1
|
Liao R, Wang L, Zeng J, Tang X, Huang M, Kantawong F, Huang Q, Mei Q, Huang F, Yang Y, Liao B, Wu A, Wu J. Reactive oxygen species: Orchestrating the delicate dance of platelet life and death. Redox Biol 2025; 80:103489. [PMID: 39764976 PMCID: PMC11759559 DOI: 10.1016/j.redox.2025.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Platelets, which are vital for blood clotting and immunity, need to maintain a delicately balanced relationship between generation and destruction. Recent studies have highlighted that reactive oxygen species (ROS), which act as second messengers in crucial signaling pathways, are crucial players in this dance. This review explores the intricate connection between ROS and platelets, highlighting their dual nature. Moderate ROS levels act as potent activators, promoting megakaryocyte (MK) differentiation, platelet production, and function. They enhance platelet binding to collagen, increase coagulation, and directly trigger cascades for thrombus formation. However, this intricate role harbors a double-edged sword. Excessive ROS unleash its destructive potential, triggering apoptosis and reducing the lifespan of platelets. High levels can damage stem cells and disrupt vital redox-dependent signaling, whereas uncontrolled activation promotes inappropriate clotting, leading to thrombosis. Maintaining a precise balance of ROS within the hematopoietic microenvironment is paramount for optimal platelet homeostasis. While significant progress has been made, unanswered questions remain concerning specific ROS signaling pathways and their impact on platelet disorders. Addressing these questions holds the key to unlocking the full potential of ROS-based therapies for treating platelet-related diseases such as thrombocytopenia and thrombosis. This review aims to contribute to this ongoing dialog and inspire further exploration of this exciting field, paving the way for novel therapeutic strategies that harness the benefits of ROS while mitigating their dangers.
Collapse
Affiliation(s)
- Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qianqian Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Nebbioso M, Vestri A, Gharbiya M, D’Andrea M, Calbucci M, Pasqualotto F, Esposito S, D’Amico A, Castellani V, Carlesimo SC, Limoli PG, Lambiase A. Multidisciplinary Clinical Study on Retinal, Circulatory, and Respiratory Damage in Smoking-Dependent Subjects. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:347. [PMID: 40005463 PMCID: PMC11857288 DOI: 10.3390/medicina61020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Cigarette smoking is a widely prevalent risk factor in the global population, despite its well-recognized systemic impact. In this pilot study, an association was hypothesized between alterations in hemorheological and respiratory characteristics and damage at the chorioretinal level, considering that traditional cigarette smoking may increase oxidative stress, platelet activation, and thrombotic phenomena at the systemic level. Fundoscopy can provide information about the characteristics of the cerebral district and the entire circulatory system. Therefore, the aim of this research was to evaluate the impact of cigarette smoking on chorioretinal vascularization and pulmonary and blood parameters through investigations with optical coherence tomography angiography (OCTA), spirometry, and the total thrombus formation analysis system (T-TAS). Materials and Methods: Thirty subjects were recruited, divided into 20 traditional cigarette smokers (SMs) and 10 non-SMs, who underwent a comprehensive ocular examination, including OCTA. Spirometric evaluation and blood sampling were also performed on both groups to study pulmonary functional capacity, as well as T-TAS. Results: An analysis of the obtained data confirmed the systemic impact of smoking, evidenced by an increase in T-TAS and a decrease in forced expiratory volume in 1 s expressed in liters (FEV1 L) in SMs compared to the non-SMs group. Additionally, OCTA revealed a statistically significant alteration in macular vascular density (FD) in the right eye (RE) of the examined SMs. The other parameters evaluated did not show statistically significant differences. Conclusions: It is believed that FD, FEV1, and T-TAS may be promising values in correlating the alterations observed in SMs, as highlighted by the changes detected with OCTA, spirometry, and hemorheological data. Further research is needed to confirm and expand the results already obtained and to evaluate the systemic vascular damage and oxidative stress caused by tobacco consumption.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| | - Annarita Vestri
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy;
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| | - Mattia D’Andrea
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| | - Matteo Calbucci
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| | - Federico Pasqualotto
- Antismoking Center UOC Pneumology, I Clinical Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.P.); (S.E.)
| | - Serena Esposito
- Antismoking Center UOC Pneumology, I Clinical Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.P.); (S.E.)
| | - Alessandra D’Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 04100 Latina, Italy;
| | - Valentina Castellani
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Sandra Cinzia Carlesimo
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| | | | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Piazz.le A. Moro 5, 00185 Rome, Italy; (M.G.); (M.D.); (M.C.); (S.C.C.); (A.L.)
| |
Collapse
|
3
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
4
|
Carnevale R, Nocella C, Marocco R, Zuccalà P, Carraro A, Picchio V, Oliva A, Cangemi R, Miele MC, De Angelis M, Cancelli F, Casciaro GE, Cristiano L, Pignatelli P, Frati G, Venditti M, Pugliese F, Mastroianni CM, Violi F, Ridola L, Del Borgo C, Palmerio S, Valenzi E, Carnevale R, Alvaro D, Lichtner M, Cardinale V. Association Between NOX2-Mediated Oxidative Stress, Low-Grade Endotoxemia, Hypoalbuminemia, and Clotting Activation in COVID-19. Antioxidants (Basel) 2024; 13:1260. [PMID: 39456513 PMCID: PMC11505442 DOI: 10.3390/antiox13101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Low-grade endotoxemia by lipopolysaccharide (LPS) has been detected in COVID-19 and could favor thrombosis via eliciting a pro-inflammatory and pro-coagulant state. The aim of this study was to analyze the mechanism accounting for low-grade endotoxemia and its relationship with oxidative stress and clotting activation thrombosis in COVID-19. We measured serum levels of sNOX2-dp, zonulin, LPS, D-dimer, and albumin in 175 patients with COVID-19, classified as having or not acute respiratory distress syndrome (ARDS), and 50 healthy subjects. Baseline levels of sNOX2-dp, LPS, zonulin, D-dimer, albumin, and hs-CRP were significantly higher in COVID-19 compared to controls. In COVID-19 patients with ARDS, sNOX2-dp, LPS, zonulin, D-dimer, and hs-CRP were significantly higher compared to COVID-19 patients without ARDS. Conversely, concentration of albumin was lower in patients with ARDS compared with those without ARDS and inversely associated with LPS. In the COVID-19 cohort, the number of patients with ARDS progressively increased according to sNOX2-dp and LPS quartiles; a significant correlation between LPS and sNOX2-dp and LPS and D-dimer was detected in COVID-19. In a multivariable logistic regression model, LPS/albumin levels and D-dimer predicted thrombotic events. In COVID-19 patients, LPS is significantly associated with a hypercoagulation state and disease severity. In vitro, LPS can increase endothelial oxidative stress and coagulation biomarkers that were reduced by the treatment with albumin. In conclusion, impaired gut barrier permeability, increased NOX2 activation, and low serum albumin may account for low-grade endotoxemia and may be implicated in thrombotic events in COVID-19.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
- IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Raffaella Marocco
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Paola Zuccalà
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | | | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesca Cancelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Giovanni Enrico Casciaro
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
| | | | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
- IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesco Pugliese
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Lorenzo Ridola
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Silvia Palmerio
- Centro Ricerche Cliniche di Verona (CRC), 37134 Verona, Italy;
| | | | - Rita Carnevale
- Corso di Laurea di I Livello in Infermieristica, Università Sapienza di Roma–Polo Pontino–Sede di Terracina, 04019 Terracina, Italy;
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| |
Collapse
|
5
|
Ahmed A, Patil G, Sonkar VK, Jensen M, Streeter J, Dayal S. Loss of endogenous Nox2-NADPH oxidase does not prevent age-induced platelet activation and arterial thrombosis in mice. Res Pract Thromb Haemost 2024; 8:102597. [PMID: 39582807 PMCID: PMC11585761 DOI: 10.1016/j.rpth.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/26/2024] Open
Abstract
Background Reactive oxygen species are known to contribute to platelet hyperactivation and thrombosis during aging; however, the mechanistic contribution of the specific oxidative pathway remains elusive. Objectives We hypothesized that during aging, endogenous Nox2-NADPH oxidase contributes to platelet reactive oxygen species accumulation and that loss of Nox2 will protect from platelet activation and thrombosis. Methods We studied littermates of Nox2 knockout (Nox2-KO) and -wild-type (Nox2-WT) mice at young (3-4 months) and old (18-20 months) age. Within platelets, we examined the expression of subunits of NADPH oxidase and enzyme activity, oxidant levels, activation markers, aggregation, and secretion. We also assessed susceptibility to in vivo thrombosis in 2 experimental models. Results While aged Nox2-WT mice displayed increased mRNA levels for Nox2, aged Nox2-KO mice showed an increase in Nox4 mRNA. However, neither the protein levels of several subunits nor the activity of NADPH oxidase were found to be altered by age or genotype. Both aged Nox2-WT and aged Nox2-KO mice exhibited similar enhancement in levels of platelet oxidants, granule release, αIIbβ3 activation, annexin V binding, aggregation and secretion, and a greater susceptibility to platelet-induced pulmonary thrombosis compared with young mice. In a photochemical injury model, adoptive transfer of platelets from aged Nox2-WT or Nox2-KO mice to the aged host mice resulted in a similar time to develop occlusive thrombus in the carotid artery. These findings suggest that loss of endogenous Nox2 does not protect against age-related platelet activation and arterial thrombosis in mice. Conclusion We conclude that Nox2 is not an essential mediator of prothrombotic effects associated with aging.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vijay K. Sonkar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Melissa Jensen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jennifer Streeter
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Iowa City VA Healthcare System, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Ajoolabady A, Pratico D, Ren J. Angiotensin II: Role in oxidative stress, endothelial dysfunction, and diseases. Mol Cell Endocrinol 2024; 592:112309. [PMID: 38852657 DOI: 10.1016/j.mce.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Angiotensin II (Ang II) is a protein hormone capable of physiologically regulating blood pressure through diverse mechanisms. Ang II is mainly produced by the liver at homeostatic levels. However, excessive production of Ang II is closely associated with a series of pathological events in the body. The endothelial dysfunction is one of these pathological events that can drive vascular anomalies. The excessive exposure of endothelial cells (ECs) to Ang II may induce endothelial dysfunction via diverse mechanisms. One of these mechanisms is Ang II-mediated mitochondrial oxidative stress. In this mini-review, we aimed to discuss the molecular mechanisms of Ang II-mediated endothelial dysfunction through mitochondrial oxidative stress and the protective role of nitric oxide in ECs. Deciphering these mechanisms may disclose novel therapeutic strategies to prevent endothelial dysfunction and associated diseases induced by elevated leves of Ang II in the blood.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Yu Y, Su FF, Xu C. Maximakinin reversed H 2O 2 induced oxidative damage in rat cardiac H9c2 cells through AMPK/Akt and AMPK/ERK1/2 signaling pathways. Biomed Pharmacother 2024; 174:116489. [PMID: 38513595 DOI: 10.1016/j.biopha.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China.
| |
Collapse
|
8
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
9
|
Liu H, Lu Q. Fisetin Alleviates Inflammation and Oxidative Stress in Deep Vein Thrombosis via MAPK and NRF2 Signaling Pathway. Int J Mol Sci 2024; 25:3724. [PMID: 38612535 PMCID: PMC11011948 DOI: 10.3390/ijms25073724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Oxidative stress and inflammation play pivotal roles in the progression of deep vein thrombosis (DVT). Fisetin has demonstrated promising pharmacological features; however, its underlying mechanisms in DVT remain elusive. In our study, we investigated the effects and underlying mechanisms of Fisetin on a DVT mouse model. The protective effects of Fisetin on DVT were evaluated by comparing the size of thrombosis and detecting the mRNA expression levels of pro-inflammatory cytokines. After that, the biological processes were studied via transcriptomics after Fisetin administration. The antioxidant effect was evaluated and explained via NRF2 signaling pathway. Finally, the anti-inflammatory effect was explained according to KEGG analysis and the final mechanism was verified via Western blot. Our results found that the mRNA expression levels of pro-inflammatory cytokines were inhibited by Fisetin. Moreover, transcriptomic studies suggested that MAPK signaling pathway may be associated with the anti-inflammatory activity of Fisetin. Then, we confirmed that Fisetin administration significantly inhibited the activation of typical pro-inflammatory signaling pathways via Western blot. Finally, the results of Western blot showed that Fisetin significantly activated NRF2 signaling pathway and induced the expression of downstream antioxidant enzymes. Our findings suggested that Fisetin exhibits potential therapeutic effects on DVT through its ability to attenuate inflammation and oxidative stress. The underlying mechanism may involve the suppression of MAPK-mediated inflammatory signaling pathway and activation of NRF2-mediated antioxidant signaling pathway.
