabilizing attributes of PCSK9i. Methods ApoE-/- mice were randomly allocated into control, AS, PCSK9i, and Atorvastatin groups. The AS model was induced through a high-fat diet (HFD), succeeded by interventions: the PCSK9i group was subjected to subcutaneous SBC-115076 injections (8 mg/kg, twice weekly), and the Atorvastatin group received daily oral Atorvastatin (10 mg/kg) while on the HFD. Subsequent to the intervention phase, serum analysis, histological assessment using hematoxylin and eosin (H&E) and Oil Red O staining, microarray-centered miRNA analysis utilizing predictions from TargetScan and miRTarBase, and analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed to illuminate potential pathways. Real-time fluorescence quantitative PCR (RT-qPCR) was employed to quantify the expression levels of target genes. Results In comparison to the control group, the AS group displayed a significant elevation in blood lipid levels. Both PCSK9i and Atorvastatin effectively attenuated blood lipid levels, with PCSK9i exhibiting a more pronounced lipid-lowering impact, particularly concerning TG and LDL-C levels. Over the course of AS progression, the expression levels of mmu-miR-134, mmu-miR-141-5p, mmu-miR-17-3p, mmu-miR-195-3p, mmu-miR-210, mmu-miR-33-5p, mmu-miR-410, mmu-miR-411-5p, mmu-miR-499, mmu-miR-672-5p, mmu-miR-675-3p, and mmu-miR-301b underwent dynamic fluctuations. PCSK9i significantly down-regulated the expression of mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p. Further enrichment analysis disclosed that mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p were functionally enriched for cardiovascular smooth muscle cell proliferation, migration, and regulation. RT-qPCR results manifested that, in comparison to the AS group, PCSK9i significantly upregulated the expression of Wipf2, Pdk1, and Yap1 (p < 0.05). Conclusion Aberrant miRNA expression may play a pivotal role in AS progression in murine models of AS. The subcutaneous administration of PCSK9i exerted anti-atherosclerotic effects by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 axes, thereby promoting the transition of AS plaques into a more stable form.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jifeng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
12
|
Yu S, Zhang J, Hu Y, Li L, Kong J, Zhang X. Ultrasensitive detection of miRNA-21 by click chemistry and fluorescein-mediated photo-ATRP signal amplification. Anal Chim Acta 2023; 1277:341661. [PMID: 37604612 DOI: 10.1016/j.aca.2023.341661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
The development of a convenient and efficient assay using miRNA-21 as a lung cancer marker is of great importance for the early prevention of cancer. Herein, an electrochemical biosensor for the detection of miRNA-21 was successfully fabricated under blue light excitation using click chemistry and photocatalytic atom transfer radical polymerization (photo-ATRP). By using hairpin DNA as a recognition probe, the electrochemical sensor deposits numerous electroactive monomers (ferrocenylmethyl methacrylate) on the electrode surface under the reaction of photocatalyst (fluorescein) and pentamethyldiethylenetriamine, thereby achieving signal amplification. This biosensor is sensitive, precise and selective for miRNA-21, and is highly specific for RNAs with different base mismatches. Under optimal conditions, the biosensor showed a linear relationship in the range of 10 fM ∼1 nM (R2 = 0.995), with a detection limit of 1.35 fM. Furthermore, the biosensor exhibits anti-interference performance when analyzing RNAs in serum samples. The biosensor is based on green chemistry and has the advantages of low cost, specificity and anti-interference ability, providing economic benefits while achieving detection objectives, which makes it highly promising for the analysis of complex samples.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
13
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
14
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Gholami Farashah MS, Javadi M, Mohammadi A, Soleimani Rad J, Shakouri SK, Roshangar L. Bone marrow mesenchymal stem cell's exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type. Mol Biol Rep 2022; 49:12203-12218. [PMID: 36224447 DOI: 10.1007/s11033-022-07807-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won't just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton's Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don't have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes' mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem cell and regenerative medicine research center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
MicroRNA Let-7a, -7e and -133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23179636. [PMID: 36077031 PMCID: PMC9455749 DOI: 10.3390/ijms23179636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a hallmark of atrial structural remodeling. The main aim of this study was to investigate the role of micro-ribonucleic acids (miRNAs) in the modulation of fibrotic molecular mechanisms in response to hypoxic conditions, which may mediate atrial fibrosis. Under a condition of hypoxia induced by a hypoxia chamber, miRNA arrays were used to identify the specific miRNAs associated with the modulation of fibrotic genes. Luciferase assay, real-time polymerase chain reaction, immunofluorescence and Western blotting were used to investigate the effects of miRNAs on the expressions of the fibrotic markers collagen I and III (COL1A, COL3A) and phosphorylation levels of the stress kinase c-Jun N-terminal kinase (JNK) pathway in a cultured HL-1 atrial cardiomyocytes cell line. COL1A and COL3A were found to be the direct regulatory targets of miR-let-7a, miR-let-7e and miR-133a in hypoxic atrial cardiac cells in vitro. The expressions of COL1A and COL3A were influenced by treatment with miRNA mimic and antagomir while hypoxia-induced collagen expression was inhibited by the delivery of miR-133a, miR-let-7a or miR-let-7e. The JNK pathway was critical in the pathogenesis of atrial fibrosis. The JNK inhibitor SP600125 increased miRNA expressions and repressed the fibrotic markers COL1A and COL3A. In conclusion, MiRNA let-7a, miR-let-7e and miR-133a play important roles in hypoxia-related atrial fibrosis by inhibiting collagen expression and post-transcriptional repression by the JNK pathway. These novel findings may lead to the development of new therapeutic strategies.
