1
|
Squyres GR, Newman DK. Biofilms as more than the sum of their parts: lessons from developmental biology. Curr Opin Microbiol 2024; 82:102537. [PMID: 39241276 DOI: 10.1016/j.mib.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Although our understanding of both bacterial cell physiology and the complex behaviors exhibited by bacterial biofilms is expanding rapidly, we cannot yet sum the behaviors of individual cells to understand or predict biofilm behavior. This is both because cell physiology in biofilms is different from planktonic growth and because cell behavior in biofilms is spatiotemporally patterned. We use developmental biology as a guide to examine this phenotypic patterning, discussing candidate cues that may encode spatiotemporal information and possible roles for phenotypic patterning in biofilms. We consider other questions that arise from the comparison between biofilm and eukaryotic development, including what defines normal biofilm development and the nature of biofilm cell types and fates. We conclude by discussing what biofilm development can tell us about developmental processes, emphasizing the additional challenges faced by bacteria in biofilm development compared with their eukaryotic counterparts.
Collapse
Affiliation(s)
- Georgia R Squyres
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Kunnath AP, Suodha Suoodh M, Chellappan DK, Chellian J, Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br J Biomed Sci 2024; 81:12958. [PMID: 39170669 PMCID: PMC11335562 DOI: 10.3389/bjbs.2024.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The global issue of antimicrobial resistance poses significant challenges to public health. The World Health Organization (WHO) has highlighted it as a major global health threat, causing an estimated 700,000 deaths worldwide. Understanding the multifaceted nature of antibiotic resistance is crucial for developing effective strategies. Several physiological and biochemical mechanisms are involved in the development of antibiotic resistance. Bacterial cells may escape the bactericidal actions of the drugs by entering a physiologically dormant state known as bacterial persistence. Recent findings in this field suggest that bacterial persistence can be one of the main sources of chronic infections. The antibiotic tolerance developed by the persister cells could tolerate high levels of antibiotics and may give rise to persister offspring. These persister offspring could be attributed to antibiotic resistance mechanisms, especially in chronic infections. This review attempts to shed light on persister-induced antibiotic resistance and the current therapeutic strategies.
Collapse
Affiliation(s)
- Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mohamed Suodha Suoodh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Blondel M, Machet C, Wildemann B, Abidine Y, Swider P. Mechanobiology of bacterial biofilms: Implications for orthopedic infection. J Orthop Res 2024; 42:1861-1869. [PMID: 38432991 DOI: 10.1002/jor.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Postoperative bacterial infections are prevalent complications in both human and veterinary orthopedic surgery, particularly when a biofilm develops. These infections often result in delayed healing, early revision, permanent functional loss, and, in severe cases, amputation. The diagnosis and treatment pose significant challenges, and bacterial biofilm further amplifies the therapeutic difficulty as it confers protection against the host immune system and against antibiotics which are usually administered as a first-line therapeutic option. However, the inappropriate use of antibiotics has led to the emergence of numerous multidrug-resistant organisms, which largely compromise the already imperfect treatment efficiency. In this context, the study of bacterial biofilm formation allows to better target antibiotic use and to evaluate alternative therapeutic strategies. Exploration of the roles played by mechanical factors on biofilm development is of particular interest, especially because cartilage and bone tissues are reactive environments that are subjected to mechanical load. This review delves into the current landscape of biofilm mechanobiology, exploring the role of mechanical factors on biofilm development through a multiscale prism starting from bacterial microscopic scale to reach biofilm mesoscopic size and finally the macroscopic scale of the fracture site or bone-implant interface.