Collapse
Affiliation(s)
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, College of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China;
| |
Collapse
|
10
|
Xu W, Xiang X, Lin L, Gong ZH, Xiao WJ. l-Theanine delays d-galactose-induced senescence by regulating the cell cycle and inhibiting apoptosis in rat intestinal cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2073-2084. [PMID: 37919877 DOI: 10.1002/jsfa.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Intestinal senescence is associated with several aging-related diseases. l-Theanine (LTA) has demonstrated strong potential as an antioxidant and antisenescence agent. This study investigated the regulatory effect of LTA on cellular senescence using an in vitro model of d-galactose (D-Gal)-induced senescence in the rat epithelial cell line, intestinal epithelioid cell-6 (IEC-6). RESULTS Treatment of IEC-6 cells with 40 mg/mL D-Gal for 48 h resulted in the successful development of the senescent cell model. Compared with D-Gal alone, both LTA preventive and delayed intervention increased cell viability and the ratio of JC-1 monomers to aggregates, increased the antioxidant capacity, and decreased the advanced glycation end product (AGE) levels and the overall number of senescent cells. Preventive and delayed intervention with 1000 μM LTA alleviated the D-Gal-induced cell cycle arrest by regulating p38, p53, CDK4, and CDK6 expression at the mRNA and protein levels, and further induced CycD1 proteins. Moreover, LTA preventive intervention reduced apoptosis to a greater degree than delayed intervention by upregulating the expression of the receptors of AGEs, Bax, Bcl-2, and NF-κB at the mRNA and protein levels. CONCLUSION Our findings indicate that LTA intervention could attenuate senescence in IEC-6 cells by regulating the cell cycle and inhibiting apoptosis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Xi Xiang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Li W, Lv BM, Quan Y, Zhu Q, Zhang HY. Associations between Serum Mineral Nutrients, Gut Microbiota, and Risk of Neurological, Psychiatric, and Metabolic Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2024; 16:244. [PMID: 38257137 PMCID: PMC10818407 DOI: 10.3390/nu16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recent observational studies have reported associations between serum mineral nutrient levels, gut microbiota composition, and neurological, psychiatric, and metabolic diseases. However, the causal effects of mineral nutrients on gut microbiota and their causal associations with diseases remain unclear and require further investigation. This study aimed to identify the associations between serum mineral nutrients, gut microbiota, and risk of neurological, psychiatric, and metabolic diseases using Mendelian randomization (MR). We conducted an MR study using the large-scale genome-wide association study (GWAS) summary statistics of 5 serum mineral nutrients, 196 gut microbes at the phylum, order, family, and genus levels, and a variety of common neurological, psychiatric, and metabolic diseases. Initially, the independent causal associations of mineral nutrients and gut microbiota with diseases were examined by MR. Subsequently, the causal effect of mineral nutrients on gut microbiota was estimated to investigate whether specific gut microbes mediated the association between mineral nutrients and diseases. Finally, we performed sensitivity analyses to assess the robustness of the study results. After correcting for multiple testing, we identified a total of 33 causal relationships among mineral nutrients, gut microbiota, and diseases. Specifically, we found 4 causal relationships between 3 mineral nutrition traits and 3 disease traits, 15 causal associations between 14 gut microbiota traits and 6 disease traits, and 14 causal associations involving 4 mineral nutrition traits and 15 gut microbiota traits. Meanwhile, 118 suggestive associations were identified. The current study reveals multiple causal associations between serum mineral nutrients, gut microbiota, risk of neurological, psychiatric, and metabolic diseases, and potentially provides valuable insights for subsequent nutritional therapies.
Collapse
Affiliation(s)
- Wang Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| |
Collapse
|
12
|
Li S, Watson D, Jorgenson A, Adelekan Z, Tang W, Garland K, Zupancich L, Dassenko D, Edens RE, Overman DM, Huntley MT. Novel Metabolites Are Associated With Thrombosis After Cardiac Surgery in Children With Congenital Heart Disease. Arterioscler Thromb Vasc Biol 2023; 43:2231-2239. [PMID: 37767707 DOI: 10.1161/atvbaha.123.319181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Thrombosis is a major complication after cardiac surgery in children with congenital heart disease. The mechanisms underlying thrombosis development remain poorly understood. We aimed to identify novel circulating metabolites before cardiac surgery that are associated with thrombosis after surgery in children with congenital heart disease. METHODS In this prospective cohort study, all blood samples were drawn right before surgical incision and after the induction of anesthesia, and plasma was separated immediately under 4 °C. Untargeted metabolomic data were measured by Metabolon in plasma from children (age range, 0 days-18 years) with congenital heart disease undergoing cardiac surgery. The primary outcome was thrombosis within 30 days of surgery or before discharge. Associations of individual metabolites with thrombosis were assessed with logistic regression with false discovery rate correction for multiple comparison and adjustment for clinical characteristics; elastic net regression was used to select a prediction model. RESULTS Out of 1115 metabolites measured in samples from 203 children, 776 met the quality control criteria. In total, 25 children (12.3%) developed thrombosis. Among the 776 metabolites, 175 were significantly associated with thrombosis (false discovery rate Q<0.05). The top 3 metabolites showing the strongest associations with thrombosis were eicosapentaenoate, stearidonate, and andro steroid monosulfate C19H28O6S (false discovery rate, 0.01 for all). Pathway analysis showed that the pathways of nicotinate and nicotinamide metabolism and glycerophospholipid metabolism were enriched (false discovery rate, 0.003 for both) and had significant impact on the development of thrombosis. In elastic net regression analysis, the area under the receiver operating-characteristic curve of a prediction model for thrombosis was 0.969 in the training sample (70% of the total sample) and 0.833 in the testing sample (the remaining 30%). CONCLUSIONS We have identified promising novel metabolites and metabolic pathways associated with thrombosis. Future studies are warranted to confirm these findings and examine the mechanistic pathways to thrombosis.
Collapse
Affiliation(s)
- Shengxu Li
- Children's Minnesota Research Institute (S.L., D.W., A.J., Z.A.), Children's Minnesota, Minneapolis
- Cardiovascular and Critical Care Research Center (S.L., D.M.O.), Children's Minnesota, Minneapolis
| | - Dave Watson
- Children's Minnesota Research Institute (S.L., D.W., A.J., Z.A.), Children's Minnesota, Minneapolis
| | - Alissa Jorgenson
- Children's Minnesota Research Institute (S.L., D.W., A.J., Z.A.), Children's Minnesota, Minneapolis
| | - Zainab Adelekan
- Children's Minnesota Research Institute (S.L., D.W., A.J., Z.A.), Children's Minnesota, Minneapolis
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis (W.T.)
| | - Kathleen Garland
- Hematology and Oncology (K.G.), Children's Minnesota, Minneapolis
| | - Leah Zupancich
- The Children's Heart Clinic, Minneapolis, MN (L.Z., D.M.O., M.T.H.)
| | - David Dassenko
- Division of Critical Care (D.D.), Children's Minnesota, Minneapolis
- Mayo Clinic-Children's Minnesota Cardiovascular Collaborative (D.D., D.M.O., M.T.H.)
| | - R Erik Edens
- Oklahoma Children's Hospital, Oklahoma University, Oklahoma City (R.E.E)
| | - David M Overman
- Cardiovascular and Critical Care Research Center (S.L., D.M.O.), Children's Minnesota, Minneapolis
- The Children's Heart Clinic, Minneapolis, MN (L.Z., D.M.O., M.T.H.)
- Mayo Clinic-Children's Minnesota Cardiovascular Collaborative (D.D., D.M.O., M.T.H.)
| | - Marnie T Huntley
- The Children's Heart Clinic, Minneapolis, MN (L.Z., D.M.O., M.T.H.)
- Mayo Clinic-Children's Minnesota Cardiovascular Collaborative (D.D., D.M.O., M.T.H.)
