1
|
Lewitt MS, Karlsson IK, Pedersen NL. IGFBP-1 and IGF-I in relation to adiposity and mortality from midlife to old age in the Swedish Adoption/Twin Study of Aging. Int J Obes (Lond) 2025:10.1038/s41366-025-01773-x. [PMID: 40188287 DOI: 10.1038/s41366-025-01773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND/OBJECTIVES Insulin-like growth factor-binding protein (IGFBP)-1 is a marker of insulin resistance. Lower IGFBP-1 is associated with increased adiposity. The aims of this study were to determine whether IGFBP-1 and its ligand, IGF-I, are associated with weight and waist measurements across mid-life to old age, and predict survival. SUBJECTS/METHODS The Swedish Adoption/Twin Study of Aging (SATSA) includes extensive in-person testing of same-sex twins over a 30-year period. The dataset of twins for which baseline fasting IGFBP-1 (n = 512; 251 twin pairs) and IGF-I (n = 537; 262 twin pairs) measurements were available (from 1986) was stratified by birth cohort. Latent growth curve modeling was used to determine whether BMI and waist-to-height ratio (WHtR) and their change, differed as a function of IGFBP-1 or IGF-I. Survival data was collected by linkage to the Swedish Tax Agency. RESULTS IGFBP-1 correlated inversely with insulin concentrations. There was a curvilinear relationship between BMI and age, increasing until 70-75 years and then declining, fitting a quadratic model. Lower IGFBP-1 was associated with higher BMI at the intercept, 73 years (1.8 kg/m2 per unit decrease in ln-IGFBP-1; p < 0.001). WHtR continued to increase beyond 70-75 years. Lower IGFBP-1 was associated with higher WHtR (3 cm/m per unit decrease in ln-IGFBP-1 at 73 years; p < 0.001). Associations weakened, but remained, after adjustment for ln-insulin. IGFBP-1 was not associated with the slope or shape of the trajectories. Between-within models, examining the associations within twin pairs, indicated these associations are explained in part by familial factors. There was no relationship between IGF-I and BMI or WHtR, or their trajectories. Neither IGFBP-1 nor IGF-I concentration predicted survival. CONCLUSION Lower circulating IGFBP-1 concentrations are associated with increased adiposity but not change in adiposity, across the lifespan from middle to old age.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Solna, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Solna, Sweden
| |
Collapse
|
2
|
Fernández-Pereira C, Agís-Balboa RC. The Insulin-like Growth Factor Family as a Potential Peripheral Biomarker in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2025; 26:2561. [PMID: 40141202 PMCID: PMC11942524 DOI: 10.3390/ijms26062561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Psychiatric disorders (PDs), including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), among other disorders, represent a significant global health burden. Despite advancements in understanding their biological mechanisms, there is still no reliable objective and reliable biomarker; therefore, diagnosis remains largely reliant on subjective clinical assessments. Peripheral biomarkers in plasma or serum are interesting due to their accessibility, low cost, and potential to reflect central nervous system processes. Among these, the insulin-like growth factor (IGF) family, IGF-1, IGF-2, and IGF-binding proteins (IGFBPs), has gained attention for its roles in neuroplasticity, cognition, and neuroprotection, as well as for their capability to cross the blood-brain barrier. This review evaluates the evidence for IGF family alterations in PDs, with special focus on SZ, MDD, and BD, while also addressing other PDs covering almost 40 years of history. In SZ patients, IGF-1 alterations have been linked to metabolic dysregulation, treatment response, and hypothalamic-pituitary-adrenal axis dysfunction. In MDD patients, IGF-1 appears to compensate for impaired neurogenesis, although findings are inconsistent. Emerging studies on IGF-2 and IGFBPs suggest potential roles across PDs. While promising, heterogeneity among studies and methodological limitations highlights the need for further research to validate IGFs as reliable psychiatric biomarkers.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Shi L, Ding Z, Chen J. Deciphering the role of IGFBP5 in delaying fibrosis and sarcopenia in aging skeletal muscle: therapeutic implications and molecular mechanisms. Front Pharmacol 2025; 16:1557703. [PMID: 40144669 PMCID: PMC11937025 DOI: 10.3389/fphar.2025.1557703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Sarcopenia is a condition characterized by the loss of muscle fibers and excessive deposition of extracellular matrix proteins. The interplay between muscle atrophy and fibrosis is a central feature of sarcopenia. While the mechanisms underlying skeletal muscle aging and fibrosis remain incompletely understood, cellular senescence has emerged as a key contributor. This study investigates the role of D-galactose (D-gal) in inducing fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key regulator of the process to serve as a therapeutical target. Methods To discover the role of D-gal in inducing cellular senescence and fibrosis, the senescence markers and the expression of fibrosis-related proteins were assessed after introducing D-gal among fibroblasts, and muscle strength and mass. The severity of muscle atrophy and fibrosis were also verified by using H&E staining and Masson trichrome staining after D-gal treatment via subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-seq) was performed and the differential expressed genes were identified between under D-gal or control treatment, to discover the key regulator of D-GAL-driven fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by analyzing the level of senescence and fibrosis-related markers. And the results were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with histological examinations. Results D-gal treatment effectively induced cellular senescence and fibrosis in fibroblasts, as well as skeletal muscle atrophy, fibrosis and loss in muscle mass and function in mice. IGFBP5 was identified as a key regulator of D-GAL induced senescence and fibrosis among fibroblasts using RNA-seq. And further validation tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast cellular senescence and fibrosis, as well as the severity of muscle atrophy and fibrosis in SAMP8 mice. Discussion IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast cellular senescence and fibrosis. The findings provide new insights into the molecular mechanisms underlying age-related skeletal muscle fibrosis and highlight IGFBP5 as a potential therapeutic target. Further research is needed to validate these findings and explore related clinical applications.
Collapse
Affiliation(s)
| | - Zheci Ding
- *Correspondence: Zheci Ding, ; Jiwu Chen,
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Lee J, Park S, Shin B, Kim YJ, Lee S, Kim J, Jang KJ, Choo OS, Kim J, Seonwoo H, Chung JH, Choung YH. Latent stem cell-stimulating radially aligned electrospun nanofibrous patches for chronic tympanic membrane perforation therapy. Acta Biomater 2024; 188:212-222. [PMID: 39303832 DOI: 10.1016/j.actbio.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Chronic tympanic membrane (TM) perforation is a tubotympanic disease caused by either traumatic injury or inflammation. A recent study demonstrated significant progress in promoting the regeneration of chronic TM perforations through the application of nanofibers with radially aligned nanostructures and controlled release of growth factors. However, radially aligned nanostructures with stem cell-stimulating factors have never been used. In this study, insulin-like growth factor binding factor 2 (IGFBP2)-incorporated radially aligned nanofibrous patches (IRA-NFPs) were developed and applied to regenerate chronic TM perforations. The IRA-NFPs were prepared by electrospinning 8 wt% polycaprolactone in trifluoroethanol and acetic acid (9:1). Random nanofibers (RFs) and aligned nanofibers (AFs) were successfully fabricated using a flat plate and a custom-designed circular collector, respectively. The presence of IGFBP2 was confirmed via Fourier transform infrared spectroscopy and the release of IGFBP2 was sustained for up to 20 days. In vitro studies revealed enhanced cellular proliferation and migration on AFs compared to RFs, and the incorporation of IGFBP2 further promoted these effects. Quantitative real-time PCR revealed mRNA downregulation, correlating with accelerated migration and increased cell confluency. In vivo studies showed IGFBP2-loaded RF and AF patches increased regeneration success rates by 1.59-fold and 2.23-fold, respectively, while also reducing healing time by 2.5-fold compared to the control. Furthermore, IGFBP2-incorporated AFs demonstrated superior efficacy in healing larger perforations with enhanced histological similarity to native TMs. This study, combining stem cell stimulating factors and aligned nanostructures, proposes a novel approach potentially replacing conventional surgical methods for chronic TM perforation regeneration. STATEMENT OF SIGNIFICANCE: Chronic otitis media (COM) affects approximately 200 million people worldwide due to inflammation, inadequate blood supply, and lack of growth factors. Current surgical treatments have limitations like high costs and anesthetic risks. Recent research explored the use of nanofibers with radially aligned nanostructures and controlled release of growth factors to treat chronic tympanic membrane (TM) perforations. In this study, insulin-like growth factor binding protein 2 (IGFBP2)-incorporated radially aligned nanofibrous patches (IRA-NFPs) were developed and applied to regenerate chronic TM perforations. We assessed their properties and efficacy through in vitro and in vivo studies. IRA-NFPs showed promising healing capabilities with chronic TM perforation models. This innovative approach has the potential to improve COM management, reduce surgery costs, and enhance patient safety.