Collapse
Affiliation(s)
- Margaux Blondel
- Small Animal Surgery Department, Lyon University, VetAgro Sup, Marcy l'Etoile, France
| | - Camille Machet
- National Veterinary School of Toulouse, Toulouse, France
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yara Abidine
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| |
Collapse
|
4
|
da Silva Venâncio C, Cardoso FAR, de Mattos G, Fuchs RHB, Beneti SC, Droval AA, Marques LLM. Application of films developed with tilapia gelatin (Oreochromis niloticus), added with pitomba plant extract (Talisia esculenta) in Hawaii papaya. Colloids Surf B Biointerfaces 2024; 234:113712. [PMID: 38157762 DOI: 10.1016/j.colsurfb.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
In the present study, a film based on the gelatin skin of tilapia (Oreochromis niloticus) was developed, using surfactants and adding plant extract of pitomba seed (Talisia esculenta). The aim was to investigate the mechanical and barrier properties of the cover, as well as its effectiveness in conserving papayas against diseases caused by fungi. The film presented tensile strength of 38.78 MPa, elongation of 120.49%, and water vapor permeability of 5.90 g.mm.h-1.m2.kPa-1 when equally composed of SDS and Tween 80, in a percentage of 40% in relation to the total mass of the film. The films lasted 12 d in an environment with a relative humidity of 75% (25 ºC), longer than the shelf life of papaya (limited to 8 d). With applying the film with the extract, the incidence of diseases such as anthracnose, fusariosis, and stem rot caused by these microorganisms in papaya was reduced.
Collapse
Affiliation(s)
- Camila da Silva Venâncio
- Department of Food Engineering and Chemical Engineering, Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil
| | - Flavia Aparecida Reitz Cardoso
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil; Post-Graduation Program of Technological Innovations (PPGIT), Federal University of Technology, Campo Mourão 87301-005, Paraná, Brazil.
| | - Gisely de Mattos
- Post-Graduation Program of Technological Innovations (PPGIT), Federal University of Technology, Campo Mourão 87301-005, Paraná, Brazil
| | - Renata Hernandez Barros Fuchs
- Department of Food Engineering and Chemical Engineering, Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil; Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil
| | - Stéphani Caroline Beneti
- Department of Food Engineering and Chemical Engineering, Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil
| | - Adriana Aparecida Droval
- Department of Food Engineering and Chemical Engineering, Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil; Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil
| | - Leila Larisa Medeiros Marques
- Department of Food Engineering and Chemical Engineering, Federal University of Technology (UTFPR), Campo Mourão 87301-005, Paraná, Brazil
| |
Collapse
|
5
|
D’Angelo C, Trecca M, Carpentieri A, Artini M, Selan L, Tutino ML, Papa R, Parrilli E. Cold-Azurin, a New Antibiofilm Protein Produced by the Antarctic Marine Bacterium Pseudomonas sp. TAE6080. Mar Drugs 2024; 22:61. [PMID: 38393032 PMCID: PMC10890351 DOI: 10.3390/md22020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm is accountable for nosocomial infections and chronic illness, making it a serious economic and public health problem. Staphylococcus epidermidis, thanks to its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in biofilm-associated infections of medical devices. Therefore, the research of new molecules able to interfere with S. epidermidis biofilm formation has a remarkable interest. In the present work, the attention was focused on Pseudomonas sp. TAE6080, an Antarctic marine bacterium able to produce and secrete an effective antibiofilm compound. The molecule responsible for this activity was purified by an activity-guided approach and identified by LC-MS/MS. Results indicated the active protein was a periplasmic protein similar to the Pseudomonas aeruginosa PAO1 azurin, named cold-azurin. The cold-azurin was recombinantly produced in E. coli and purified. The recombinant protein was able to impair S. epidermidis attachment to the polystyrene surface and effectively prevent biofilm formation.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| |
Collapse
|
6
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
7
|
Dornelles G, Araújo GRDS, Rodrigues M, Alves V, Almeida-Paes R, Frases S. Comparative Analysis of Capsular and Secreted Polysaccharides Produced by Rhodotorula mucilaginosa and Cryptococcus neoformans. J Fungi (Basel) 2023; 9:1124. [PMID: 37998929 PMCID: PMC10672113 DOI: 10.3390/jof9111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are a global public health challenge, especially among immunocompromised patients. Basidiomycetous yeasts, such as Rhodotorula mucilaginosa, have emerged as opportunistic pathogens, but have received less attention than Cryptococcus neoformans. This study aimed to characterize the polysaccharides of R. mucilaginosa and compare them with those of C. neoformans, analyzing their clinical implications. Comprehensive physicochemical, mechanical, and ultrastructural analyses of polysaccharides from both species were performed, revealing correlations with virulence and pathogenicity. R. mucilaginosa cells are surrounded by a capsule smaller than that produced by C. neoformans, but with similar polysaccharides. Those polysaccharides are also secreted by R. mucilaginosa. Cross-reactivity with R. mucilaginosa was observed in a diagnostic C. neoformans antigen test, using both in vitro and in vivo samples, highlighting the need for more reliable tests. Some R. mucilaginosa strains exhibited virulence comparable to that of C. neoformans in an invertebrate experimental model (Tenebrio molitor). This study contributes to a deeper understanding of yeast pathogenicity and virulence, highlighting the need for more accurate diagnostic tests to improve the differential diagnosis of infections caused by basidiomycetous yeasts.