Collapse
|
17
|
Daneshi N, Bahmaie N, Esmaeilzadeh A. Cell-Free Treatments: A New Generation of Targeted Therapies for Treatment of Ischemic Heart Disease. CELL JOURNAL 2022; 24:353-363. [PMID: 36043403 PMCID: PMC9428475 DOI: 10.22074/cellj.2022.7643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
Abstract
Although recent progress in medicine has substantially reduced cardiovascular diseases (CVDs)-related mortalities, current therapeutics have failed miserably to be beneficial for all patients with CVDs. A wide array of evidence suggests that newly-introduced cell-free treatments (CFTs) have more reliable results in the improvement of cardiac function. The main regeneration activity of CFTs protocols is based on bypassing cells and using paracrine factors. In this article, we aim to compare various stem cell secretomes, a part of a CFTs strategy, to generalize their effective clinical outcomes for patients with CVDs. Data for this review article were collected from 70 published articles (original, review, randomized clinical trials (RCTs), and case reports/series studies done on human and animals) obtained from Cochrane, Science Direct, PubMed, Scopus, Elsevier, and Google Scholar) from 2015 to April 2020 using six keywords. Full-text/full-length articles, abstract, section of book, chapter, and conference papers in English language were included. Studies with irrelevant/insufficient/data, or undefined practical methods were excluded. CFTs approaches involved in growth factors (GFs); gene-based therapies; microRNAs (miRNAs); extracellular vesicles (EVs) [exosomes (EXs) and microvesicles (MVs)]; and conditioned media (CM). EXs and CM have shown more remarkable results than stem cell therapy (SCT). GF-based therapies have useful results as well as side effects like pathologic angiogenesis. Cell source, cell's aging and CM affect secretomes. Genetic manipulation of stem cells can change the secretome's components. Growing progression to end stage heart failure (HF), propounds CFTs as an advantageous method with practical and clinical values for replacement of injured myocardium, and induction of neovascularization. To elucidate the secrets behind amplifying the expansion rate of cells, increasing life-expectancy, and improving quality of life (QOL) for patients with ischemic heart diseases (IHDs), collaboration among cell biologist, basic medical scientists, and cardiologists is highly recommended.
Collapse
Affiliation(s)
- Nahid Daneshi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nazila Bahmaie
- Faculty of Medicine, Graduate School of Health Science, Near East University, Nicosia, Northern Cyprus, Cyprus
- Private Baskent Hospital, Nicosia, Northern Cyprus, Cyprus
- Paediatric Ward, Department of Allergy and Immunology, Near East University Affiliated Hospital, Nicosia, Northern Cyprus, Cypru
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Centre, Zanjan University of Medical Sciences, Zanjan, Iran
- Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
18
|
Soci UPR, Cavalcante BRR, Improta-Caria AC, Roever L. The Epigenetic Role of MiRNAs in Endocrine Crosstalk Between the Cardiovascular System and Adipose Tissue: A Bidirectional View. Front Cell Dev Biol 2022; 10:910884. [PMID: 35859891 PMCID: PMC9289671 DOI: 10.3389/fcell.2022.910884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Overweight and obesity (OBT) is a serious health condition worldwide, and one of the major risk factors for cardiovascular disease (CVD), the main reason for morbidity and mortality worldwide. OBT is the proportional increase of Adipose Tissue (AT) compared with other tissue and fluids, associated with pathological changes in metabolism, hemodynamic overload, cytokine secretion, systemic inflammatory profile, and cardiac metabolism. In turn, AT is heterogeneous in location, and displays secretory capacity, lipolytic activation, insulin sensitivity, and metabolic status, performing anatomic, metabolic, and endocrine functions. Evidence has emerged on the bidirectional crosstalk exerted by miRNAs as regulators between the heart and AT on metabolism and health conditions. Here, we discuss the bidirectional endocrine role of miRNAs between heart and AT, rescuing extracellular vesicles' (EVs) role in cell-to-cell communication, and the most recent results that show the potential of common therapeutic targets through the elucidation of parallel and ⁄or common epigenetic mechanisms.
Collapse
Affiliation(s)
- Ursula Paula Reno Soci
- Biodynamics of the Human Body Movement Department, School of Physical Education and Sports, São Paulo University–USP, São Paulo, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Physical Education Department, Salvador University (UNIFACS), Salvador, Brazil
| | - Leonardo Roever
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil
- Faculty of Medicine, Sao Paulo University, Sao Paulo, Brazil
| |
Collapse
|
19
|
miR-106b as an emerging therapeutic target in cancer. Genes Dis 2022; 9:889-899. [PMID: 35685464 PMCID: PMC9170583 DOI: 10.1016/j.gendis.2021.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) comprise short non-coding RNAs that function in regulating the expression of tumor suppressors or oncogenes and modulate oncogenic signaling pathways in cancer. miRNAs expression alters significantly in several tumor tissues and cancer cell lines. For example, miR-106b functions as an oncogene and increases in multiple cancers. The miR-106b directly targets genes involved in tumorigenesis, proliferation, invasion, migration, and metastases. This review has focused on the miR-106b function and its downstream target in different cancers and provide perspective into how miR-106 regulates cancer cell proliferation, migration, invasion, and metastases by regulating the tumor suppressor genes. Since miRNAs-based therapies are currently being developed to enhance cancer therapy outcomes, miR-106b could be an attractive and prospective candidate in different cancer types for detection, diagnosis, and prognosis assessment in the tumor.
Collapse
|
20
|
Dos Santos JAC, Veras ASC, Batista VRG, Tavares MEA, Correia RR, Suggett CB, Teixeira GR. Physical exercise and the functions of microRNAs. Life Sci 2022; 304:120723. [PMID: 35718233 DOI: 10.1016/j.lfs.2022.120723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.