| |
Collapse
|
13
|
Yang M, Chiu J, Scartelli C, Ponzar N, Patel S, Patel A, Ferreira RB, Keyes RF, Carroll KS, Pozzi N, Hogg PJ, Smith BC, Flaumenhaft R. Sulfenylation links oxidative stress to protein disulfide isomerase oxidase activity and thrombus formation. J Thromb Haemost 2023; 21:2137-2150. [PMID: 37037379 PMCID: PMC10657653 DOI: 10.1016/j.jtha.2023.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Joyce Chiu
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sachin Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Robert F Keyes
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Philip J Hogg
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Brian C Smith
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Cheng C, Liu K, Shen F, Zhang J, Xie Y, Li S, Hou Y, Bai G. Astragaloside IV targets PRDX6, inhibits the activation of RAC subunit in NADPH oxidase 2 for oxidative damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154795. [PMID: 37030053 DOI: 10.1016/j.phymed.2023.154795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Radix Astragali Mongolici, as a traditional Chinese medicine, is widely used in the treatment of qi deficiency, viral or bacterial infection, inflammation and cancer. Astragaloside IV (AST), a key active compound in Radix Astragali Mongolici, has been shown to reduce disease progression by inhibiting oxidative stress and inflammation. However, the specific target and mechanism of action of AST in improving oxidative stress are still unclear. PURPOSE This study aims to explore the target and mechanism of AST to improve oxidative stress, and to explain the biological process of oxidative stress. METHODS AST functional probes were designed to capture target proteins and combined with protein spectrum to analyze target proteins. Small molecule and protein interaction technologies were used to verify the mode of action, while computer dynamics simulation technology was used to analyze the site of interaction with the target protein. The pharmacological activity of AST in improving oxidative stress was evaluated in a mouse model of acute lung injury induced by LPS. Additionally, pharmacological and serial molecular biological approaches were used to explore the underlying mechanism of action. RESULTS AST inhibits PLA2 activity in PRDX6 by targeting the PLA2 catalytic triad pocket. This binding alters the conformation and structural stability of PRDX6 and interferes with the interaction between PRDX6 and RAC, hindering the activation of the RAC-GDI heterodimer. Inactivation of RAC prevents NOX2 maturation, attenuates superoxide anion production, and improves oxidative stress damage. CONCLUSION The findings of this research indicate that AST impedes PLA2 activity by acting on the catalytic triad of PRDX6. This, in turn, disrupts the interaction between PRDX6 and RAC, thereby hindering the maturation of NOX2 and diminishing the oxidative stress damage.
Collapse
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Suyun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
15
|
Trostchansky A, Alarcon M. An Overview of Two Old Friends Associated with Platelet Redox Signaling, the Protein Disulfide Isomerase and NADPH Oxidase. Biomolecules 2023; 13:biom13050848. [PMID: 37238717 DOI: 10.3390/biom13050848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress participates at the baseline of different non-communicable pathologies such as cardiovascular diseases. Excessive formation of reactive oxygen species (ROS), above the signaling levels necessary for the correct function of organelles and cells, may contribute to the non-desired effects of oxidative stress. Platelets play a relevant role in arterial thrombosis, by aggregation triggered by different agonists, where excessive ROS formation induces mitochondrial dysfunction and stimulate platelet activation and aggregation. Platelet is both a source and a target of ROS, thus we aim to analyze both the platelet enzymes responsible for ROS generation and their involvement in intracellular signal transduction pathways. Among the proteins involved in these processes are Protein Disulphide Isomerase (PDI) and NADPH oxidase (NOX) isoforms. By using bioinformatic tools and information from available databases, a complete bioinformatic analysis of the role and interactions of PDI and NOX in platelets, as well as the signal transduction pathways involved in their effects was performed. We focused the study on analyzing whether these proteins collaborate to control platelet function. The data presented in the current manuscript support the role that PDI and NOX play on activation pathways necessary for platelet activation and aggregation, as well as on the platelet signaling imbalance produced by ROS production. Our data could be used to design specific enzyme inhibitors or a dual inhibition for these enzymes with an antiplatelet effect to design promising treatments for diseases involving platelet dysfunction.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marcelo Alarcon
- Thrombosis Research Center, Universidad de Talca, Talca 3460000, Chile
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
16
|
Hernández-García S, Flores-García M, Maldonado-Vega M, Hernández G, Meneses-Melo F, López-Vanegas NC, Calderón-Salinas JV. Adaptive changes in redox response and decreased platelet aggregation in lead-exposed workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104134. [PMID: 37116628 DOI: 10.1016/j.etap.2023.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Chronic lead exposure can generate pro-oxidative and pro-inflammatory conditions in the blood, related to high platelet activation and aggregation, altering cell functions. We studied ADP-stimulated aggregation and the oxidant/antioxidant system of platelets from chronically lead-exposed workers and non-exposed workers. Platelet aggregation was low in lead-exposed workers (62 vs. 97%), who had normal platelet counts and showed no clinical manifestations of hemostatic failure. ADP-activated platelets from lead-exposed workers failed to increase superoxide release (3.3 vs. 6.6 µmol/g protein), had low NADPH concentration (60 vs. 92 nmol/mg protein), high concentration of hydrogen peroxide (224 vs. 129 nmol/mg protein) and high plasma PGE2 concentration (287 vs. 79 pg/mL). Altogether, those conditions, on the one hand, could account for the low platelet aggregation and, on the other, indicate an adaptive mechanism for the oxidative status of platelets and anti-aggregating molecules to prevent thrombotic problems in the pro-oxidant and pro-inflammatory environment of chronic lead exposure.
Collapse
Affiliation(s)
- Sandra Hernández-García
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | - Mirthala Flores-García
- Molecular Biology Department, Instituto Nacional de Cardiología "Dr. Ignacio Chávez", Mexico City, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
17
|
Hu X, Zhao P, Zhang J, Zhu Y, Zhou W, Hong K, Sun R, Wang Y, Lu Y, Liu Y. Ultrasound-assisted biomimetic nanobubbles for targeted treatment of atherosclerosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102682. [PMID: 37105342 DOI: 10.1016/j.nano.2023.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Cardiovascular disease caused by atherosclerosis remains the main reason of death in the worldwide scale. Although oxidative stress plays a key role in the initiation and progression of atherosclerosis, current antioxidant drugs have limited efficacy. To resolve this problem, we constructed Nox2 siRNA-loaded nanobubbles (PNBs-siNox2) coated with platelet membranes to utilize their antioxidant stress activity and targeting effect for atherosclerosis treatment. After platelet membranes modification, the capacity of PNB to target collagen, foam cells, or human umbilical vein endothelial cells (HUVECs) was significantly increased. Moreover, our study demonstrated that under ultrasonic irradiation, biomimetic nanobubbles were more effective at targeting atherosclerotic plaques and delivering genes into cells. In the present study, we provided a biomimetic gene loading strategy based on nanoplatform for noninvasive, precise and efficient therapy of atherosclerosis, which further improved the efficiency of gene transfection and effectively slowed the progression of atherosclerotic plaques when combined with ultrasound.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Jun Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Ying Zhu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Wei Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Ruiying Sun
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Yuxue Wang
- Department of Ultrasound, The Affifiliated Hospital of Yunnan University, Kunming 650021, China
| | - Yongping Lu
- Department of Ultrasound, The Affifiliated Hospital of Yunnan University, Kunming 650021, China.
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China.
| |
Collapse
|
18
|
Antioxidant and Antithrombotic Activities of Kenaf Seed (Hibiscus cannabinus) Coat Ethanol Extract in Sprague Dawley Rats. Appl Biochem Biotechnol 2023; 195:772-800. [PMID: 36173546 DOI: 10.1007/s12010-022-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.