Collapse
Affiliation(s)
- Gustavo Dornelles
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Glauber R. de S. Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Marcus Rodrigues
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
8
|
Almeida F, Sousa I, Kremer O, da Silva BP, Tasca DS, Khoury AZ, Temporão G, Guerreiro T. Trapping Microparticles in a Structured Dark Focus. PHYSICAL REVIEW LETTERS 2023; 131:163601. [PMID: 37925716 DOI: 10.1103/physrevlett.131.163601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/02/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
We experimentally demonstrate stable trapping and controlled manipulation of silica microspheres in a structured optical beam consisting of a dark focus surrounded by light in all directions-the dark focus tweezer. Results from power spectrum and potential analysis demonstrate the nonharmonicity of the trapping potential landscape, which is reconstructed from experimental data in agreement to Lorentz-Mie numerical simulations. Applications of the dark tweezer in levitated optomechanics and biophysics are discussed.
Collapse
Affiliation(s)
- F Almeida
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - I Sousa
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - O Kremer
- Centro de Estudos em Telecomunicações, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - B Pinheiro da Silva
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-346, Brazil
| | - D S Tasca
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-346, Brazil
| | - A Z Khoury
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-346, Brazil
| | - G Temporão
- Centro de Estudos em Telecomunicações, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - T Guerreiro
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Corrêa-Junior D, Bastos de Andrade I, Alves V, Avellar-Moura I, Brito de Souza Rabello V, Valdez AF, Nimrichter L, Zancopé-Oliveira RM, Ribeiro de Sousa Araújo G, Almeida-Paes R, Frases S. Unveiling the Morphostructural Plasticity of Zoonotic Sporotrichosis Fungal Strains: Possible Implications for Sporothrix brasiliensis Virulence and Pathogenicity. J Fungi (Basel) 2023; 9:701. [PMID: 37504690 PMCID: PMC10381685 DOI: 10.3390/jof9070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Sporotrichosis is a fungal infection caused by Sporothrix species, with Sporothrix brasiliensis as a prevalent pathogen in Latin America. Despite its clinical importance, the virulence factors of S. brasiliensis and their impact on the pathogenesis of sporotrichosis are still poorly understood. This study evaluated the morphostructural plasticity of S. brasiliensis, a fungus that causes sporotrichosis. Three cell surface characteristics, namely cell surface hydrophobicity, Zeta potential, and conductance, were assessed. Biofilm formation was also analyzed, with measurements taken for biomass, extracellular matrix, and metabolic activity. In addition, other potential and poorly studied characteristics correlated with virulence such as lipid bodies, chitin, and cell size were evaluated. The results revealed that the major phenotsypic features associated with fungal virulence in the studied S. brasiliensis strains were chitin, lipid bodies, and conductance. The dendrogram clustered the strains based on their overall similarity in the production of these factors. Correlation analyses showed that hydrophobicity was strongly linked to the production of biomass and extracellular matrix, while there was a weaker association between Zeta potential and size, and lipid bodies and chitin. This study provides valuable insights into the virulence factors of S. brasiliensis and their potential role in the pathogenesis of sporotrichosis.