Collapse
Affiliation(s)
- Juo Lee
- Department of Animal Science & Technology, Sunchon National University, Suncheon, 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sangbae Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Beomyong Shin
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungmin Lee
- Department of Human Harmonized Robotics, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jungsil Kim
- Department of Smart Bio-Industrial Mechanical Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, 52828, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea; Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Jong Hoon Chung
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; ELBIO Inc, Seoul 08812, Republic of Korea.
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Ko D, Lee KJ. Dietary vitamin C reduces mortality of pacific white shrimp (Penaeus vannamei) post-larvae by Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109723. [PMID: 38936519 DOI: 10.1016/j.fsi.2024.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
This study was conducted to investigate whether optimal vitamin C (VC) levels can enhance non-specific immune response and antioxidant capacity and reduce mortality of Pacific white shrimp (Penaeus vannamei) post-larvae when infected with Vibrio parahaemolyticus. Six experimental diets were formulated to contain six different VC levels of 0, 40, 80, 120, 160 and 320 mg/kg diet (designated as C0, C40, C80, C120, C160 and C320, respectively). Shrimp post-larvae (39.1 ± 0.47 mg) were randomly distributed to 24 tanks with 40 shrimp per tank. Four replicate groups of shrimp were fed one of the diets for 43 days. VC supplemented groups showed significantly higher growth performance than C0 group. Shrimp fed C120 diet had significantly improved feed utilization efficiency than shrimp fed C0 diet. VC concentrations in hepatopancreas and gills were significantly higher with the increase in dietary VC levels. Optimal dietary VC levels significantly upregulated the expressions of growth and digestive enzyme-related genes such as IGF-1, IGF-BP, amylase, trypsin and chymotrypsin, and also upregulated the expressions of innate immunity and antioxidant-related genes such as prophenoloxidase, crustin, penaiedin-3a, superoxide dismutase, glutathione peroxidase and catalase in hepatopancreas. Shrimp fed C80, C120 and C160 diets showed significantly increased resistance to V. parahaemolyticus than shrimp fed C0 diet. The optimum dietary VC level for the shrimp post-larvae was established to be 80.2 mg/kg diet by a broken-line regression analysis based on the growth. The findings from the challenge test indicated that VC levels over 83.0 mg/kg diet could enhance disease resistance of the shrimp against V. parahaemolyticus.
Collapse
Affiliation(s)
- Daehyun Ko
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, South Korea
| | - Kyeong-Jun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju 63333, South Korea.
| |
Collapse
|
7
|
Meyer NMT, Kabisch S, Dambeck U, Honsek C, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Schwarz PEH, Machann J, Osterhoff MA, Weickert MO, Pfeiffer AFH. IGF-1 and IGFBP-1 as Possible Predictors of Response to Lifestyle Intervention-Results from Randomized Controlled Trials. Int J Mol Sci 2024; 25:6400. [PMID: 38928106 PMCID: PMC11203659 DOI: 10.3390/ijms25126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Lifestyle interventions can prevent type 2 diabetes (T2DM). However, some individuals do not experience anticipated improvements despite weight loss. Biomarkers to identify such individuals at early stages are lacking. Insulin-like growth factor 1 (IGF- 1) and Insulin-like growth factor binding protein 1(IGFBP-1) were shown to predict T2DM onset in prediabetes. We assessed whether these markers also predict the success of lifestyle interventions, thereby possibly guiding personalized strategies. We analyzed the fasting serum levels of IGF-1, IGFBP-1, and Insulin-like growth factor binding protein 2 (IGFBP-2) in relation to changes in metabolic and anthropometric parameters, including intrahepatic lipids (IHLs) and visceral adipose tissue (VAT) volume, measured by magnetic resonance imaging (MRI), in 345 participants with a high risk for prediabetes (54% female; aged 36-80 years). Participants were enrolled in three randomized dietary intervention trials and assessed both at baseline and one year post-intervention. Statistical analyses were performed using IBM SPSS Statistics (version 28), and significance was set at p < 0.05. Within the 1-year intervention, overall significant improvements were observed. Stratifying individuals by baseline IGF-1 and IGFBP-1 percentiles revealed significant differences: higher IGF-1 levels were associated with more favorable changes compared to lower levels, especially in VAT and IHL. Lower baseline IGFBP-1 levels were associated with greater improvements, especially in IHL and 2 h glucose. Higher bioactive IGF-1 levels might predict better metabolic outcomes following lifestyle interventions in prediabetes, potentially serving as biomarkers for personalized interventions.
Collapse
Affiliation(s)
- Nina M. T. Meyer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (N.M.T.M.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (N.M.T.M.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Caroline Honsek
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Margrit Kemper
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Christiana Gerbracht
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Ayman M. Arafat
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (N.M.T.M.)