Collapse
|
19
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J Biochem Cell Biol 2023; 154:106346. [PMID: 36538984 DOI: 10.1016/j.biocel.2022.106346] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants (Basel) 2022; 11:antiox11061049. [PMID: 35739946 PMCID: PMC9220077 DOI: 10.3390/antiox11061049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Avocado seed and peel are the main by-products from avocado industrialisation, and account for nearly 30% of fruit weight. Although they are usually discarded, their high phenolic content has been deeply associated with several nutritional and functional benefits. Thus, for a comprehensive analytical evaluation of both semi-industrial extracts, various steps have been developed: tentative characterisation and quantification of the phenolic composition using HPLC-ESI-qTOF-MS, determination of TPC and antioxidant activity by Folin–Ciocalteu, FRAP, TEAC and ORAC methods, evaluation of scavenging capacity against different ROS and measurement of the enzymatic inhibitory potential against potentially harmful enzymes. Finally, their bioactive potential was tested in a human platelet model where antiaggregatory activity was measured. Hence, 48 different compounds were identified, where flavonoids and procyanidins were the most representative groups. The higher TPC was found in avocado peel extract (190 ± 3 mg/g), which showed more antioxidant power and more capacity to decrease ROS generation than seed extract (60 ± 2 mg/g). In addition, both extracts showed enzymatic inhibition, especially against hyaluronidase, xanthine oxidase and acetylcholinesterase. Lastly, avocado peel was proven to inhibit platelet aggregation with significant results at 1, 0.75 and 0.5 mg/mL, where the extract showed reducing effects on agonists’ expression such as p-selectin or GPIIb/IIIa complex. These results demonstrate that both semi-industrial extracts—above all, avocado peel—have an interesting potential to be exploited as a natural by-product with antioxidant properties with multiple applications for the prevention of different pathologies.
Collapse
|
24
|
Applying global longitudinal strain in assessing cardiac dysfunction after radiotherapy among breast cancer patients: a systemic review and meta-analysis. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
26
|
Lopes-Pires ME, Frade-Guanaes JO, Quinlan GJ. Clotting Dysfunction in Sepsis: A Role for ROS and Potential for Therapeutic Intervention. Antioxidants (Basel) 2021; 11:88. [PMID: 35052592 PMCID: PMC8773140 DOI: 10.3390/antiox11010088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is regarded as one of the main causes of death among the critically ill. Pathogen infection results in a host-mediated pro-inflammatory response to fight infection; as part of this response, significant endogenous reactive oxygen (ROS) and nitrogen species (RNS) production occurs, instigated by a variety of sources, including activated inflammatory cells, such as neutrophils, platelets, and cells from the vascular endothelium. Inflammation can become an inappropriate self-sustaining and expansive process, resulting in sepsis. Patients with sepsis often exhibit loss of aspects of normal vascular homeostatic control, resulting in abnormal coagulation events and the development of disseminated intravascular coagulation. Diagnosis and treatment of sepsis remain a significant challenge for healthcare providers globally. Targeting the drivers of excessive oxidative/nitrosative stress using antioxidant treatments might be a therapeutic option. This review focuses on the association between excessive oxidative/nitrosative stress, a common feature in sepsis, and loss of homeostatic control at the level of the vasculature. The literature relating to potential antioxidants is also described.
Collapse
Affiliation(s)
- Maria Elisa Lopes-Pires
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | | | - Gregory J. Quinlan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
27
|
Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, Thippeswamy T. Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress. Antioxidants (Basel) 2021; 11:61. [PMID: 35052568 PMCID: PMC8773289 DOI: 10.3390/antiox11010061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diisopropylfluorophosphate (DFP), an organophosphate nerve agent (OPNA), exposure causes status epilepticus (SE) and epileptogenesis. In this study, we tested the protective effects of saracatinib (AZD0530), a Src kinase inhibitor, in mixed-sex or male-only Sprague Dawley rats exposed to 4-5 mg/kg DFP followed by 2 mg/kg atropine and 25 mg/kg 2-pralidoxime. Midazolam (3 mg/kg) was given to the mixed-sex cohort (1 h post-DFP) and male-only cohort (~30 min post-DFP). Saracatinib (20 mg/kg, oral, daily for 7 days) or vehicle was given two hours later and euthanized eight days or ten weeks post-DFP. Brain immunohistochemistry (IHC) showed increased microgliosis, astrogliosis, and neurodegeneration in DFP-treated animals. In the 10-week post-DFP male-only group, there were no significant differences between groups in the novel object recognition, Morris water maze, rotarod, or forced swim test. Brain IHC revealed significant mitigation by saracatinib in contrast to vehicle-treated DFP animals in microgliosis, astrogliosis, neurodegeneration, and nitro-oxidative stressors, such as inducible nitric oxide synthase, GP91phox, and 3-Nitrotyrosine. These findings suggest the protective effects of saracatinib on brain pathology seem to depend on the initial SE severity. Further studies on dose optimization, including extended treatment regimen depending on the SE severity, are required to determine its disease-modifying potential in OPNA models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences and Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA; (M.G.); (M.P.); (L.W.); (K.D.); (M.G.); (C.G.-E.)
| |
Collapse
|
28
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
29
|
Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, Imran M, Alshammari MK, Alshehri MM, Harshan AA, Alanazi A, Alhazmi BD, Sreeharsha N. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals (Basel) 2021; 14:ph14100970. [PMID: 34681194 PMCID: PMC8539940 DOI: 10.3390/ph14100970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.
Collapse
Affiliation(s)
- Archana Adhikari
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.M.B.A.); (M.C.)
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Manodeep Chakraborty
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
- Correspondence: (S.M.B.A.); (M.C.)
| | - Gayatri Thapa
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Nihar Ranjan Bhuyan
- Department of Pharmaceutical Analysis, Himalayan Pharmacy Institute, Majhitar, Rangpo 737136, Sikkim, India;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin 39745, Saudi Arabia;
| | - Abeer Alanazi
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| |
Collapse
|
30
|
An L, Chopp M, Zacharek A, Shen Y, Chen Z, Qian Y, Li W, Landschoot-Ward J, Liu Z, Venkat P. Cardiac Dysfunction in a Mouse Vascular Dementia Model of Bilateral Common Carotid Artery Stenosis. Front Cardiovasc Med 2021; 8:681572. [PMID: 34179145 PMCID: PMC8225957 DOI: 10.3389/fcvm.2021.681572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cardiac function is associated with cognitive function. Previously, we found that stroke and traumatic brain injury evoke cardiac dysfunction in mice. In this study, we investigate whether bilateral common carotid artery stenosis (BCAS), a model that induces vascular dementia (VaD) in mice, induces cardiac dysfunction. Methods: Late-adult (6-8 months) C57BL/6J mice were subjected to sham surgery (n = 6) or BCAS (n = 8). BCAS was performed by applying microcoils (0.16 mm internal diameter) around both common carotid arteries. Cerebral blood flow and cognitive function tests were performed 21-28 days post-BCAS. Echocardiography was conducted in conscious mice 29 days after BCAS. Mice were sacrificed 30 days after BCAS. Heart tissues were isolated for immunohistochemical evaluation and real-time PCR assay. Results: Compared to sham mice, BCAS in mice significantly induced cerebral hypoperfusion and cognitive dysfunction, increased cardiac hypertrophy, as indicated by the increased heart weight and the ratio of heart weight/body weight, and induced cardiac dysfunction and left ventricular (LV) enlargement, indicated by a decreased LV ejection fraction (LVEF) and LV fractional shortening (LVFS), increased LV dimension (LVD), and increased LV mass. Cognitive deficits significantly correlated with cardiac deficits. BCAS mice also exhibited significantly increased cardiac fibrosis, increased oxidative stress, as indicated by 4-hydroxynonenal and NADPH oxidase-2, increased leukocyte and macrophage infiltration into the heart, and increased cardiac interleukin-6 and thrombin gene expression. Conclusions: BCAS in mice without primary cardiac disease provokes cardiac dysfunction, which, in part, may be mediated by increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lulu An
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
31
|
Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. The comparison of oxidative markers between Covid-19 patients and healthy subjects. Arch Med Res 2021; 52:843-849. [PMID: 34154831 PMCID: PMC8180845 DOI: 10.1016/j.arcmed.2021.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Aim and Background Covid-19 has been as an important human infectious disease that has affected several countries. Cytokine storm has major role is Covid-19 pathogenesis. The association between inflammation and oxidative stress is well stablished. In this article, we aim to assess oxidative stress markers in Covid-19 patients compare to the healthy subjects. Method A total of 48 persons (24 with Covid-19 and 24 controls) were evaluated in this research. Serum oxidative stress markers including Malondialdehyde (MDA), total oxidant status (TOS), activity of catalase (CAT) and super oxide dismutase (SOD) were measured alongside routine laboratory tests. Results Patients group were divided into ICU and Non-ICU groups. ESR, CRP and serum level of ferritin were significantly higher in case group. Serum level of albumin was significantly lower in Covid-19 patients. Serum MDA and TOS was significantly increased in Covid-19 patients. Also, Covid-19 patients had higher serum activity of CAT and GPX. Conclusion Oxidative stress markers are significantly elevated in Covid-19 patients. This may have significant role in mechanism of disease development. In the fight against Covid-19, as a global struggle, all possible treatments demand more attention. So, Covid-19 patients may benefit from strategies for reducing or preventing oxidative stress.