Collapse
Affiliation(s)
- Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Igor Avellar-Moura
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Alessandro Fernandes Valdez
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Essifi K, Brahmi M, Ed-Daoui A, Boussetta A, Benelmostafa M, Dahmani M, Salhi S, Moubarik A, El Bachiri A, Tahani A. Investigating the effect of clay content and type on the mechanical performance of calcium alginate-based hybrid bio-capsules. Int J Biol Macromol 2023; 242:125011. [PMID: 37217042 DOI: 10.1016/j.ijbiomac.2023.125011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated and characterized using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (ATR-FTIR). Results showed that clay content improves the mechanical properties depending on its type. Montmorillonite and laponite clays showed optimal results at 3 wt% content, with a gain of 63.2 % and 70.34 % on Young's modulus, and a gain of 92.43 % and 108.66 % on nominal rupture stress, respectively, while kaolinite clay showed optimal results at 1.5 wt% content with an increase of 77.21 % on Young's modulus and 88.34 % on nominal rupture stress. However, exceeding the optimal content led to decrease the elasticity and rigidity due to the incomplete dispersion of clay particles in the hydrogel network. The theoretical modeling using Boltzmann superposition principle revealed that the elastic modulus was in good agreement with experimental values. Overall, this research provides insights into the mechanical behavior of alginate@clay-based capsules, which could have potential applications in drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Kamal Essifi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mohamed Brahmi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Abderrahim Ed-Daoui
- Laboratory of Theoretical Physics, Particles Modeling, and Energetic, URAC 07, Faculty of Science, Mohammed First University Oujda, Morocco
| | - Abdelghani Boussetta
- Laboratory of Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni-Mellal, Morocco
| | - M''hammed Benelmostafa
- Laboratory of Theoretical Physics, Particles Modeling, and Energetic, URAC 07, Faculty of Science, Mohammed First University Oujda, Morocco
| | - Mohammed Dahmani
- Laboratory of Theoretical Physics, Particles Modeling, and Energetic, URAC 07, Faculty of Science, Mohammed First University Oujda, Morocco
| | - Samira Salhi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni-Mellal, Morocco
| | - Ali El Bachiri
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
11
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
13
|
Noichl I, Schönecker C. Dynamics of elastic, nonheavy spheres sedimenting in a rectangular duct. SOFT MATTER 2022; 18:2462-2472. [PMID: 35279709 DOI: 10.1039/d1sm01789f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding of sedimentation dynamics of particles in bounded fluids is of crucial importance for a wide variety of processes. While there is a profound knowledge base regarding the sedimentation of rigid solid particles, the fundamental principles of sedimentation dynamics of elastic spheres in bounded fluids are not well understood. This especially applies to nonheavy spheres, whose density is close to that of the surrounding medium and which therefore show extended inertial effects upon acceleration. Here, we present model experiments of the sedimentation dynamics of deformable, nonheavy spheres in the presence of walls. Despite the deformations of the particles being small, the particle dynamics of elastic spheres differed fundamentally from that of rigid spheres. Initially, the sedimentation of elastic spheres is comparable with the sedimentation of rigid spheres. From a characteristic onset position of about 10·R, deformability effects kick in and a second acceleration appears. Finally, the deformable spheres reach a terminal sedimentation velocity. The softer the spheres are (in terms of Young's elastic modulus), the higher the terminal velocity is. In the present setup, a terminal velocity up to 9% higher than the velocity for comparable rigid spheres was reached. By analyzing the obtained data, insights into the dynamics are given that could serve as basic approaches for modelling the dynamics of elastic spheres in bounded fluids.
Collapse
Affiliation(s)
- Isabell Noichl
- Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | - Clarissa Schönecker
- Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
- Max-Planck-Institut für Polymerforschung, D-55218 Mainz, Germany
| |
Collapse
|
14
|
Pandur Ž, Dular M, Kostanjšek R, Stopar D. Bacterial cell wall material properties determine E. coli resistance to sonolysis. ULTRASONICS SONOCHEMISTRY 2022; 83:105919. [PMID: 35077964 PMCID: PMC8789596 DOI: 10.1016/j.ultsonch.2022.105919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/02/2023]
Abstract
The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.