| | - Andreas L. Birkenfeld
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Internal Medicine IV—Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King’s College London, London WC2R 2LS, UK
| | - Peter E. H. Schwarz
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department for Prevention and Care of Diabetes, Clinic of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin A. Osterhoff
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (N.M.T.M.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| |
Collapse
|
8
|
Roberts BM, Staab JS, Caldwell AR, Sczuroski CE, Staab JE, Lutz LJ, Reynoso M, Geddis AV, Taylor KM, Guerriere KI, Walker LA, Hughes JM, Foulis SA. Sex Does Not Affect Changes in Body Composition and Insulin-Like Growth Factor-I During US Army Basic Combat Training. J Strength Cond Res 2024; 38:e304-e309. [PMID: 38320231 DOI: 10.1519/jsc.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ABSTRACT Roberts, BM, Staab, JS, Caldwell, AR, Sczuroski, CE, Staab, JE, Lutz, LJ, Reynoso, M, Geddis, AV, Taylor, KM, Guerriere, KI, Walker, LA, Hughes, JM, and Foulis, SA. Sex does not affect changes in body composition and insulin-like growth factor-I during US Army basic combat training. J Strength Cond Res 38(6): e304-e309, 2024-Insulin-like growth factor 1 (IGF-I) has been implicated as a biomarker of health and body composition. However, whether changes in body composition are associated with changes in IGF-I is unclear. Therefore, we examined the relationship between body composition changes (i.e., fat mass and lean mass) and total serum IGF-I levels in a large cohort of young men ( n = 809) and women ( n = 397) attending US Army basic combat training (BCT). We measured body composition using dual energy x-ray absorptiometry and total serum IGF-I levels during week 1 and week 9 of BCT. We found that pre-BCT lean mass ( r = 0.0504, p = 0.082) and fat mass ( r = 0.0458, p = 0.082) were not associated with pre-BCT IGF-I. Body mass, body mass index, body fat percentage, and fat mass decreased, and lean mass increased during BCT (all p < 0.001). Mean (± SD ) IGF-I increased from pre-BCT (176 ± 50 ng·ml -1 ) to post-BCT (200 ± 50 ng·ml -1 , p < 0.001). Inspection of the partial correlations indicated that even when considering the unique contributions of other variables, increases in IGF-I during BCT were associated with both increased lean mass ( r = 0.0769, p = 0.023) and increased fat mass ( r = 0.1055, p < 0.001) with no sex differences. Taken together, our data suggest that although changes in IGF-I weakly correlated with changes in body composition, IGF-I, in isolation, is not an adequate biomarker for predicting changes in body composition during BCT in US Army trainees.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Jeffery S Staab
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Aaron R Caldwell
- Thermal & Mountain Medicine Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Cara E Sczuroski
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Laura J Lutz
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Alyssa V Geddis
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Kathryn M Taylor
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Katelyn I Guerriere
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Leila A Walker
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Julie M Hughes
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| | - Stephen A Foulis
- Military Performance Division, US Army Research of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
9
|
Cao M, Cui B. Clinically relevant plasma proteome for adiposity depots: evidence from systematic mendelian randomization and colocalization analyses. Cardiovasc Diabetol 2024; 23:126. [PMID: 38614964 PMCID: PMC11016216 DOI: 10.1186/s12933-024-02222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND The accumulation of visceral and ectopic fat comprise a major cause of cardiometabolic diseases. However, novel drug targets for reducing unnecessary visceral and ectopic fat are still limited. Our study aims to provide a comprehensive investigation of the causal effects of the plasma proteome on visceral and ectopic fat using Mendelian randomization (MR) approach. METHODS We performed two-sample MR analyses based on five large genome-wide association study (GWAS) summary statistics of 2656 plasma proteins, to screen for causal associations of these proteins with traits of visceral and ectopic fat in over 30,000 participants of European ancestry, as well as to assess mediation effects by risk factors of outcomes. The colocalization analysis was conducted to examine whether the identified proteins and outcomes shared casual variants. RESULTS Genetically predicted levels of 14 circulating proteins were associated with visceral and ectopic fat (P < 4.99 × 10- 5, at a Bonferroni-corrected threshold). Colocalization analysis prioritized ten protein targets that showed effect on outcomes, including FST, SIRT2, DNAJB9, IL6R, CTSA, RGMB, PNLIPRP1, FLT4, PPY and IL6ST. MR analyses revealed seven risk factors for visceral and ectopic fat (P < 0.0024). Furthermore, the associations of CTSA, DNAJB9 and IGFBP1 with primary outcomes were mediated by HDL-C and SHBG. Sensitivity analyses showed little evidence of pleiotropy. CONCLUSIONS Our study identified candidate proteins showing putative causal effects as potential therapeutic targets for visceral and ectopic fat accumulation and outlined causal pathways for further prevention of downstream cardiometabolic diseases.
Collapse
Affiliation(s)
- Min Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Cui
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Ryoo SW, Anita NZ, Perlman G, Xiong LY, Wu CY, Wood M, Rabin JS, Mitchell J, Swardfager W. Insulin-like growth factor-1 and cognition in normoglycemia, prediabetes, and type 2 diabetes mellitus. Psychoneuroendocrinology 2024; 161:106946. [PMID: 38198904 DOI: 10.1016/j.psyneuen.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The relationship between insulin-like growth factor-1 (IGF-1) and cognition has been studied in healthy individuals, but not extensively with regards to insulin resistance and type 2 diabetes mellitus (T2DM). In this retrospective observational study, we investigated relationships of IGF-1 with memory and executive function across people with normoglycemia, prediabetes, and T2DM. METHODS Data from the Midlife in the United States (MIDUS) study were used. Episodic memory and executive function were assessed using the Brief Test of Adult Cognition by Telephone approximately 21.42 ± 12.10 months prior to measuring IGF-1 levels from a fasting blood sample. Normoglycemia was identified as individuals without a physician diagnosis of diabetes and glycated hemoglobin (HbA1c) ≤5.6%. Prediabetes was identified as those without a physician diagnosis of diabetes and HbA1c between 5.7%-6.4%. T2DM was identified as anyone with a physician diagnosis of diabetes, or HbA1c ≥6.5%, or anyone using an oral hypoglycemic medication. The associations were assessed using linear regressions controlling for age, sex, education, body mass index, C-reactive protein, HbA1c or homeostatic model of insulin resistance, MIDUS wave, exercise, smoking status, sleep quality, alcohol intake, oral hypoglycemic use, and insulin use. RESULTS The study included 1400 participants, which consisted of 583 normoglycemic (48.4% female, mean age 51.0 ± 12.2 years), 512 prediabetes (58.4% female, mean age 57.3 ± 11.8 years), and 305 T2DM participants (53.8% female, mean age 57.6 ± 11.5 years). Peripheral IGF-1 concentrations were lower (F2,1397 = 28.29, p < 0.001) in people with prediabetes or T2DM, vs. normoglycemia. Participants with prediabetes or T2DM had lower episodic memory (F2,1397 = 9.21, p < 0.001) and executive function (F2,1397 = 20.29, p < 0.001) composite z-scores than people with normoglycemia. Higher IGF-1 concentrations were associated with better executive performance in individuals with prediabetes (β = 0.115 [0.028, 0.202], p = 0.010), but not in individuals with normoglycemia or T2DM. An interaction between IGF-1 and sex in predicting executive function was observed in the prediabetes group (β = -0.344, p = 0.042), where the relationship was weaker in females (β = 0.106 [-0.012, 0.224], p = 0.077) than males (β = 0.251 [0.123, 0.380], p < 0.001). No associations were seen between IGF-1 and memory. CONCLUSION The results suggest that peripheral IGF-1 concentrations may be related to executive function, and that the relationship may be sex-specific and dependent on diabetes status.
Collapse
Affiliation(s)
- Si Won Ryoo
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada
| | - Natasha Z Anita
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada
| | - George Perlman
- Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal QC H4A 3J1, Canada
| | - Lisa Y Xiong
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Che-Yuan Wu
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Madeline Wood
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; Rehabilitation Sciences Institute - University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto ON M5G 1V7, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; Rehabilitation Sciences Institute - University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto ON M5G 1V7, Canada; Division of Neurology, Department of Medicine - University of Toronto, C. David Naylor Building, 6 Queen's Park Crescent West, Third Floor, Toronto ON M5S 3H2, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada.