Collapse
Affiliation(s)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cara Beth Suggett
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
21
|
Deng Y, Huang P, Zhang F, Chen T. Association of MicroRNAs With Risk of Stroke: A Meta-Analysis. Front Neurol 2022; 13:865265. [PMID: 35665049 PMCID: PMC9160310 DOI: 10.3389/fneur.2022.865265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Altered expression of microRNAs (miRNAs) may contribute to disease vulnerability. Studies have reported the involvement of miRNA in the pathophysiology of ischemic stroke. Methods We performed a meta-analysis of data from 6 studies that used a panel of miRNAs with altered expressions to diagnose ischemic stroke with the Bayesian framework. The I2 test and Cochran's Q-statistic were used to assess heterogeneity. Funnel plots were generated and publication bias was assessed using Begg and Egger tests. Results On summary receiver operating characteristics (SROC) curve analysis, the pooled sensitivity and specificity of altered miRNA expressions for diagnosis of ischemic stroke was 0.92 (95% confidence interval [CI] 0.80–0.97) and 0.83 (95% CI 0.71–0.90), respectively; the diagnostic odds ratio was 54.35 (95% CI 20.39–144.92), and the area under the SROC curve was 0.93 (95% CI 0.90–0.95). Conclusions Our results showed a link between dysregulation of miRNAs and the occurrence of ischemic stroke. Abnormal miRNA expression may be a potential biomarker for ischemic stroke.
Collapse
|
22
|
Gao Y, Wang L, Niu Z, Feng H, Liu J, Sun J, Gao Y, Pan L. miR-340-5p inhibits pancreatic acinar cell inflammation and apoptosis via targeted inhibition of HMGB1. Exp Ther Med 2022; 23:140. [PMID: 35069821 PMCID: PMC8756431 DOI: 10.3892/etm.2021.11063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease that affects 1 million individuals worldwide. Inflammation and apoptosis are considered to be important pathogenic mechanisms of AP, and high mobility group box 1 (HMGB1) has been shown to play a particularly important role in the etiology of this disease. MicroRNAs (miRs) are emerging as critical regulators of gene expression and, as such, they represent a promising area of therapeutic target identification and development for a variety of diseases, including AP. Using the online database query (microRNA.org), the current study identified a site in the 3' untranslated region of HMGB1 mRNA that was a viable target for miR-340-5p. The present study aimed to investigate the association between miR-340-5p and HMGB1 expression in pancreatic acinar cells following lipopolysaccharide (LPS) treatment by performing luciferase, western blotting and reverse transcription-quantitative PCR assays. The results suggest that miR-340-5p attenuates the induction of HMGB1 by LPS, thereby inhibiting inflammation and apoptosis via blunted activation of Toll-like receptor 4 and enhanced AKT signaling. Thus, the therapeutic application of miR-340-5p may be a useful strategy in AP via upregulation of HMGB1 and subsequent promotion of inflammation and apoptosis.
Collapse
Affiliation(s)
- Yazhou Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangli Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
23
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
24
|
Dai Q, Wang Z, Liu Z, Duan X, Song J, Guo M. Predicting miRNA-disease associations using an ensemble learning framework with resampling method. Brief Bioinform 2021; 23:6470964. [PMID: 34929742 DOI: 10.1093/bib/bbab543] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Accumulating evidences have indicated that microRNA (miRNA) plays a crucial role in the pathogenesis and progression of various complex diseases. Inferring disease-associated miRNAs is significant to explore the etiology, diagnosis and treatment of human diseases. As the biological experiments are time-consuming and labor-intensive, developing effective computational methods has become indispensable to identify associations between miRNAs and diseases. RESULTS We present an Ensemble learning framework with Resampling method for MiRNA-Disease Association (ERMDA) prediction to discover potential disease-related miRNAs. Firstly, the resampling strategy is proposed for building multiple different balanced training subsets to address the challenge of sample imbalance within the database. Then, ERMDA extracts miRNA and disease feature representations by integrating miRNA-miRNA similarities, disease-disease similarities and experimentally verified miRNA-disease association information. Next, the feature selection approach is applied to reduce the redundant information and increase the diversity among these subsets. Lastly, ERMDA constructs an individual learner on each subset to yield primitive outcomes, and the soft voting method is introduced for making the final decision based on the prediction results of individual learners. A series of experimental results demonstrates that ERMDA outperforms other state-of-the-art methods on both balanced and unbalanced testing sets. Besides, case studies conducted on the three human diseases further confirm the ERMDA's prediction capability for identifying potential disease-related miRNAs. In conclusion, these experimental results demonstrate that our method can serve as an effective and reliable tool for researchers to explore the regulatory role of miRNAs in complex diseases.