Collapse
Affiliation(s)
- Žiga Pandur
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia; University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia.
| |
Collapse
|
15
|
Biofilm viscoelasticity and nutrient source location control biofilm growth rate, migration rate, and morphology in shear flow. Sci Rep 2021; 11:16118. [PMID: 34373534 PMCID: PMC8352988 DOI: 10.1038/s41598-021-95542-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
We present a numerical model to simulate the growth and deformation of a viscoelastic biofilm in shear flow under different nutrient conditions. The mechanical interaction between the biofilm and the fluid is computed using the Immersed Boundary Method with viscoelastic parameters determined a priori from measurements reported in the literature. Biofilm growth occurs at the biofilm-fluid interface by a stochastic rule that depends on the local nutrient concentration. We compare the growth, migration, and morphology of viscoelastic biofilms with a common relaxation time of 18 min over the range of elastic moduli 10-1000 Pa in different nearby nutrient source configurations. Simulations with shear flow and an upstream or a downstream nutrient source indicate that soft biofilms grow more if nutrients are downstream and stiff biofilms grow more if nutrients are upstream. Also, soft biofilms migrate faster than stiff biofilms toward a downstream nutrient source, and although stiff biofilms migrate toward an upstream nutrient source, soft biofilms do not. Simulations without nutrients show that on the time scale of several hours, soft biofilms develop irregular structures at the biofilm-fluid interface, but stiff biofilms deform little. Our results agree with the biophysical principle that biofilms can adapt to their mechanical and chemical environment by modulating their viscoelastic properties. We also compare the behavior of a purely elastic biofilm to a viscoelastic biofilm with the same elastic modulus of 50 Pa. We find that the elastic biofilm underestimates growth rates and downstream migration rates if the nutrient source is downstream, and it overestimates growth rates and upstream migration rates if the nutrient source is upstream. Future modeling can use our comparison to identify errors that can occur by simulating biofilms as purely elastic structures.
Collapse
|
16
|
Saftics A, Kurunczi S, Peter B, Szekacs I, Ramsden JJ, Horvath R. Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Adv Colloid Interface Sci 2021; 294:102431. [PMID: 34330074 DOI: 10.1016/j.cis.2021.102431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Interfacial layers are important in a wide range of applications in biomedicine, biosensing, analytical chemistry and the maritime industries. Given the growing number of applications, analysis of such layers and understanding their behavior is becoming crucial. Label-free surface sensitive methods are excellent for monitoring the formation kinetics, structure and its evolution of thin layers, even at the nanoscale. In this paper, we review existing and commercially available label-free techniques and demonstrate how the experimentally obtained data can be utilized to extract kinetic and structural information during and after formation, and any subsequent adsorption/desorption processes. We outline techniques, some traditional and some novel, based on the principles of optical and mechanical transduction. Our special focus is the current possibilities of combining label-free methods, which is a powerful approach to extend the range of detected and deduced parameters. We summarize the most important theoretical considerations for obtaining reliable information from measurements taking place in liquid environments and, hence, with layers in a hydrated state. A thorough treamtmaent of the various kinetic and structural quantities obtained from evaluation of the raw label-free data are provided. Such quantities include layer thickness, refractive index, optical anisotropy (and molecular orientation derived therefrom), degree of hydration, viscoelasticity, as well as association and dissociation rate constants and occupied area of subsequently adsorbed species. To demonstrate the effect of variations in model conditions on the observed data, simulations of kinetic curves at various model settings are also included. Based on our own extensive experience with optical waveguide lightmode spectroscopy (OWLS) and the quartz crystal microbalance (QCM), we have developed dedicated software packages for data analysis, which are made available to the scientific community alongside this paper.
Collapse
|
17
|
Influence of Rhamnolipids and Ionic Cross-Linking Conditions on the Mechanical Properties of Alginate Hydrogels as a Model Bacterial Biofilm. Int J Mol Sci 2021; 22:ijms22136840. [PMID: 34202115 PMCID: PMC8269414 DOI: 10.3390/ijms22136840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
The literature indicates the existence of a relationship between rhamnolipids and bacterial biofilm, as well as the ability of selected bacteria to produce rhamnolipids and alginate. However, the influence of biosurfactant molecules on the mechanical properties of biofilms are still not fully understood. The aim of this research is to determine the effect of rhamnolipids concentration, CaCl2 concentration, and ionic cross-linking time on the mechanical properties of alginate hydrogels using a Box–Behnken design. The mechanical properties of cross-linked alginate hydrogels were characterized using a universal testing machine. It was assumed that the addition of rhamnolipids mainly affects the compression load, and the value of this parameter is lower for hydrogels produced with biosurfactant concentration below CMC than for hydrogels obtained in pure water. In contrast, the addition of rhamnolipids in an amount exceeding CMC causes an increase in compression load. In bacterial biofilms, the presence of rhamnolipid molecules does not exceed the CMC value, which may confirm the influence of this biosurfactant on the formation of the biofilm structure. Moreover, rhamnolipids interact with the hydrophobic part of the alginate copolymer chains, and then the hydrophilic groups of adsorbed biosurfactant molecules create additional calcium ion trapping sites.