| |
Collapse
|
11
|
Tang J, Zhao C, Lin S, Li X, Zhu B, Li Y. Controversial causal association between IGF family members and osteoporosis: a Mendelian randomization study between UK and FinnGen biobanks. Front Endocrinol (Lausanne) 2024; 14:1332803. [PMID: 38260127 PMCID: PMC10801076 DOI: 10.3389/fendo.2023.1332803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Osteoporosis, a prevalent skeletal disorder characterized by reduced bone strength, is closely linked to the IGF system, crucial for skeletal metabolism. However, the precise nature of this relationship remains elusive. In this study, we employed Mendelian randomization (MR) to unravel the associations between genetically predicted serum IGF system member levels and osteoporosis. Methods A two-sample MR approach was employed to investigate these causal associations based on two individual datasets. Predictions of 14 serum levels of IGF system members were made using 11,036,163 relevant Single Nucleotide Polymorphisms (SNPs) within a cohort of 4,301 individuals of European descent. Genetic association estimates for osteoporosis were derived from two publicly available GWAS consortia: the Finnish consortium from the FinnGen biobank, comprising 212,778 individuals of Finnish descent (3,203 cases and 209,575 controls), and the UK consortium from the UK Biobank, including 337,159 individuals of European descent (5,266 cases and 331,893 controls). Results According to the UK dataset, IGF-1 levels were associated with a reduced risk of osteoporosis, as indicated by the weighted median method (Odds Ratio [OR] = 0.998, 95% CI = 0.997-1.000, P = 0.032). Additionally, higher levels of IGFBP-3 were linked to a decreased risk of osteoporosis using the Inverse-Variance Weighted (IVW) method (OR = 0.999, 95% CI = 0.998-1.000, P = 0.019), and CTGF levels exhibited a negative association with osteoporosis, as determined by the weighted median method (OR = 0.998, 95% CI = 0.996-0.999, P = 0.004). In the FinnGen dataset, IGF-1 and IGFBP-3 were not identified to be associated with osteoporosis. While, IGF-LR1 levels displayed a negative association with osteoporosis, according to the MR-Egger method (OR = 0.886, 95% CI = 0.795-0.987, P = 0.036), while CYR61 was linked to an increased risk of osteoporosis based on both the weighted median and IVW methods (OR = 1.154, 95% CI = 1.009-1.319, P = 0.037, and OR = 1.115, 95% CI = 1.022-1.215, P = 0.014, respectively). Conclusion This study provides compelling evidence that certain IGF family members play a role in the pathogenesis of osteoporosis between different datasets, indicating population specific causal effects between IGF family and osteoporosis. Although the results from both datasets demonstrated that IGF family involved in the pathogenesis of osteoporosis, but the responding key molecules might be various among different population. Subsequent research is warranted to evaluate the potential of these biomarkers as targets for osteoporosis prevention and treatment in specific population.
Collapse
Affiliation(s)
| | | | | | | | - Binlu Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Gao XK, Sheng ZK, Lu YH, Sun YT, Rao XS, Shi LJ, Cong XX, Chen X, Wu HB, Huang M, Zheng Q, Guo JS, Jiang LJ, Zheng LL, Zhou YT. VAPB-mediated ER-targeting stabilizes IRS-1 signalosomes to regulate insulin/IGF signaling. Cell Discov 2023; 9:83. [PMID: 37528084 PMCID: PMC10394085 DOI: 10.1038/s41421-023-00576-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
The scaffold protein IRS-1 is an essential node in insulin/IGF signaling. It has long been recognized that the stability of IRS-1 is dependent on its endomembrane targeting. However, how IRS-1 targets the intracellular membrane, and what type of intracellular membrane is actually targeted, remains poorly understood. Here, we found that the phase separation-mediated IRS-1 puncta attached to endoplasmic reticulum (ER). VAPB, an ER-anchored protein that mediates tethers between ER and membranes of other organelles, was identified as a direct interacting partner of IRS-1. VAPB mainly binds active IRS-1 because IGF-1 enhanced the VAPB-IRS-1 association and replacing of the nine tyrosine residues of YXXM motifs disrupted the VAPB-IRS-1 association. We further delineated that the Y745 and Y746 residues in the FFAT-like motif of IRS-1 mediated the association with VAPB. Notably, VAPB targeted IRS-1 to the ER and subsequently maintained its stability. Consistently, ablation of VAPB in mice led to downregulation of IRS-1, suppression of insulin signaling, and glucose intolerance. The amyotrophic lateral sclerosis (ALS)-derived VAPB P56S mutant also impaired IRS-1 stability by interfering with the ER-tethering of IRS-1. Our findings thus revealed a previously unappreciated condensate-membrane contact (CMC), by which VAPB stabilizes the membraneless IRS-1 signalosome through targeting it to ER membrane.
Collapse
Affiliation(s)
- Xiu Kui Gao
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Zu Kang Sheng
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Hong Lu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Ting Sun
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xi Sheng Rao
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Jing Shi
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Xia Cong
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Bo Wu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man Huang
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejinag, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China
| | - Qiang Zheng
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Jun Jiang
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Li Ling Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejinag, China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China.
| | - Yi Ting Zhou
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China.
- ZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Wang W, Yu K, Zhao SY, Mo DG, Liu JH, Han LJ, Li T, Yao HC. The impact of circulating IGF-1 and IGFBP-2 on cardiovascular prognosis in patients with acute coronary syndrome. Front Cardiovasc Med 2023; 10:1126093. [PMID: 36970368 PMCID: PMC10036580 DOI: 10.3389/fcvm.2023.1126093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundWhile insulin-like growth factor 1 (IGF-1) exerts a cardioprotective effect in the setting of atherosclerosis, insulin-like growth factor binding protein 2 (IGFBP-2) is involved in metabolic syndrome. Although IGF-1 and IGFBP-2 are known to be predictors for mortality in patients with heart failure, their use in clinic as prognostic biomarkers for acute coronary syndrome (ACS) requires investigation. We evaluated the relationship between IGF-1 and IGFBP-2 levels at admission and the risk of major adverse cardiovascular events (MACEs) in patients with ACS.MethodsA total of 277 ACS patients and 42 healthy controls were included in this prospective cohort study. Plasma samples were obtained and analyzed at admission. Patients were followed for MACEs after hospitalization.ResultsAmong patients who suffered acute myocardial infarction, plasma levels of IGF-1 and IGFBP-2 were lower and higher, respectively, as compared to healthy controls (both p < 0.05). The mean follow-up period was 5.22 (1.0–6.0) months and MACEs incidence was 22.4% (62 of 277 patients). Kaplan–Meier survival analysis revealed that patients with low IGFBP-2 levels had a greater event-free survival rate than patients with high IGFBP-2 levels (p < 0.001). Multivariate Cox proportional hazards analysis revealed IGFBP-2, but not IGF-1, to be a positive predictor of MACEs (hazard ratio 2.412, 95% CI 1.360–4.277; p = 0.003).ConclusionOur findings suggest that high IGFBP-2 levels are associated with the development of MACEs following ACS. Moreover, IGFBP-2 is likely an independent predictive marker of clinical outcomes in ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Kang Yu
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Shou-Yong Zhao
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - De-Gang Mo
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jia-Hui Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Li-Jinn Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- Correspondence: Heng-Chen Yao
| |
Collapse
|
14
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
15
|
Meyer NMT, Kabisch S, Dambeck U, Honsek C, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Schwarz PEH, Machann J, Osterhoff MA, Weickert MO, Pfeiffer AFH. Low IGF1 and high IGFBP1 predict diabetes onset in prediabetic patients. Eur J Endocrinol 2022; 187:555-565. [PMID: 36005859 DOI: 10.1530/eje-22-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Some individuals develop type 2 diabetes mellitus (T2DM) despite significant metabolic improvements through lifestyle intervention. We tested the hypotheses that insulin growth factor 1 (IGF1) and its binding proteins 1 and 2 predict the onset of T2DM in prediabetes patients and determine the capacity for metabolic regeneration. DESIGN We measured fasting serum IGF1, insulin growth factor-binding protein 1 (IGFBP1) and IGFBP2 in three randomized controlled lifestyle intervention trials, covering at least 1 year of intervention period and 1 year of additional follow-up. METHODS Within a sample of 414 high-risk prediabetes patients (58% women; 28-80 years), we analyzed fasting serum concentrations of IGF1, IGFBP1 and IGFBP2 in relation to diabetes incidence and metabolic parameters over 2 years. Three hundred and forty-five subjects finished the first year of intervention. RESULTS The interventions significantly improved body weight (BMI: -3.24%, P < 0.001), liver fat (-36.8%, P < 0.001), insulin sensitivity (IS) (homeostatic model assessment-insulin resistance: -6.3%, P < 0.001) and insulin secretion (disposition index: +35%, P < 0.001) in the cohort. Fourteen percent developed T2DM within 2 years. Mean IGFBP1 levels at baseline were lower in prediabetes compared to a healthy population. Also, prediabetes patients with obesity and nonalcoholic fatty liver disease had lower IGFBP1. Those with impaired glucose tolerance had higher IGFBP1 compared to those with only impaired fasting glucose. Baseline IGF1 was lower (122.5 vs 146.6 µg/L) and IGFBP1 was higher (3.32 vs 2.09 µg/L) in subjects who developed T2DM (n = 57), resulting in a significant prediction of diabetes incidence (hazard ratio (HR) IGF1: 0.991 µg/L, P = 0.003; HR IGFBP1: 1.061 µg/L, P = 0.002). This translates into a 20% and 9% difference in T2DM incidence for IGF1 and IGFBP1, respectively. Despite reduced weight, visceral fat and hepatic fat in response to 1 year of lifestyle intervention, those who developed T2DM had not improved insulin sensitivity, glucose tolerance or IGFBP1. CONCLUSIONS Lower IGF1 and higher IGFBP1 in prediabetes predicted the incidence of T2DM, indicating an impairment of beta-cell function, which explains the unresponsiveness to lifestyle intervention.