Collapse
Affiliation(s)
- Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Bahram Souri
- Department of Infectious Disease, Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences. Hamadan, Iran.
| |
Collapse
|
32
|
Goncharov MD, Savchenko AA, Grinshtein YI, Gvozdev II, Kosinova AA, Mongush TS. Aspirin Resistance as a Result of Impaired Interaction of Platelets and Neutrophils in Patients with Coronary Heart Disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-01-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To study the relationship between the levels of synthesis of reactive oxygen species (ROS) by platelets and neutrophils in patients with coronary heart disease (CHD) before and after coronary artery bypass grafting (CABG), depending on sensitivity to acetylsalicylic acid (ASA).Material and methods. The study included 95 patients with coronary artery disease who are indicated for CABG surgery. The control group consisted of 30 healthy donors. The antiplatelet therapy was stopped for at least 5 days before CABG. In the postoperative period, from the first day, all patients were received 100 mg of an enteric form of acetylsalicylic acid (ASA). Resistance to ASA was determined at the level of platelet aggregation with arachidonic acid ≥20% by optical agregometry at least at one observation point: before CABG, on 1-3 day and on 8-10 day after surgery. We evaluated the spontaneous and induced lucigenin-dependent chemiluminescence (CL) of platelets (ADP induction) and neutrophils (zymosan induction) by the exit time to maximum intensity (Tmax), maximum intensity (Imax) and area (S) under the CL curve.Results. 70.5% sensitive (sASA) and 29.5% resistant (rASA) to ASA patients were revealed. Prior to CABG, in sASA patients, the Imax of spontaneous and zymosan-induced neutrophil CL and CL platelet activity was increased relative to control values. Tmax of spontaneous platelet CL, Imax and S under the ADP-induced platelet CL curve were lower in sASA patients, if to compare with rASA patients. On the 1st and 8-10th day after CABG in sASA patients, the CL indicators of neutrophil and platelet activity also remained elevated compared to control values. On the 1st day after CABG decreased levels of S under the spontaneous CL curve of neutrophils in rASA patients was established compared with sASA patients, and increased levels of Imax and S under the curve of induced neutrophil CL were detected in comparison with the control range. In rASA patients, the values of Tmax of spontaneous platelet CL decreased in relation to the values detected in the control group and sASA patients. On the 8–10th day after CABG, most indicators of spontaneous and zymosan-induced CL neutrophils in rASA patients were also increased compared to control values. In rASA patients a positive correlation of Imax-induced CL was found (r=0.83) on the 1st day after CABG and negative correlations of Tmax of spontaneous CL (r=- 0.75) and S under the curve induced CL (r=-0.70) on the 8-10th day were detected between platelets and neutrophils.Conclusion. In sASA patients with coronary heart disease before and after CABG, a high level of synthesis of superoxide radical by neutrophils and platelets was detected. The relationship between the levels of the synthesis of superoxide radical by neutrophils and platelets was found only after CABG in rASA patients. Increased synthesis of superoxide radical due to metabolic and regulatory relationships in neutrophils and platelets stimulates pro-inflammatory processes in coronary artery disease and determines the sensitivity of platelets to ASA.
Collapse
Affiliation(s)
- M. D. Goncharov
- Federal Center of Cardiovascular Surgery;
Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - A. A. Savchenko
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North
| | - Yu. I. Grinshtein
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University;Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - I. I. Gvozdev
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North
| | - A. A. Kosinova
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - T. S. Mongush
- Federal Center of Cardiovascular Surgery;
Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| |
Collapse
|
33
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
34
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Gąsecka A, Rogula S, Szarpak Ł, Filipiak KJ. LDL-Cholesterol and Platelets: Insights into Their Interactions in Atherosclerosis. Life (Basel) 2021; 11:39. [PMID: 33440673 PMCID: PMC7826814 DOI: 10.3390/life11010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis and its complications, including acute coronary syndromes, are the major cause of death worldwide. The two most important pathophysiological mechanisms underlying atherosclerosis include increased platelet activation and increased low-density lipoproteins (LDL) concentration. In contrast to LDL, oxidized (ox)-LDL have direct pro-thrombotic properties by functional interactions with platelets, leading to platelet activation and favoring thrombus formation. In this review, we summarize the currently available evidence on the interactions between LDL-cholesterol and platelets, which are based on (i) the presence of ox-LDL-binding sites on platelets, (ii) generation of ox-LDL by platelets and (iii) the role of activated platelets and ox-LDL in atherosclerosis. In addition, we elaborate on the clinical implications of these interactions, including development of the new therapeutic possibilities. The ability to understand and modulate mechanisms governing interactions between LDL-cholesterol and platelets may offer new treatment strategies for atherosclerosis prevention.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Sylwester Rogula
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Łukasz Szarpak
- Bialystok Oncology Center, 15-027, Bialystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| | - Krzysztof J. Filipiak
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| |
Collapse
|
36
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
|
37
|
Panasenko OM, Reut VE, Borodina IV, Matyushkina DS, Ivanov VA, Grigorieva DV, Gorudko IV, Sokolov AV, Cherenkevich SN. Gallocyanine as a Fluorogen for the Identification of NADPH-Dependent Production of Superoxide Anion Radical by Blood Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Oxidative Stress and Preeclampsia-Associated Prothrombotic State. Antioxidants (Basel) 2020; 9:antiox9111139. [PMID: 33212799 PMCID: PMC7696949 DOI: 10.3390/antiox9111139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disease characterized by hypertension, proteinuria, and multi-system dysfunction. It endangers both maternal and fetal health. Although hemostasis is critical for preventing bleeding complications during pregnancy, delivery, and post-partum, PE patients often develop a severe prothrombotic state, potentially resulting in life-threatening thrombosis and thromboembolism. The cause of this thrombotic complication is multi-factorial, involving endothelial cells, platelets, adhesive ligands, coagulation, and fibrinolysis. Increasing evidence has shown that hemostatic cells and factors undergo oxidative modifications during the systemic inflammation found in PE patients. However, it is largely unknown how these oxidative modifications of hemostasis contribute to development of the PE-associated prothrombotic state. This knowledge gap has significantly hindered the development of predictive markers, preventive measures, and therapeutic agents to protect women during pregnancy. Here we summarize reports in the literature regarding the effects of oxidative stress and antioxidants on systemic hemostasis, with emphasis on the condition of PE.