Collapse
|
18
|
Zabiegaj D, Hajirasouliha F, Duilio A, Guido S, Caserta S, Kostoglou M, Petala M, Karapantsios T, Trybala A. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
20
|
Souza-Egipsy V, Vega JF, González-Toril E, Aguilera Á. Biofilm mechanics in an extremely acidic environment: microbiological significance. SOFT MATTER 2021; 17:3672-3680. [PMID: 33683248 DOI: 10.1039/d0sm01975e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A variety of natural biofilms were collected from an extremely acidic environment at Río Tinto (Spain). In order to provide insights into the structure-function relationship, the microstructure of the biofilms was explored using low temperature scanning electron microscopy (LTSEM) in combination with rheological analysis. The creep-recovery experiment results have demonstrated the typical behaviour of viscoelastic materials that combine both elastic and viscous characters. The LTSEM visualization and rheological characterization of biofilms revealed that the network density increased in bacterial biofilms and was the lowest in protist Euglena biofilms. This means that, in the latter biofilms, a lower density of interactions exist, suggesting that the whole system experiences enhanced mobility under external mechanical stress. The samples with the highest dynamic moduli (Leptospirillum-Acidiphilium, Zygnemopsis, Chlorella and Cyanidium) have shown the typical strain thinning behaviour, whereas the Pinnularia and Euglena biofilms exhibited a viscous thickening reaction. The Zygnemopsis filamentous floating structure has the highest cohesive energy and has shown distinctive enhanced resilience and connectivity. This suggests that biofilms should be viewed as soft viscoelastic systems the properties of which are determined by the main organisms and their extracellular polymeric substances. The fractional Maxwell model has been found to explain the rheological behaviour of the observed complex quite well, particularly the power-law behaviour and the characteristic broad relaxation response of these systems.
Collapse
Affiliation(s)
- Virginia Souza-Egipsy
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia (IEM-CSIC), c/Serrano 113 bis, 28006, Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Pacholak A, Burlaga N, Guzik U, Kaczorek E. Investigation of the bacterial cell envelope nanomechanical properties after long-term exposure to nitrofurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124352. [PMID: 33160784 DOI: 10.1016/j.jhazmat.2020.124352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in the environment may negatively affect biological communities in the natural ecosystems. However, their influence on environmental bacterial strains has not been thoroughly investigated. In this study, two representatives of 5-nitrofuran antibiotics (nitrofurantoin and furaltadone) were investigated in terms of their long-term influence on the cell envelopes of newly isolated environmental bacterial strains (Sphingobacterium caeni FTD2, Achromobacter xylosoxidans NFZ2 and Pseudomonas hibiscicola FZD2). A 12-month exposure of bacterial cells to nitrofurans at a concentration of 20 mg L-1 induced changes in the cell structure and texture (bacteria under stress conditions showed a loss of their original shape and seemed to be vastly inflated, the cells increased average surface roughness after exposure to NFT and FTD, respectively). AFM observations allowed the calculation of the bacterial cell nanomechanical properties. Significant increase in adhesion energy of bacteria after prolonged contact with nitrofurantoin was demonstrated. Changes in the permeability of bacterial membrane, fatty acids' composition and bacterial cell surface hydrophobicity were determined. Despite visible bacterial adaptation to nitrofurans, prolonged presence of pharmaceuticals in the environment has led to significant alterations in the cells' structures which was particularly visible in P. hibiscicola.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40 032 Katowice, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
22
|
Gerbersdorf SU, Koca K, de Beer D, Chennu A, Noss C, Risse-Buhl U, Weitere M, Eiff O, Wagner M, Aberle J, Schweikert M, Terheiden K. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. WATER RESEARCH 2020; 185:116182. [PMID: 32763530 DOI: 10.1016/j.watres.2020.116182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment: i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Collapse
Affiliation(s)
- Sabine Ulrike Gerbersdorf
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Kaan Koca
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Christian Noss
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany.