Collapse
Affiliation(s)
- Nina M T Meyer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ulrike Dambeck
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Caroline Honsek
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Margrit Kemper
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Christiana Gerbracht
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ayman M Arafat
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV - Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Peter E H Schwarz
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Departments for Prevention and Care of Diabetes and Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin A Osterhoff
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
16
|
Research Progress on Neuroprotection of Insulin-like Growth Factor-1 towards Glutamate-Induced Neurotoxicity. Cells 2022; 11:cells11040666. [PMID: 35203315 PMCID: PMC8870287 DOI: 10.3390/cells11040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and its binding proteins and receptors are widely expressed in the central nervous system (CNS), proposing IGF-1-induced neurotrophic actions in normal growth, development, and maintenance. However, while there is convincing evidence that the IGF-1 system has specific endocrine roles in the CNS, the concept is emerging that IGF-I might be also important in disorders such as ischemic stroke, brain trauma, Alzheimer’s disease, epilepsy, etc., by inducing neuroprotective effects towards glutamate-mediated excitotoxic signaling pathways. Research in rodent models has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 was administered by different routes, and several clinical studies have shown safety and promise of efficacy in neurological disorders of the CNS. Focusing on the relationship between IGF-1-induced neuroprotection and glutamate-induced excitatory neurotoxicity, this review addresses the research progress in the field, intending to provide a rationale for using IGF-I clinically to confer neuroprotective therapy towards neurological diseases with glutamate excitotoxicity as a common pathological pathway.
Collapse
|
17
|
Herman-Bonert VS, Melmed S. Growth Hormone. THE PITUITARY 2022:91-129. [DOI: 10.1016/b978-0-323-99899-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Kamei H, Duan C. Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. Gen Comp Endocrinol 2021; 314:113922. [PMID: 34606746 DOI: 10.1016/j.ygcen.2021.113922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
The size of an organ is proportional to the other body parts or the whole body. This relationship is known as allometry. Understanding how allometry is determined is a fundamental question in biology. Here we tested the hypothesis that local insulin-like growth factor (Igf) signaling is critical in regulating organ size and its allometric scaling by organ-specific expression of Igf binding protein (Igfbp). Overexpression of Igfbp2a or 5b in the developing zebrafish eye, heart, and inner ear resulted in a disproportional reduction in their growth relative to the body. Stable transgenic zebrafish with lens-specific Igfbp5b expression selectively reduced adult eye size. The action is Igf-dependent because an Igf-binding deficient Igfbp5b mutant had no effect. Targeted expression of a dominant-negative Igf1 receptor (dnIgf1r) in the lens caused a similar reduction in relative eye growth. Furthermore, co-expression of IGF-1 with an Igfbp restored the eye size. Finally, co-expression of a constitutively active form of Akt with Igfbp or dnIgf1r restored the relative eye growth. These data suggest that local Igf availability and Igf signaling activity are critical determinants of organ size and allometric scaling in zebrafish.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, United States
| |
Collapse
|
19
|
Франциянц ЕМ, Сурикова ЕИ, Каплиева ИВ, Бандовкина ВA, Нескубина ИВ, Шейко ЕА, Морозова МИ, Котиева ИМ. [Diabetes mellitus and cancer: a system of insulin-like growth factors]. PROBLEMY ENDOKRINOLOGII 2021; 67:34-42. [PMID: 34766488 PMCID: PMC9112852 DOI: 10.14341/probl12741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 04/12/2023]
Abstract
Diabetes mellitus and malignant tumors are among the most common and complex diseases. Epidemiological studies have shown a strong relationship between these pathologies. The causality of this relationship has not yet been unambiguously established, but a number of probable biological mechanisms have been proposed to explain it through the effects of hyperglycemia, hyperinsulinemia on the process of oncogenesis. An important role in this is played by the axis of insulin-like growth factors, their receptors and binding proteins (IGF / IGFR / IGFBP). The review provides data on the structural elements of the insulin / IGF / IGFR / IGFBP signaling axis and their internal relationships in diabetes mellitus and in the development of malignant tumors. Significant changes in the axis that occur during the formation of the diabetic environment prepare the background, which, under certain conditions, can lead to the stimulation or inhibition of tumor development. The considered signaling system, playing a significant role in the physiology of normal cells, often functions as a decisive factor in the survival of tumor cells, providing fine context-dependent regulation of many cellular processes associated with oncogenesis. However, despite many years of in-depth studies of the pathogenesis of diabetes mellitus and malignant tumors, the molecular mechanisms of the relationship between these pathologies are still largely unclear, and the internal heterogeneity of pathologies complicates research and interpretation of the results, leaving many questions.
Collapse
Affiliation(s)
| | - Е. И. Сурикова
- Национальный медицинский исследовательский центр онкологии
| | - И. В. Каплиева
- Национальный медицинский исследовательский центр онкологии
| | | | | | - Е. А. Шейко
- Национальный медицинский исследовательский центр онкологии
| | - М. И. Морозова
- Национальный медицинский исследовательский центр онкологии
| | - И. М. Котиева
- Национальный медицинский исследовательский центр онкологии
| |
Collapse
|
20
|
Elucidating mechano-pathology of osteoarthritis: transcriptome-wide differences in mechanically stressed aged human cartilage explants. Arthritis Res Ther 2021; 23:215. [PMID: 34399844 PMCID: PMC8365911 DOI: 10.1186/s13075-021-02595-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background Failing of intrinsic chondrocyte repair after mechanical stress is known as one of the most important initiators of osteoarthritis. Nonetheless, insight into these early mechano-pathophysiological processes in age-related human articular cartilage is still lacking. Such insights are needed to advance clinical development. To highlight important molecular processes of osteoarthritis mechano-pathology, the transcriptome-wide changes following injurious mechanical stress on human aged osteochondral explants were characterized. Methods Following mechanical stress at a strain of 65% (65%MS) on human osteochondral explants (n65%MS = 14 versus ncontrol = 14), RNA sequencing was performed. Differential expression analysis between control and 65%MS was performed to determine mechanical stress-specific changes. Enrichment for pathways and protein-protein interactions was analyzed with Enrichr and STRING. Results We identified 156 genes significantly differentially expressed between control and 65%MS human osteochondral explants. Of note, IGFBP5 (FC = 6.01; FDR = 7.81 × 10−3) and MMP13 (FC = 5.19; FDR = 4.84 × 10−2) were the highest upregulated genes, while IGFBP6 (FC = 0.19; FDR = 3.07 × 10−4) was the most downregulated gene. Protein-protein interactions were significantly higher than expected by chance (P = 1.44 × 10−15 with connections between 116 out of 156 genes). Pathway analysis showed, among others, enrichment for cellular senescence, insulin-like growth factor (IGF) I and II binding, and focal adhesion. Conclusions Our results faithfully represent transcriptomic wide consequences of mechanical stress in human aged articular cartilage with MMP13, IGF binding proteins, and cellular senescence as the most notable results. Acquired knowledge on the as such identified initial, osteoarthritis-related, detrimental responses of chondrocytes may eventually contribute to the development of effective disease-modifying osteoarthritis treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02595-8.