Collapse
|
39
|
Chemiluminescent Analysis of Reactive Oxygen Species Synthesis by Platelets from Patients with Coronary Heart Disease. Bull Exp Biol Med 2020; 169:535-538. [PMID: 32910382 DOI: 10.1007/s10517-020-04924-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 01/05/2023]
Abstract
A novel chemiluminescent method was developed to evaluate ROS generation by platelets. This method allows measuring activities of NADPH oxidase (NOX2) and enzymes synthesizing secondary ROS (superoxide dismutase, catalase, etc.) in resting and ADP-activated platelets (inductor of platelet aggregation and ROS generation) using a small number of cells. The method was tested in the examination of patients with coronary heart disease. It was found that platelets from patients with coronary heart disease were characterized by NOX2 activation, while cell metabolism is tuned for a long-term intensive production of superoxide anion radical. The enzymes synthesizing secondary ROS were also activated, but cell metabolism could not maintain their enhanced activity for a long time.
Collapse
|
40
|
Grinshtein YI, Savchenko AA, Kosinova AA, Goncharov MD. Resistance to Acetylsalicylic Acid in Patients with Coronary Heart Disease Is the Result of Metabolic Activity of Platelets. Pharmaceuticals (Basel) 2020; 13:ph13080178. [PMID: 32752170 PMCID: PMC7466119 DOI: 10.3390/ph13080178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sensitivity to acetylsalicylic acid (ASA) is important in the treatment of patients with coronary heart disease (CHD) after coronary artery bypass grafting (CABG). Patients were divided into ASA sensitive (sASA) and ASA resistant (rASA) by the activity of platelet aggregation induced arachidonic acid (ARA) together with ASA. Induced platelet aggregation activity was studied in sASA and rASA patients with CHD before and after CABG. The level of synthesis of primary and secondary reactive oxygen species (ROS) by platelets was determined using chemiluminescent analysis. The activity of NAD- and NADP-dependent dehydrogenases in platelets was determined by the bioluminescent method. It was found that the aggregation activity of platelets depended on the sensitivity of CHD patients to ASA and decreased during postoperative ASA therapy. The most pronounced differences in metabolic parameters of platelets in sASA and rASA patients were detected by Nox2 activity. The synthesis of secondary ROS by platelets of CHD patients did not depend on the sensitivity of patients to ASA but increased during postoperative treatment with ASA. The activity of NAD(P)-dependent dehydrogenases in platelets did not differ in sASA and rASA patients with CHD.
Collapse
Affiliation(s)
- Yuriy I. Grinshtein
- Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University Named After Prof. V.F. Voyno-Yaseneckiy, 660125 Krasnoyarsk, Russia; (Y.I.G.); (A.A.S.); (M.D.G.)
| | - Andrei A. Savchenko
- Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University Named After Prof. V.F. Voyno-Yaseneckiy, 660125 Krasnoyarsk, Russia; (Y.I.G.); (A.A.S.); (M.D.G.)
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660125 Krasnoyarsk, Russia
| | - Aleksandra A. Kosinova
- Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University Named After Prof. V.F. Voyno-Yaseneckiy, 660125 Krasnoyarsk, Russia; (Y.I.G.); (A.A.S.); (M.D.G.)
- Correspondence:
| | - Maxim D. Goncharov
- Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University Named After Prof. V.F. Voyno-Yaseneckiy, 660125 Krasnoyarsk, Russia; (Y.I.G.); (A.A.S.); (M.D.G.)
| |
Collapse
|
41
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
42
|
Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice. Blood Adv 2020; 3:1272-1284. [PMID: 30995985 DOI: 10.1182/bloodadvances.2018025569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Deficiency of the Nox2 (gp91phox) catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a genetic cause of X-linked chronic granulomatous disease, a condition in which patients are prone to infection resulting from the loss of oxidant production by neutrophils. Some studies have suggested a role for superoxide derived from Nox2 NADPH oxidase in platelet activation and thrombosis, but data are conflicting. Using a rigorous and comprehensive approach, we tested the hypothesis that genetic deficiency of Nox2 attenuates platelet activation and arterial thrombosis. Our study was designed to test the genotype differences within male and female mice. Using chloromethyl-dichlorodihydrofluorescein diacetate, a fluorescent dye, as well as high-performance liquid chromatography analysis with dihydroethidium as a probe to detect intracellular reactive oxygen species (ROS), we observed no genotype differences in ROS levels in platelets. Similarly, there were no genotype-dependent differences in levels of mitochondrial ROS. In addition, we did not observe any genotype-associated differences in platelet activation, adhesion, secretion, or aggregation in male or female mice. Platelets from chronic granulomatous disease patients exhibited similar adhesion and aggregation responses as platelets from healthy subjects. Susceptibility to carotid artery thrombosis in a photochemical injury model was similar in wild-type and Nox2-deficient male or female mice. Our findings indicate that Nox2 NADPH oxidase is not an essential source of platelet ROS or a mediator of platelet activation or arterial thrombosis in large vessels, such as the carotid artery.
Collapse
|
43
|
Fan Z, Wang L, Jiang H, Lin Y, Wang Z. Platelet Dysfunction and Its Role in the Pathogenesis of Psoriasis. Dermatology 2020; 237:56-65. [PMID: 32349003 DOI: 10.1159/000505536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated inflammatory skin disease in conjunction with the systemic inflammatory process. It appears to be related to increased risks of cardiovascular disease events, especially in severe cases. The hemostatic balance is disrupted due to the prothrombotic bias in psoriasis, which might be mainly preserved by platelet hyperactivity. Platelets are also immune cells that initiate and regulate immune and inflammatory processes, except as the principal mediator of hemostasis and thrombosis, and platelet dysfunction is deeply involved in the pathogenesis of psoriasis. SUMMARY The aim of this study is to perform a review that expounds abnormal platelet function in psoriasis and explains the important role of platelets in the pathogenic mechanism of psoriasis in order to provide new targets for comprehensive medical treatment.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol 2020; 72:785-801. [PMID: 32059982 DOI: 10.1016/j.jhep.2020.01.013] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) are worldwide public health problems, affecting up to 25-30% (NAFLD), and up to 10-15% (CKD) of the general population. Recently, it has also been established that there is a strong association between NAFLD and CKD, regardless of the presence of potential confounding diseases such as obesity, hypertension and type 2 diabetes. Since NAFLD and CKD are both common diseases that often occur alongside other metabolic conditions, such as type 2 diabetes or metabolic syndrome, elucidating the relative impact of NAFLD on the risk of incident CKD presents a substantial challenge for investigators working in this research field. A growing body of epidemiological evidence suggests that NAFLD is an independent risk factor for CKD and recent evidence also suggests that associated factors such as metabolic syndrome, dysbiosis, unhealthy diets, platelet activation and processes associated with ageing could also contribute mechanisms linking NAFLD and CKD. This narrative review provides an overview of the literature on: a) the evidence for an association and causal link between NAFLD and CKD and b) the underlying mechanisms by which NAFLD (and factors strongly linked with NAFLD) may increase the risk of developing CKD.