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Olivier Eiff
- KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany.
| | - Michael Wagner
- KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Jochen Aberle
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany.
| | - Michael Schweikert
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Kristina Terheiden
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| |
Collapse
|
23
|
Pham DQ, Bryant SJ, Cheeseman S, Huang LZY, Bryant G, Dupont MF, Chapman J, Berndt CC, Vongsvivut JP, Crawford RJ, Truong VK, Ang ASM, Elbourne A. Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. NANOSCALE 2020; 12:19888-19904. [PMID: 32985644 DOI: 10.1039/d0nr05617k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces. The compositions, and in-turn nanomechanical properties, of fungal biofilms remain poorly understood, because these systems are complex, composed of anisotropic cellular and extracellular material, and importantly are species and environment dependent. Therefore, genomic variation, and/or mutations, as well as environmental and growth factors can change the composition of a fungal cell's biofilm. In this work, we probe the physico-mechanical and biochemical properties of two fungal species, Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), as well as two antifungal resistant sub-species of C. neoformans, fluconazole-resistant C. neoformans (FlucRC. neoformans) and amphotericin B-resistant C. neoformans (AmBRC. neoformans). A new experimental methodology of characterization is proposed, employing a combination of atomic force microscopy (AFM), instrumented nanoindentation, and Synchrotron ATR-FTIR measurements. This allowed the nano-mechanical and chemical characterisation of each fungal biofilm.
Collapse
Affiliation(s)
- Duy Quang Pham
- Surface Engineering for Advanced Materials (SEAM), Department of Mechanical and Production Design Engineering, Swinburne University of Technology, Hawthorn, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Development of a New Bead Movement-Based Computational Framework Shows that Bacterial Amyloid Curli Reduces Bead Mobility in Biofilms. J Bacteriol 2020; 202:JB.00253-20. [PMID: 32601073 PMCID: PMC7925071 DOI: 10.1128/jb.00253-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 01/31/2023] Open
Abstract
Biofilms exist in complex environments, including the intestinal tract, as a part of the gastrointestinal microbiota. The interaction of planktonic bacteria with biofilms can be influenced by material properties of the biofilm. During previous confocal studies, we observed that amyloid curli-containing Salmonella enterica serotype Typhimurium and Escherichia coli biofilms appeared rigid. In these studies, Enterococcus faecalis, which lacks curli-like protein, showed more fluid movement. To better characterize the material properties of the biofilms, a four-dimensional (4D) model was designed to track the movement of 1-μm glyoxylate beads in 10- to 20-μm-thick biofilms over approximately 20 min using laser-scanning confocal microscopy. Software was developed to analyze the bead trajectories, the amount of time they could be followed (trajectory life span), the velocity of movement, the surface area covered (bounding boxes), and cellular density around each bead. Bead movement was found to be predominantly Brownian motion. Curli-containing biofilms had very little bead movement throughout the low- and high-density regions of the biofilm compared to E. faecalis and isogenic curli mutants. Curli-containing biofilms tended to have more stable bead interactions (longer trajectory life spans) than biofilms lacking curli. In biofilms lacking curli, neither the velocity of bead movement nor the bounding box volume was strictly dependent on cell density, suggesting that other material properties of the biofilms were influencing the movement of the beads and flexibility of the material. Taken together, these studies present a 4D method to analyze bead movement over time in a 3D biofilm and suggest curli confers rigidity to the extracellular matrix of biofilms.IMPORTANCE Mathematical models are necessary to understand how the material composition of biofilms can influence their physical properties. Here, we developed a 4D computational toolchain for the analysis of bead trajectories, which laid the groundwork for establishing critical parameters for mathematical models of particle movement in biofilms. Using this open-source trajectory analyzer, we determined that the presence of bacterial amyloid curli changes the material properties of a biofilm, making the biofilm matrix rigid. This software is a powerful tool to analyze treatment- and environment-induced changes in biofilm structure and cell movement in biofilms. The open-source analyzer is fully adaptable and extendable in a modular fashion using VRL-Studio to further enhance and extend its functions.
Collapse
|