Collapse
|
21
|
Chen S, Jing J, Yuan Y, Feng J, Han X, Wen Q, Ho TV, Lee C, Chai Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep 2021; 32:108007. [PMID: 32783935 PMCID: PMC7461627 DOI: 10.1016/j.celrep.2020.108007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Stem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown. Using single-cell RNA sequencing, we show heterogeneity among Gli1+ MSCs and identify a subpopulation of Runx2+/Gli1+ cells in the adult mouse incisor. These Runx2+/Gli1+ cells are strategically located between MSCs and transit-amplifying cells (TACs). They are not stem cells but help to maintain the MSC niche via IGF signaling to regulate TAC proliferation, differentiation, and incisor growth rate. ATAC-seq and chromatin immunoprecipitation reveal that Runx2 directly binds to Igfbp3 in niche cells. This Runx2-mediated IGF signaling is crucial for regulating the MSC niche and maintaining tissue homeostasis to support continuous growth of the adult mouse incisor, providing a model for analysis of the molecular regulation of the MSC niche.
Collapse
Affiliation(s)
- Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Chelsea Lee
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
22
|
Castro-Diehl C, Song RJ, Sawyer DB, Wollert KC, Mitchell GF, Cheng S, Vasan RS, Xanthakis V. Circulating growth factors and cardiac remodeling in the community: The Framingham Heart Study. Int J Cardiol 2021; 329:217-224. [PMID: 33422565 PMCID: PMC7940564 DOI: 10.1016/j.ijcard.2020.12.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Cardiac and vascular growth factors (GF) may influence myocardial remodeling through cardiac growth and angiogenic effects. We hypothesized that concentrations of circulating GF are associated with cardiac remodeling traits. METHODS We related blood concentrations of vascular endothelial GF (VEGF), VEGFR-1 (sFlt1), angiopoietin 2 (Ang-2), soluble angiopoietin type-2 receptor (sTie2), hepatocyte GF (HGF), insulin-like GF (IGF)-1, IGF binding protein (IGFBP)-3, and growth differentiation factor-15 (GDF-15) to echocardiographic traits in 3151 Framingham Study participants (mean age 40 years, 55% women). We evaluated the following measures: left ventricular (LV) mass index (LVMi), LV ejection fraction (LVEF), global longitudinal strain (GLS), mitral E/e', and aortic root diameter (AoR). All biomarker values were sex-standardized. RESULTS In multivariable-adjusted analyses, higher GDF-15 concentrations were associated with higher log-LVMi (β = 0.009 per SD, P = 0.01). Similarly, sTie2 concentrations were positively associated with log-E/e' (β = 0.011 per SD, P = 0.04). IGF-1 and Ang-2 concentrations were positively and negatively associated with GLS, respectively (βIGF-1 = 0.16 per SD and βAng-2 = -0.15 per SD, both P < 0.05), whereas higher sFlt1 and Ang-2 levels were associated with smaller log-AoR (βsFlt1 = -0.004 per SD and β Ang-2 = -0.005 per SD, respectively; P < 0.05). CONCLUSION In our large community-based sample, we observed patterns of associations between several circulating vascular GF and cardiac remodeling indices that are consistent with the known biological effects of these pro- and anti-angiogenic factors on the myocardium and conduit arteries. Additional studies are warranted to replicate our findings and assess their prognostic significance.
Collapse
Affiliation(s)
- Cecilia Castro-Diehl
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Rebecca J Song
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Douglas B Sawyer
- Department of Cardiovascular Medicine, Maine Medical Center, Portland, ME, USA
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA; Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA; Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vanessa Xanthakis
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA..
| |
Collapse
|
23
|
Ferreira ST. Brain insulin, insulin-like growth factor 1 and glucagon-like peptide 1 signalling in Alzheimer's disease. J Neuroendocrinol 2021; 33:e12959. [PMID: 33739563 DOI: 10.1111/jne.12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Although the brain was once considered an insulin-independent organ, insulin signalling is now recognised as being central to neuronal health and to the function of synapses and brain circuits. Defective brain insulin signalling, as well as related signalling by insulin-like growth factor 1 (IGF-1), is associated with neurological disorders, including Alzheimer's disease, suggesting that cognitive impairment could be related to a state of brain insulin resistance. Here, I briefly review key epidemiological/clinical evidence of the association between diabetes, cognitive decline and AD, as well as findings of reduced components of insulin signalling in AD brains, which led to the initial suggestion that AD could be a type of brain diabetes. Particular attention is given to recent studies illuminating mechanisms leading to neuronal insulin resistance as a key driver of cognitive impairment in AD. Evidence of impaired IGF-1 signalling in AD is also examined. Finally, we discuss potentials and possible limitations of recent and on-going therapeutic approaches based on our increased understanding of the roles of brain signalling by insulin, IGF-1 and glucagon-like peptide 1 in AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Schüler R, Markova M, Osterhoff MA, Arafat A, Pivovarova O, Machann J, Hierholzer J, Hornemann S, Rohn S, Pfeiffer AFH. Similar dietary regulation of IGF-1- and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr 2021; 60:3499-3504. [PMID: 33686453 PMCID: PMC8354897 DOI: 10.1007/s00394-021-02518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Increased animal but not plant protein intake has been associated with increased mortality in epidemiological studies in humans and with reduced lifespan in animal species. Protein intake increases the activity of the IGF-1 system which may provide a link to reduced lifespan. We, therefore, compared the effects of animal versus plant protein intake on circulating levels of IGF-1 and the IGF-binding proteins (IGFBP)-1 and IGFBP-2 over a 6-week period. Thirty seven participants with type 2 diabetes consumed isocaloric diets composed of either 30% energy (EN) animal or plant protein, 30% EN fat and 40% EN carbohydrates for 6 weeks. The participants were clinically phenotyped before and at the end of the study. Both diets induced similar and significant increases of IGF-1 which was unaffected by the different amino acid compositions of plant and animal protein. Despite improvements of insulin sensitivity and major reductions of liver fat, IGFBP2 decreased with both diets while IGFBP-1 was not altered. We conclude that animal and plant protein similarly increase IGF-1 bioavailability while improving metabolic parameters and may be regarded as equivalent in this regard.
Collapse
Affiliation(s)
- Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Ayman Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Section of Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Hierholzer
- Diagnostic and Interventional Radiology, Klinikum Ernst von Bergmann, Academic Teaching Hospital, Charité-Universitätsmedizin Berlin, Potsdam, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Department Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
25
|
Mohamed AA, Abd-Elsalam S, El-Daly MM, Kamal N, Saed SM, Mohamoud S, Abed HA, Abdelghany RS, Ahmed SH. Insulin Growth Factor-1 as a Predictor for the Progression of Hepatic Disease in Chronic Hepatitis B Virus Infection. THE OPEN BIOMARKERS JOURNAL 2021; 11:1-7. [DOI: 10.2174/1875318302111010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 09/01/2023]
Abstract
Background & Aims:
The aim of this study was to assess IGF-1 in chronic liver diseases associated with HBV infection and describe the impact of liver status on IGF-1 variables.