Collapse
Affiliation(s)
- Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, UK.
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| |
Collapse
|
45
|
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, Hong Z, Liang S. Oxidative Stress in Radiation-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3579143. [PMID: 32190171 PMCID: PMC7071808 DOI: 10.1155/2020/3579143] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
There is a distinct increase in the risk of heart disease in people exposed to ionizing radiation (IR). Radiation-induced heart disease (RIHD) is one of the adverse side effects when people are exposed to ionizing radiation. IR may come from various forms, such as diagnostic imaging, radiotherapy for cancer treatment, nuclear disasters, and accidents. However, RIHD was mainly observed after radiotherapy for chest malignant tumors, especially left breast cancer. Radiation therapy (RT) has become one of the main ways to treat all kinds of cancer, which is used to reduce the recurrence of cancer and improve the survival rate of patients. The potential cause of radiation-induced cardiotoxicity is unclear, but it may be relevant to oxidative stress. Oxidative stress, an accumulation of reactive oxygen species (ROS), disrupts intracellular homeostasis through chemical modification and damages proteins, lipids, and DNA; therefore, it results in a series of related pathophysiological changes. The purpose of this review was to summarise the studies of oxidative stress in radiotherapy-induced cardiotoxicity and provide prevention and treatment methods to reduce cardiac damage.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Yang Peng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Hong Lang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Cai Xinyong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Zhiyi
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Wu Xiaocheng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Shao Liang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| |
Collapse
|
46
|
Price A, Okumura A, Haddock E, Feldmann F, Meade-White K, Sharma P, Artami M, Lipkin WI, Threadgill DW, Feldmann H, Rasmussen AL. Transcriptional Correlates of Tolerance and Lethality in Mice Predict Ebola Virus Disease Patient Outcomes. Cell Rep 2020; 30:1702-1713.e6. [PMID: 32049004 PMCID: PMC11062563 DOI: 10.1016/j.celrep.2020.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Host response to infection is a major determinant of disease severity in Ebola virus disease (EVD), but gene expression programs associated with outcome are poorly characterized. Collaborative Cross (CC) mice develop strain-dependent EVD phenotypes of differential severity, ranging from tolerance to lethality. We screen 10 CC lines and identify clinical, virologic, and transcriptomic features that distinguish tolerant from lethal outcomes. Tolerance is associated with tightly regulated induction of immune and inflammatory responses shortly following infection, as well as reduced inflammatory macrophages and increased antigen-presenting cells, B-1 cells, and γδ T cells. Lethal disease is characterized by suppressed early gene expression and reduced lymphocytes, followed by uncontrolled inflammatory signaling, leading to death. We apply machine learning to predict outcomes with 99% accuracy in mice using transcriptomic profiles. This signature predicts outcomes in a cohort of EVD patients from western Africa with 75% accuracy, demonstrating potential clinical utility.
Collapse
Affiliation(s)
- Adam Price
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Atsushi Okumura
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA; Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pryanka Sharma
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Methinee Artami
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
47
|
Signorelli SS, Vanella L, Abraham NG, Scuto S, Marino E, Rocic P. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis 2020; 11:2040622319894466. [PMID: 32076496 PMCID: PMC7003198 DOI: 10.1177/2040622319894466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral arterial disease (PAD) affects individuals particularly over 65 years old in the more advanced countries. Hemodynamic, inflammatory, and oxidative mechanisms interact in the pathophysiological scenario of this chronic arterial disease. We discuss the hemodynamic, muscle tissue, and oxidative stress (OxS) conditions related to chronic ischemia of the peripheral arteries. This review summarizes the results of evaluating both metabolic and oxidative markers, and also therapy to counteract OxS. In conclusion, we believe different pathways should be highlighted to discover new drugs to treat patients suffering from PAD.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico’, Catania, 95124, Italy
| | - Luca Vanella
- Department of Drug Science, University of Catania, Catania, Italy
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Petra Rocic
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
48
|
Sobral Filho DC, Monteiro Júnior JGDM. High Residual Platelet Activity in Response to Acetylsalicylic Acid in Acute Coronary Syndrome: A New Challenge for Antiplatelet Treatment? Arq Bras Cardiol 2019; 113:364-366. [PMID: 31621775 PMCID: PMC6882403 DOI: 10.5935/abc.20190199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
49
|
Fuentes E, Moore-Carrasco R, de Andrade Paes AM, Trostchansky A. Role of Platelet Activation and Oxidative Stress in the Evolution of Myocardial Infarction. J Cardiovasc Pharmacol Ther 2019; 24:509-520. [DOI: 10.1177/1074248419861437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial infarction, commonly known as heart attack, evolves from the rupture of unstable atherosclerotic plaques to coronary thrombosis and myocardial ischemia–reperfusion injury. A body of evidence supports a close relationship between the alterations following an ischemia–reperfusion injury-induced oxidative stress and platelet activity. Through their critical role in thrombogenesis and inflammatory responses, platelets are fully (totally) implicated from atherothrombotic plaque formation to myocardial infarction onset and expansion. However, mere platelet aggregation prevention does not offer full protection, suggesting that other antiplatelet therapy mechanisms may also be involved. Thus, the present review discusses the integrative role of platelets, oxidative stress, and antiplatelet therapy in triggering myocardial infarction pathophysiology.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Health Sciences Graduate Program and Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Andres Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
50
|
Chanpeng P, Svasti S, Paiboonsukwong K, Smith DR, Leecharoenkiat K. Platelet proteome reveals specific proteins associated with platelet activation and the hypercoagulable state in β-thalassmia/HbE patients. Sci Rep 2019; 9:6059. [PMID: 30988349 PMCID: PMC6465338 DOI: 10.1038/s41598-019-42432-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
A hypercoagulable state leading to a high risk of a thrombotic event is one of the most common complications observed in β-thalassemia/HbE disease, particularly in patients who have undergone a splenectomy. However, the hypercoagulable state, as well as the molecular mechanism of this aspect of the pathogenesis of β-thalassemia/HbE, remains poorly understood. To address this issue, fifteen non-splenectomized β-thalassemia/HbE patients, 8 splenectomized β-thalassemia/HbE patients and 20 healthy volunteers were recruited to this study. Platelet activation and hypercoagulable parameters including levels of CD62P and prothrombin fragment 1 + 2 were analyzed by flow cytometry and ELISA, respectively. A proteomic analysis was conducted to compare the platelet proteome between patients and normal subjects, and the results were validated by western blot analysis. The β-thalassemia/HbE patients showed significantly higher levels of CD62P and prothrombin fragment 1 + 2 than normal subjects. The levels of platelet activation and hypercoagulation found in patients were strongly associated with splenectomy status. The platelet proteome analysis revealed 19 differential spots which were identified to be 19 platelet proteins, which included 10 cytoskeleton proteins, thrombin generation related proteins, and antioxidant enzymes. Our findings highlight markers of coagulation activation and molecular pathways known to be associated with the pathogenesis of platelet activation, the hypercoagulable state, and consequently with the thrombosis observed in β-thalassemia/HbE patients.
Collapse
Affiliation(s)
- Puangpaka Chanpeng
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Kamonlak Leecharoenkiat
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|