Collapse
Affiliation(s)
- Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, 116600, Dalian, China.,SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Zhaowei Wang
- School of Computer Science and Engineering, Dalian Minzu University, 116600, Dalian, China.,SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Ziqiang Liu
- School of Computer Science and Engineering, Dalian Minzu University, 116600, Dalian, China.,SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Xiaodong Duan
- SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Jinmiao Song
- SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| |
Collapse
|
25
|
Yang Y, Shi X, Du Z, Zhou G, Zhang X. Associations between genetic variations in microRNA and myocardial infarction susceptibility: a meta-analysis and systematic review. Herz 2021; 47:524-535. [PMID: 34878577 DOI: 10.1007/s00059-021-05086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Current genetic association studies have reported conflicting results regarding the association between miRNA polymorphisms and myocardial infarction (MI) risk METHODS: Relevant studies were retrieved from the PubMed, EMBASE, ISI Web of Science, and Scopus databases. Eligible studies determining the association between miRNA polymorphisms and MI susceptibility were included and a meta-analysis was performed to quantify the associations between miRNA polymorphisms and MI risk. RESULTS A total of eight studies with 2507 MI patients and 3796 healthy controls were included, dealing with nine miRNA genes containing 11 different loci, including miR-149 (rs71428439 and rs2292832), miR-126 (rs4636297 and rs1140713), miR-146a (rs2910164), miR-218 (rs11134527), miR-196a2 (rs11614913), miR-499 (rs3746444), miR-27a (rs895819), miR-26a‑1 (rs7372209), and miR-100 (rs1834306). miR-146a rs2910164 and miR-499 rs3746444 were determined to have a significant association with MI susceptibility, a finding that was supported by the meta-analysis (rs2910164: GG/CC, odds ratio [OR]: 1.40, 95% confidence interval [95% CI]: 1.05-1.74, p < 0.001; rs3746444: AA + AG/GG, OR = 2.04, 95% CI: 1.37-2.70, p < 0.001). Limited or conflicting data were found for the relationship between the other miRNA polymorphisms (rs71428439, rs4636297, rs1140713, rs11134527, rs11614913, rs895819, rs7372209, rs1834306, rs2292832) and MI risk. CONCLUSION There was a significant association between rs2910164 and rs3746444 and MI susceptibility. Further studies are required to investigate the role of miRNA polymorphisms in MI risk.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Xiajun Shi
- Department of Cardiology, Tongling People's Hospital, 244002, Tongling, Anhui, China
| | - Zhengxun Du
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Gendong Zhou
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Xiaohong Zhang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China.
| |
Collapse
|
26
|
Sun J, Qiu S. Expression of lncRNA-ANRIL before and after Treatment and Its Predictive Value for Short-Term Survival in Patients with Coronary Heart Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5431985. [PMID: 34901274 PMCID: PMC8664524 DOI: 10.1155/2021/5431985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
This study aimed at observing the expression of lncRNA-ANRIL (ANRIL) before and after treatment and its predictive value for short-term survival in patients with coronary heart disease (CHD). Altogether, 112 patients with CHD admitted to the hospital were enrolled as a study group (SG), which was divided into a pretreatment study group (preSG) and a posttreatment study group (postSG). Further 72 healthy people undergoing physical examinations during the same period were enrolled as a control group (CG). Peripheral blood was collected from the subjects in the three groups, to detect the expression level of serum ANRIL using quantitative reverse transcription PCR (qRT-PCR). A receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of ANRIL for CHD. Kaplan-Meier survival curves were plotted to analyze 3-year survival rates in high- and low-ANRIL expression groups. Cox regression was conducted to analyze independent risk factors affecting the patients. The expression level of serum ANRIL in preSG was significantly lower than those in CG and postSG (P < 0.05). According to the ROC curve, the area under the curve (AUC) of serum ANRIL for diagnosing CHD in CG was 0.894 and the optimal cutoff value was 0.639, with the sensitivity of 86.61% and the specificity of 93.67%. According to the survival curves, the 3-year overall survival rate in the high-ANRIL expression group was significantly lower than that in the low-expression group (P < 0.05). History of smoking, high total cholesterol (TC), high triglyceride (TG), high homocysteine (Hcy), and ANRIL expression were independent prognostic factors affecting the overall survival time of the patients (P < 0.05). ANRIL is poorly expressed in the peripheral blood of patients with CHD. Its detection has good sensitivity and specificity for diagnosing the disease, and its expression may be related to the poor prognosis of the patients.
Collapse
Affiliation(s)
- Jinhui Sun
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan 250000, China
| | - Shi Qiu
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan 250000, China
| |
Collapse
|
27
|
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021; 6:4321-4332. [PMID: 33997509 PMCID: PMC8105599 DOI: 10.1016/j.bioactmat.2021.04.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023] Open
Abstract
There are extensive studies on the applications of extracellular vesicles (EVs) produced in cell culture for therapeutic drug development. However, large quantities of EVs are needed for in vivo applications, which requires high production costs and time. Thus, the development of new EV sources is essential to facilitate their use. Accordingly, plant-derived exosome-like nanovesicles are an emerging alternative for culture-derived EVs. Until now, however, few studies have explored their biological functions and uses. Therefore, it is necessary to elucidate biological activities of plant-derived exosome-like nanovesicles and harness vesicles for biomedical applications. Herein, cabbage and red cabbage were used as nanovesicle sources owing to their easy cultivation. First, an efficient method for nanovesicle isolation from cabbage (Cabex) and red cabbage (Rabex) was developed. Furthermore, isolated nanovesicles were characterized, and their biological functions were assessed. Both Cabex and Rabex promoted mammalian cell proliferation and, interestingly, suppressed inflammation in immune cells and apoptosis in human keratinocytes and fibroblasts. Finally, therapeutic drugs were encapsulated in Cabex or Rabex and successfully delivered to human cells, demonstrating the potential of these vesicles as alternative drug delivery vehicles. Overall, the current results provide strong evidence for the wide application of Cabex and Rabex as novel therapeutic biomaterials.