Methods:
This cohort study included 348 subjects and conducted between December 2018 and December 2019 at El-Sahel Teaching Hospital, Cairo, Egypt. Subjects were divided into 4 groups: group I included HBV positive hepatocellular carcinoma patients “HCC” (n= 87), group II included HBV positive patients with liver cirrhosis “LC” (n = 87), group III included chronic hepatitis B (CHB) patients with neither HCC nor cirrhosis “CHB” (n = 87) and group IV of healthy volunteers as controls (n = 87). Serum IGF-1 was measured quantitatively using a commercially available enzyme immunoassay.
Results:
Serum levels of IGF-1 were measured in each of the 4 groups. The comparison showed marked differences in IGF1-related measures. It was found to be significantly reduced in HCC patients (32.08 ± 9.2 ng/ml), LC patients (50.6±14.1ng/ml) and CHB patients (61.4±14.3 ng/ml) in comparison to healthy subjects (140.4±49.9 ng/ml). The reduction of IGF-1 levels was also statistically significant between both HCC and LC patients and CHB patients also between HCC and LC patients.
Conclusion:
Serum IGF-1 levels are significantly reduced with the progression of hepatic disease in HBV patients and it may be a promising serological marker alone or in association with others for prediction of development of liver cirrhosis and HCC in chronic HBV patients.
Collapse
|
26
|
Grochowska E, Lisiak D, Akram MZ, Adeniyi OO, Lühken G, Borys B. Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat Sci 2020; 172:108314. [PMID: 32987303 DOI: 10.1016/j.meatsci.2020.108314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to genotype the polymorphism (c.654G > A) in the exon 3 of the insulin-like growth factor 1 receptor gene (IGF1R) and to analyze its association with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. In total, 67 traits were analyzed. The IGF1R polymorphism was genotyped using the polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) method. The MIXED procedure of the SAS software was used to assess the genotypic effects of the polymorphism (c.654G > A) on production traits of interest. The IGF1R c.654G > A genotypes were found to have a significant effect on the average daily gain between the 56th and 78th day of life, cold carcass, leg part, leg cut, fore shank, and kidney weights, as well as eye of loin depth, intramuscular fat content, and water-holding capacity of meat. The results suggest that the studied polymorphism may provide useful information for marker-assisted selection for increased meat performance in Colored Polish Merino sheep.
Collapse
Affiliation(s)
- E Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28 St, 85-084 Bydgoszcz, Poland.
| | - D Lisiak
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - M Z Akram
- Department of Animal Production and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - O O Adeniyi
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - G Lühken
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - B Borys
- National Research Institute of Animal Production, Experimental Station Kołuda Wielka, Parkowa 1 St., 88-160 Janikowo, Poland
| |
Collapse
|
27
|
Yang J, Zhou W, Wu Y, Xu L, Wang Y, Xu Z, Yang Y. Circulating IGFBP-2 levels are inversely associated with the incidence of nonalcoholic fatty liver disease: A cohort study. J Int Med Res 2020; 48:300060520935219. [PMID: 32762395 PMCID: PMC7707858 DOI: 10.1177/0300060520935219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective The insulin-like growth factor (IGF) axis is essential for the body’s metabolism. The hepatokine, insulin-like growth factor-binding protein 2 (IGFBP-2), acts as a major regulator of this metabolism. We aimed to evaluate the role of serum IGFBP-2 in the incidence of nonalcoholic fatty liver disease (NAFLD). Methods This hospital-based prospective cohort study recruited residents from a health program from January to November 2013, and re-invited them for follow-up in 2016. The occurrence of NAFLD was noted and IGFBP-2 levels were evaluated by enzyme-linked immunosorbent assay at both visits. Results Of 763 participants at baseline, 296 completed the re-evaluation. Baseline serum IGFBP-2 levels were significantly lower in subjects with NAFLD compared with those without NAFLD. Circulating IGFBP-2 levels were negatively correlated with body mass index, waist-to-hip ratio, alanine transaminase, triglycerides, fasting glucose, and insulin. IGFBP-2 levels at follow-up decreased in subjects who developed NAFLD compared with those who did not. Higher circulating levels of IGFBP-2 at baseline were negatively associated with the incidence of NAFLD. Conclusion These results indicate that IGFBP-2 levels are inversely associated with the risk of NAFLD. This offers new insights into the role of circulating IGFBP-2, as an IGF-axis hepatokine, in the pathogenesis of hepatic steatosis.
Collapse
Affiliation(s)
- Ji Yang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wenjing Zhou
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Wu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liqian Xu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuming Wang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zherong Xu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
28
|
Kamei H. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. Gen Comp Endocrinol 2020; 294:113473. [PMID: 32247621 DOI: 10.1016/j.ygcen.2020.113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Oxygen is indispensable for the efficient release of chemical energy from nutrient molecules in cells. Therefore, the local oxygen tension is one of the most critical factors affecting physiological processes. In most viviparous species, many pathological conditions result in abnormal oxygen tension in the uterus, which modifies the growth and development of the fetus. Insulin-like growth factor (IGF/Igf) is one of the most important hormones for the regulation of somatic growth in animals. Changes in oxygen levels modulate the activity of the IGF/Igf signaling system, which in turn regulates the embryonic growth rate. In general, there are serious difficulties associated with monitoring and studying rodent embryos in utero. The zebrafish is a convenient experimental model to study the relationship between embryonic growth and environmental conditions. Most importantly, the fish model makes it possible to rapidly evaluate embryonic growth and development under entirely controlled environments without interfering with the mother organism. In this review, firstly an overview is given of the fluctuation of environmental oxygen, the IGF-system, and the advantages of the zebrafish model for studying embryonic growth. Then, the relationships of dynamic environmental oxygen and embryonic growth rate are outlined with a specific focus on the changes in the IGF/Igf-system in the zebrafish model. This review will shed light on the fine-tuning mechanisms of the embryonic IGF/Igf-system under different oxygen levels, including constant normoxia, hypoxia, and re-oxygenation.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| |
Collapse
|
29
|
Yang G, Zhao W, Qin C, Yang L, Meng X, Lu R, Yan X, Cao X, Zhang Y, Nie G. Molecular identification of grass carp igfbp2 and the effect of glucose, insulin, and glucagon on igfbp2 mRNA expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1469-1482. [PMID: 32323051 DOI: 10.1007/s10695-020-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The GH (growth hormone)/IGFs (insulin-like growth factors) system has an important function in the regulation of growth. In this system, IGFBPs play a crucial regulatory role in IGF functions. As a member of the IGFBP family, IGFBP2 can bind to IGF and regulate IGF functions to regulate development and growth. In addition, IGFBP2 shows key regulatory functions in cell proliferation and metabolism. In this study, the igfbp2 gene was cloned from grass carp (Ctenopharyngodon idellus) liver. The ORF of grass carp igfbp2 is 834 bp long and encodes 277 amino acids. The tissue distribution results showed that igfbp2 is expressed in multiple tissues in grass carp and has a high expression level in the liver. In the OGTT, igfbp2 expression was significantly decreased in the liver and brain after 6 h of treatment with glucose. In vitro, igfbp2 expression in grass carp's primary hepatocytes was significantly suppressed by insulin after treatment for 6 and 12 h. Moreover, igfbp2 expression was markedly increased in a dose-dependent manner with glucagon incubation in grass carp's primary hepatocytes. To the best of our knowledge, this is the first report about Igfbp2 in grass carp. These results will provide a basis for the in-depth study of grass carp Igfbp2.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
30