Collapse
Affiliation(s)
- Jae Young You
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| |
Collapse
|
28
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
29
|
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, Qi X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci 2021; 16:687-703. [PMID: 35027949 PMCID: PMC8737406 DOI: 10.1016/j.ajps.2021.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity. Currently, gene therapy drugs such as siRNA, shRNA, antisense oligonucleotide, CRISPR/Cas9 system, plasmid DNA and miRNA have shown great potential in biomedical applications. To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues, cells and organelles, the development of excellent drug delivery vehicles is of utmost importance. Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression. With the development of nanotechnology, novel nanocarriers are gradually replacing viral vectors, emerging superior performance. This review mainly illuminates the current widely used gene therapy drugs, summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs, and sums up the application of gene therapy to treat genetic diseases. Additionally, the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
Collapse
Affiliation(s)
- Xiuhua Pan
- China Pharmaceutical University, Nanjing 211198, China
| | | | - Nan Su
- China Pharmaceutical University, Nanjing 211198, China
| | - Kang Sha
- China Pharmaceutical University, Nanjing 211198, China
| | - Fenglin Jiang
- China Pharmaceutical University, Nanjing 211198, China
| | - Zhenghong Wu
- China Pharmaceutical University, Nanjing 211198, China
| | - Xiaole Qi
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
30
|
The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity. Mech Ageing Dev 2021; 199:111566. [PMID: 34517022 DOI: 10.1016/j.mad.2021.111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer's, Parkinson's, and epilepsy's along with psychiatric perturbations including schizophrenia. Furthermore, the cellular mechanisms of the miRNA-132/212 have additionally been explored in cardiovascular diseases models. Also, the miRNA-132/212 family modulates cardiac hypertrophy and autophagy in cardiomyocytes. The protective and effective clinical promise of miRNA-132/212 in these systems is discussed in this review. To sum up, the current progress in innovative miRNA-based therapies for human pathologies seems of extreme concern and reveals promising novel therapeutic strategies.
Collapse
|
31
|
Wang A, Yue S, Peng A, Qi R. A Review of Research Progress on Agathis dammara and its Application Prospects for Cardiovascular Diseases and Fatty Liver Disease. Mini Rev Med Chem 2021; 21:670-676. [PMID: 33208073 DOI: 10.2174/1389557520666201117110834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases and fatty liver disease have become the leading causes of death in modern society. However, the currently existing drugs do not solve all issues related to these diseases; thus, it is expected that more potential drugs for clinical use will be developed. Undeniably, natural products have attracted increasing attention. It is of great significance to identify effective active monomer components for drug discovery and disease prevention. As a pure natural product, Agathis dammara (AD) has antioxidant, hypolipidemic, hypoglycemic, antitumor, and anti-inflammatory activities. However, at present, there are few reports regarding the effects of AD on chronic inflammatory cardiovascular diseases, such as aneurysm, atherosclerosis, myocardial ischemia-reperfusion injury, and cardiac hypertrophy and liver diseases such as fatty liver disease. AD and products derived from it have a very broad application prospect for cardiovascular diseases and fatty liver disease.
Collapse
Affiliation(s)
- Anyi Wang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Beijing 100191, China
| | - Shanshan Yue
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Beijing 100191, China
| | - Ankang Peng
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
32
|
MiR-29b is associated with perinatal inflammation in extremely preterm infants. Pediatr Res 2021; 89:889-893. [PMID: 32386397 PMCID: PMC7649129 DOI: 10.1038/s41390-020-0943-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammation is strongly associated with premature birth and neonatal morbidities. Increases in infant haptoglobin, haptoglobin-related protein (Hp&HpRP), and interleukin-6 (IL-6) levels are indicators of intra-amniotic inflammation (IAI) and have been linked to poor neonatal outcomes. Inflammation causes epigenetic changes, specifically suppression of miR-29 expression. The current study sought to determine whether miR-29b levels in cord blood or neonatal venous blood are associated with IAI, identified by elevated IL-6 and Hp, and subsequent clinical morbidities in the infant. METHODS We tested 92 cord blood samples from premature newborns and 18 venous blood samples at 36 weeks corrected gestational age. MiR-29b, Hp&HpRP, and IL-6 were measured by polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS Decreased levels of miR-29b were observed in infants exposed to IAI with elevated Hp&HpRP and IL-6 levels and in infants delivered by spontaneous preterm birth. Lower miR-29 levels were also observed in women diagnosed with histological chorioamnionitis or funisitis and in infants with cerebral palsy. Higher levels of miR-29 were measured in infants small for gestational age and in venous samples from older infants. CONCLUSIONS MiR-29 may be an additional biomarker of IAI and a potential therapeutic target for treating poor newborn outcomes resulting from antenatal exposure to IAI. IMPACT Decreases in miR-29b are associated with intrauterine inflammation. Hp&HpRP increases are associated with decreased miR-29b. MiR-29b may be an additional biomarker for neonatal outcomes and a potential therapeutic target for intrauterine inflammation.
Collapse
|
33
|
Feng W, Ying Z, Ke F, Mei-Lin X. Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153481. [PMID: 33607460 DOI: 10.1016/j.phymed.2021.153481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear. PURPOSE This study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α. METHODS The TGF-β1-stimulated CFs, the combination of TGF-β1-stimulated and miR-122-5p mimic-transfected CFs, the combination of TGF-β1-stimulated and miR-122-5p inhibitor-transfected CFs, and the isoproterenol-induced cardiac fibrotic mice were used and treated with or without apigenin. The recombinant lentiviruses overexpressing HIF-1α vector and miR-122-5p mimic were co-transfected to observe their interaction. Related mRNA and protein expressions and myocardial collagen were determined. The luciferase reporter gene that contains HIF-1α wild type or mutant type 3'-UTR was used, and the luciferase activity was determined to verify the direct link between miR-122-5p and HIF-1α. RESULTS In the TGF-β1-stimulated CFs, apigenin treatment increased the miR-122-5p and Smad7 expressions and decreased the HIF-1α, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 expressions. Similar and inverse results were observed in the miR-122-5p mimic- and inhibitor-transfected CFs, respectively. Moreover, the miR-122-5p mimic could antagonize the effects of TGF-β1 in the TGF-β1 and miR-122-5p mimic-combined CFs, and the miR-122-5p inhibitor could enhance the effects of TGF-β1 in the TGF-β1 and miR-122-5p inhibitor-combined CFs. In the two aforementioned cell models, the addition of apigenin could further enhance the effects of miR-122-5p mimic and partially reverse the effects of miR-122-5p inhibitor. After treatment of HIF-1α-transfected CFs with miR-122-5p mimic, the HIF-1α expression decreased. Further study confirmed that HIF-1α was a direct target of miR-122-5p. Apigenin also decreased the myocardial collagen accumulation in cardiac fibrotic mice. CONCLUSION Apigenin could suppress the differentiation and collagen synthesis of TGF-β1-stimulated CFs and mouse cardiac fibrosis, and its mechanisms were related to the increment of miR-122-5p expression and subsequent downregulation of HIF-1α expression via direct interaction, which might finally result in the decrements of Smad2/3 and p-Smad2/3 expressions and increment of Smad7 expression.
Collapse
Affiliation(s)
- Wang Feng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Zhao Ying
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Fan Ke
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xie Mei-Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
34
|
Cai X, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Zhang P, Shao L. Inhibition of miR-322-5p Protects Cardiac Myoblast Cells Against Hypoxia-Induced Apoptosis and Injury Through Regulating CIAPIN1. J Cardiovasc Pharmacol 2021; 77:200-207. [PMID: 33538533 DOI: 10.1097/fjc.0000000000000949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
ABSTRACT Hypoxia leads to insufficient supply of blood and nutrients, which is major incentive for cardiomyocyte injury and apoptosis. Previous studies reported the regulation effects of microRNAs (miRNAs) in myocardial infarction, whereas function and molecular mechanisms of miR-322-5p were still unclear. Therefore, our study focused on the biological role of miR-322-5p in hypoxia-induced cardiac myoblast cells apoptosis and injury. The expression levels of miR-322-5p and cytokine-induced apoptosis inhibitor 1 (CIAPIN1) were measured by real-time quantitative polymerase chain reaction in cardiac myoblast cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), lactic dehydrogenase, and flow cytometry assays were performed to examine proliferation, injury, and apoptosis of cardiac myoblast cells, respectively. The protein expression levels were evaluated with western blot assay. The relationship between miR-322-5p and CIAPIN1 was confirmed by dual-luciferase reporter analysis. We found that miR-322-5p level was increased in cardiac myoblast cells exposed to hypoxia. In addition, miR-322-5p silencing could weaken injury and apoptosis in cardiac myoblast cells induced by hypoxia; meanwhile, inhibition of miR-322-5p activation of phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT) signal pathway. Besides, CIAPIN1 was a target mRNA of miR-322-5p based on bioinformatics prediction. CIAPIN1 knockdown reversed the effects of miR-322-5p silencing on hypoxic cardiac myoblast cells. Suppression of miR-322-5p protected cardiac myoblast cells against hypoxia-induced injury and apoptosis through regulation of CIAPIN1 expression and PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Shu Wang
- Department of Gerontology, The First Affliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co. Ltd, Shenzhen, China ; and
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Yang HC, Ham YM, Kim JA, Rhee WJ. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J Extracell Vesicles 2021; 10:e12074. [PMID: 33664938 PMCID: PMC7902527 DOI: 10.1002/jev2.12074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) contain useful biomarkers for disease diagnosis and are promising biomaterials for the delivery of therapeutic molecules in vivo. Accordingly, an efficient concentration method is necessary for large-scale production or high-throughput isolation of EVs from bulk liquid samples, including culture medium and body fluids, to achieve their clinical application. However, current EV concentration methods, including ultrafiltration, are limited with respect to cost, efficiency, and centrifugation time. In this study, we developed the first single-step, equipment-free EV concentration method using super absorbent polymer (SAP) beads. SAP beads absorb small molecules, including water, via nano-sized channels but expel and thereby concentrate EVs. Consequently, the beads drastically enrich EVs by reducing the solution volume in a single step, without affecting EV characteristics. Moreover, the purity of the concentrated EV solution was high due to the absorption of protein impurities by SAP beads. To further demonstrate the versatility of the method, we showed that SAP beads successfully enrich EVs in human urine samples and culture medium, enabling better isolation performance than conventional ultrafiltration. We believe the newly developed approach and insight gained in this study will facilitate the use of EVs as prominent biomaterials for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hee Cheol Yang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Yoo Min Ham
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteChungbukRepublic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
36
|
Wang F, Fan K, Zhao Y, Xie ML. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113195. [PMID: 32800930 DOI: 10.1016/j.jep.2020.113195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apigenin is a natural flavonoid compound present in chamomile (Matricaia chamomilla L.) from the Asteraceae family, which is used in the treatment of cardiovascular diseases by traditional healers, but its effects on differentiation and extracellular matrix (ECM) production of cardiac fibroblasts (CFs) induced by transforming growth factor beta 1 (TGF-β1) are poorly understood. AIM OF THE STUDY This study aimed to examine these effects and potential molecular mechanisms and to provide a new application of apigenin in the prevention and treatment of cardiac fibrosis. MATERIALS AND METHODS The TGF-β1-stimulated CFs or the combination of TGF-β1-stimulated and microRNA-155-5p (miR-155-5p) inhibitor- or mimic-transfected CFs were treated with or without apigenin. The expression levels of intracellular related mRNA and proteins were detected by real-time polymerase chain reaction and Western blot methods, respectively. The luciferase reporter gene containing cellular Sloan-Kettering Institute (c-Ski) wild or mutant type 3'-UTR was used and the luciferase activity was examined to verify the direct link of miR-155-5p and c-Ski. RESULTS After treatment of TGF-β1-stimulated CFs with 6-24 μM apigenin, the expression of c-Ski was increased, while levels of miR-155-5p, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 were decreased. After transfection of CFs with the miR-155-5p inhibitor or mimic, the similar or inverse results were respectively observed as well. The combination of TGF-β1 and miR-155-5p inhibitor or mimic might cause an antagonistical or synergistic effect, respectively, and apigenin addition could enhance the effects of the inhibitor and antagonize the effects of the mimic. Luciferase reporter gene assay demonstrated that c-Ski was a direct target of miR-155-5p. CONCLUSION These findings suggested that apigenin could inhibit the differentiation and ECM production in TGF-β1-stimulated CFs, and its mechanisms might partly be attributable to the reduction of miR-155-5p expression and subsequent increment of c-Ski expression, which might result in the inhibition of Smad2/3 and p-Smad2/3 expressions.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
37
|
Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis. Mol Cell Biochem 2021; 476:1327-1336. [PMID: 33389489 DOI: 10.1007/s11010-020-03992-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are important molecules which implicated in various processes, such as differentiation, development, cell survival, cell apoptosis and also cell metabolism. Investigations over decades have revealed that various genes and signaling pathways are implicated in beginning and development of atherosclerosis, several miRNAs being involved in these dysregulated genes and pathways. miRNAs have provided new molecular vision in the context of atherosclerosis. miRNAs are considered as important regulators of cellular migration, differentiation, proliferation, lipid uptake and efflux, as well as cytokine production. Application of miRNAs as a biomarker in diagnosis, prognosis and even therapy is quiet exciting. Although animal researches showed promising results, still some practical difficulties and technical challenges need to be addressed before translation from researches into clinical practices. In this review, we present important data about three critical cells endothelial cell (EC), vascular smooth muscle cell (VSMC), and monocyte/macrophage and regulation of these cells through miRNAs. Furthermore, we discuss about the potential of miRNAs as a prognostic and diagnostic biomarkers, therapeutic opportunities and challenges, and also future perspective.
Collapse
|
38
|
Wen M, Yan H, Shi X, Zhao Y, Wang K, Kong D, Yuan X. Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
39
|
Shi J, Ren Y, Liu Y, Cheng Y, Liu Y. Circulating miR-3135b and miR-107 are potential biomarkers for severe hypertension. J Hum Hypertens 2020; 35:343-350. [PMID: 32327699 DOI: 10.1038/s41371-020-0338-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Hypertension is a disease relating to multiple etiological factors. However, the molecular mechanisms of severe hypertension remain unclear. Whole-body circulatory dysregulation has been found to contribute to hypertension, documenting that circulating molecules are focused as pathological molecules implicated in hypertension. Circulating microRNAs (miRNAs) have been identified as important molecular biomarkers for hypertension. We screened and analyzed miRNAs differentially expressed in plasma in patients with severe hypertension and healthy controls using microarray profiling (six patients and six healthy controls for screening) and RT-qPCR (33 patients and 33 healthy controls for validation). We identified that miR-3135b and miR-107 are the differentially expressed miRNAs between severe hypertension and healthy controls, and the target genes independently regulated by the two miRNAs are remarkably different. MiR-3135b and miR-107 are potential biomarkers for severe hypertension.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
40
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
41
|
Zhang Y, He N, Feng B, Ye H. Exercise Mediates Heart Protection via Non-coding RNAs. Front Cell Dev Biol 2020; 8:182. [PMID: 32266263 PMCID: PMC7098911 DOI: 10.3389/fcell.2020.00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) have become the central matter of death worldwide and have emerged as a notable concern in the healthcare field. There is accumulating evidence that regular exercise training can be as a reliable and widely favorable approach to prevent the heart from cardiovascular events. Non-coding RNAs (ncRNAs) could act as innovative biomarkers and auspicious therapeutic targets to reduce the incidence of CVDs. In this review, we summarized the regulatory effects of ncRNAs in the cardiac-protection provided by exercise to assess potential therapies for CVDs and disease prevention.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Nana He
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
42
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
43
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
44
|
Li F, Ma X, Liu T, Wang Y, Xie X, Xin Y, Cheng K. mRNA-103 inhibition attenuates autophagy and inflammation in myocardial infarction by regulating the TLR4 pathway. Arch Med Sci 2020; 21:266-271. [PMID: 40190298 PMCID: PMC11969517 DOI: 10.5114/aoms.2020.93267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/31/2020] [Indexed: 04/09/2025] Open
Abstract
Introduction This investigation determined the cardioprotective activity of mRNA-103 inhibitor against myocardial infarction (MI) and also evaluated its molecular mechanism. Material and methods MI was induced in rats by inducing myocardial ischaemia/reperfusion (I/R), and left ventricular (LV) mRNA-103 (1 × 107 TU) was injected into the myocardium around the infarcted area. The effect of mRNA-103 inhibitor was assessed by determining the levels of myocardial enzymes and cytokines in the serum, the myeloperoxidase (MPO) activity, and the levels of Toll-like receptor 4 (TLR4), nuclear factor κ-light-chain enhancer of activated B cells (NF-κB), and MyD88 mRNAs in the myocardial tissues of MI rats. Immunocytochemical analysis and a histopathology study were also performed. Results The levels of myocardial enzymes and cytokines were lower in the mRNA-103 inhibitor-treated group than in the group in which the only treatment was the induction of MI. There was a lower percentage of infarcted area and a lower apoptosis index in the mRNA-103 inhibitor-treated group compared to the MI-only. The levels of TLR4, NF-κB, and MyD88 mRNAs were lower in the myocardial tissues of the mRNA-103 inhibitor-treated group than in the MI-only group. Immunohistochemical analysis revealed that treatment with mRNA-103 inhibitor ameliorated the expression of TLR4 in the myocardial tissues of MI rats. Conclusions The data revealed that inhibition by mRNA-103 protects against myocardial injury in MI rats by regulating the inflammasome pathway.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science, Northwest University, Xian, China
| | - XiaoHui Ma
- Department of Vascular Surgery, General Hospital of PLA, Beijing, China
| | - Tong Liu
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| | - Yang Wang
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian, China
| | - Yi Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kang Cheng
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| |
Collapse
|
45
|
Circulatory miR-133b and miR-21 as Novel Biomarkers in Early Prediction and Diagnosis of Coronary Artery Disease. Genes (Basel) 2020; 11:genes11020164. [PMID: 32033332 PMCID: PMC7073535 DOI: 10.3390/genes11020164] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
While coronary artery disease (CAD) has become a major threat worldwide, the timely biomarker-based early diagnosis of CAD remains a major unmet clinical challenge. We aimed towards assessing the level of circulatory microRNAs as candidates of novel biomarkers in patients with CAD. A total of 147 subjects were recruited which includes 78 subjects with angiographically proven CAD, 15 pre-atherosclerotic normal coronary artery (NCA) subjects and 54 healthy individuals. Quantitative real-time PCR assays were performed. MiR-133b was downregulated by 4.6 fold (p < 0.0001) whereas miR-21 was upregulated by ~2 fold (p < 0.0001) in plasma samples of CAD patients. Importantly, both the miRNAs showed association with disease severity as miR-133b was downregulated by 8.45 fold in acute coronary syndrome (ACS), 3.38 fold in Stable angina (SA) and 2.08 fold in NCA. MiR-21 was upregulated by 2.46 fold in ACS, 1.90 fold in SA and 1.12 fold in NCA. Moreover, miR-133b could significantly differentiate subjects with ST-elevation myocardial infarction (STEMI) from Non-STEMI. Area under the curve (AUC) for miR-133b was 0.80 with >75.6% sensitivity and specificity, AUC for miR-21 was 0.79 with >69.4% sensitivity and specificity. Our results suggest that miR-133b and miR-21 could be possible candidates of novel biomarkers in early prediction of CAD.
Collapse
|
46
|
An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinformatics 2019; 20:624. [PMID: 31795954 PMCID: PMC6889672 DOI: 10.1186/s12859-019-3290-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
Background A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis and treatment of diseases. However, because of the limitation of time-consuming and expensive experimental methods, predicting miRNA-disease associations by computational models has become a more economical and effective mean. Results Inspired by the work of predecessors, we proposed an improved computational model based on random forest (RF) for identifying miRNA-disease associations (IRFMDA). First, the integrated similarity of diseases and the integrated similarity of miRNAs were calculated by combining the semantic similarity and Gaussian interaction profile kernel (GIPK) similarity of diseases, the functional similarity and GIPK similarity of miRNAs, respectively. Then, the integrated similarity of diseases and the integrated similarity of miRNAs were combined to represent each miRNA-disease relationship pair. Next, the miRNA-disease relationship pairs contained in the HMDD (v2.0) database were considered positive samples, and the randomly constructed miRNA-disease relationship pairs not included in HMDD (v2.0) were considered negative samples. Next, the feature selection based on the variable importance score of RF was performed to choose more useful features to represent samples to optimize the model’s ability of inferring miRNA-disease associations. Finally, a RF regression model was trained on reduced sample space to score the unknown miRNA-disease associations. The AUCs of IRFMDA under local leave-one-out cross-validation (LOOCV), global LOOCV and 5-fold cross-validation achieved 0.8728, 0.9398 and 0.9363, which were better than several excellent models for predicting miRNA-disease associations. Moreover, case studies on oesophageal cancer, lymphoma and lung cancer showed that 94 (oesophageal cancer), 98 (lymphoma) and 100 (lung cancer) of the top 100 disease-associated miRNAs predicted by IRFMDA were supported by the experimental data in the dbDEMC (v2.0) database. Conclusions Cross-validation and case studies demonstrated that IRFMDA is an excellent miRNA-disease association prediction model, and can provide guidance and help for experimental studies on the regulatory mechanism of miRNAs in complex human diseases in the future.
Collapse
|
47
|
Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0170-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Kukava NG, Shkhnovich RM, Osmak GZ, Baulina NM, Matveeva NA, Favorova OO. [The Role of microRNA in the Development of Ischemic Heart Disease]. ACTA ACUST UNITED AC 2019; 59:78-87. [PMID: 31615390 DOI: 10.18087/cardio.2019.10.n558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022]
Abstract
Coronary artery disease is the most clinically significant manifestation of atherosclerosis and the main cause of morbidity and mortality around the world. Atherogenesis is a complex process, involving various types of cells and regulatory molecules. MicroRNA molecules were discovered at the end of the 20th century, and nowadays are the important regulators of several pathophysiological processes of atherogenesis. The review examines data on the participation of various microRNAs in the development of atherosclerosis and its main clinical manifestations and discusses the possibility of using microRNAs as diagnostic markers for these diseases.
Collapse
Affiliation(s)
- N G Kukava
- Institute of Clinical Cardiology named after A.L. Myasnikov, National Cardiology Research Center
| | - R M Shkhnovich
- Institute of Clinical Cardiology named after A.L. Myasnikov, National Cardiology Research Center; Medical Academy of Continuing Education Russian Medical Academy of Postgraduate Education
| | - G Z Osmak
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - N M Baulina
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - N A Matveeva
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| | - O O Favorova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology
| |
Collapse
|
49
|
Wen M, Zhou F, Cui C, Zhao Y, Yuan X. Performance of TMC-g-PEG-VAPG/miRNA-145 complexes in electrospun membranes for target-regulating vascular SMCs. Colloids Surf B Biointerfaces 2019; 182:110369. [DOI: 10.1016/j.colsurfb.2019.110369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022]
|
50
|
Dwivedi S, Purohit P, Sharma P. MicroRNAs and Diseases: Promising Biomarkers for Diagnosis and Therapeutics. Indian J Clin Biochem 2019; 34:243-245. [PMID: 31391712 PMCID: PMC6660526 DOI: 10.1007/s12291-019-00844-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, 273008 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|