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters gene expression associated with hormonal signaling, cellular differentiation, and protein metabolism in muscle of newly hatch chicks. Gen Comp Endocrinol 2020; 292:113445. [PMID: 32135160 DOI: 10.1016/j.ygcen.2020.113445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Birds rely solely on utilization of the yolk sac as a means of nutritional support throughout embryogenesis and early post-hatch, before first feeding occurs. Newly hatched broiler (meat-type) chickens are frequently not given immediate access to feed, and this can result in numerous alterations to developmental processes, including those that occur in muscle. The objective of this study was to characterize the gene expression profile of newly hatched chicks' breast muscle with regards to hormonal regulation of growth and metabolism and development and differentiation of muscle tissue, and determine impacts of delayed access to feed on these profiles. Within 3 h of hatch, birds were placed in battery pens and given immediate access to feed (Fed) or delayed access to feed for 48 h (Delayed Fed). Breast muscle collected from male birds at hatch, or 4 h, 1 day (D), 2D, 4D, and 8D after hatch was used for analysis of mRNA expression by reverse transcription-quantitative PCR. Under fully fed conditions, insulin-like growth factor receptor and leptin receptor mRNA expression decreased as birds aged; however, delayed access to feed resulted in prolonged upregulation of these genes so their mRNA levels were higher in Delayed Fed birds at 2D. These expression profiles suggest that delayed feed access alters sensitivity to hormones that may regulate muscle development. Myogenin, a muscle differentiation factor, showed increasing mRNA expression in Fed birds through 2D, after which expression decreased. A similar expression pattern in Delayed Fed birds was deferred until 4D. Levels of myostatin, a negative regulator of muscle growth, increased in Fed birds starting at 2D, while levels in Delayed Fed birds began to increase at 4D. In Fed birds, levels of transcripts for two genes associated with protein catabolism, F-box protein 32 and forkhead box O3, were lower at 2D, while Delayed Fed mRNA levels did not decrease until 4D. Mechanistic target of rapamycin mRNA levels decreased from 1D through 8D in both treatments, except for a transient increase in the Delayed Fed birds between 1D and 2D. These data suggest that within breast muscle, delayed feeding alters hormonal signaling, interrupts tissue differentiation, postpones onset of growth, and may lead to increased protein catabolism. Together, these processes could ultimately contribute to a reduction in proper growth and development of birds not given feed immediately after hatch, and ultimately hinder the long-term potential of muscle accretion in meat type birds.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Northeast Area, 10300 Baltimore Ave, BARC-East, Bldg 200, Beltsville, MD 20705, USA.
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| |
Collapse
|
31
|
Martínez-Castillo M, Rosique-Oramas D, Medina-Avila Z, Pérez-Hernández JL, Higuera-De la Tijera F, Santana-Vargas D, Montalvo-Jave EE, Sanchez-Avila F, Torre A, Kershenobich D, Gutierrez-Reyes G. Differential production of insulin-like growth factor-binding proteins in liver fibrosis progression. Mol Cell Biochem 2020; 469:65-75. [PMID: 32301061 DOI: 10.1007/s11010-020-03728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Noninvasive methods for liver disease diagnoses offer great advantages over biopsy, but they cannot be utilized in all cases. Therefore, specific indicators for chronic liver disease management are necessary. The aim was to assess the production of insulin-like growth factor-binding proteins (IGFBPs) 1-7 and their correlation with the different stages of fibrosis in chronic hepatitis C (CHC). A prospective, cross-sectional, multicenter study was conducted. CHC patients were categorized by FibroTest® and/or FibroScan®. Serum concentrations of IGFBPs 1-7 were determined through multiple suspension arrangement array technology. Significant differences were validated by the Kruskal-Wallis and Mann-Whitney U tests. Logistic regression models were performed to assess the association between the IGFBPs and fibrosis stages. The association was determined utilizing odds ratios (ORs), and receiver operating characteristic (ROC) curves were constructed to distinguish the IGFBPs in relation to the diagnosis of fibrosis. IGFBP-1 and IGFBP-7 concentrations were higher in CHC than in the healthy individuals, whereas IGFBP-3, IGFBP-5, and IGFBP-6 were downregulated in the patients. An apparent increase of all the IGFBPs was found at fibrosis stage F4, but with different regulations. IGFBP-2, -4, -6, and -7 had the best OR, showing the relation to fibrosis progression. The ROC curves showed that IGFBP-7 was the only protein that distinguished F1 from F3 and F2 from F3. IGFBPs participate in liver fibrosis progression and could be employed as circulating novel protein panels for diagnosis and as possible therapeutic targets in liver fibrosis progression.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | - Dorothy Rosique-Oramas
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | - Zaira Medina-Avila
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | | | | | | | | | - Francico Sanchez-Avila
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - Aldo Torre
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - David Kershenobich
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - Gabriela Gutierrez-Reyes
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico.
| |
Collapse
|
32
|
Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernandez C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines. Animals (Basel) 2020; 10:E800. [PMID: 32380764 PMCID: PMC7277336 DOI: 10.3390/ani10050800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFβ3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFβ3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Katerina Vernerova
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Rene Kizek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Riccardo Bozzi
- Food, Environment and Forestry, Animal Science Section, Department of Agriculture, University of Florence, Via delle Cascine, 5, 50144 Firenze, Italy;
| | - Jaromir Kadlec
- Department of Agricultural Products’ Quality, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Frantisek Kouba
- State Veterinary Administration, Regional Veterinary Administration of the South Bohemian Region, Severní 9, 370 10 České Budějovice, Czech Republic;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Vlastislav Machander
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| | - Hana Horna
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| |
Collapse
|
33
|
Chen Y, Renfree MB. Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby. Genes (Basel) 2020; 11:genes11010106. [PMID: 31963388 PMCID: PMC7017150 DOI: 10.3390/genes11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32603, USA
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| |
Collapse
|
34
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
35
|
Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, Goding CR, Vance KW. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet 2019; 15:e1008501. [PMID: 31881017 PMCID: PMC6934268 DOI: 10.1371/journal.pgen.1008501] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
The MITF and SOX10 transcription factors regulate the expression of genes important for melanoma proliferation, invasion and metastasis. Despite growing evidence of the contribution of long noncoding RNAs (lncRNAs) in cancer, including melanoma, their functions within MITF-SOX10 transcriptional programmes remain poorly investigated. Here we identify 245 candidate melanoma associated lncRNAs whose loci are co-occupied by MITF-SOX10 and that are enriched at active enhancer-like regions. Our work suggests that one of these, Disrupted In Renal Carcinoma 3 (DIRC3), may be a clinically important MITF-SOX10 regulated tumour suppressor. DIRC3 depletion in human melanoma cells leads to increased anchorage-independent growth, a hallmark of malignant transformation, whilst melanoma patients classified by low DIRC3 expression have decreased survival. DIRC3 is a nuclear lncRNA that activates expression of its neighbouring IGFBP5 tumour suppressor through modulating chromatin structure and suppressing SOX10 binding to putative regulatory elements within the DIRC3 locus. In turn, DIRC3 dependent regulation of IGFBP5 impacts the expression of genes involved in cancer associated processes and is needed for DIRC3 control of anchorage-independent growth. Our work indicates that lncRNA components of MITF-SOX10 networks are an important new class of melanoma regulators and candidate therapeutic targets that can act not only as downstream mediators of MITF-SOX10 function but as feedback regulators of MITF-SOX10 activity.
Collapse
Affiliation(s)
- Elizabeth A. Coe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jennifer Y. Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Michael Shapiro
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Andrew R. Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ana C. Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Keith W. Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
36
|
Wang H, Zhu X, Shen J, Zhao EF, He D, Shen H, Liu H, Zhou Y. Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. BMC Genomics 2019; 20:725. [PMID: 31601169 PMCID: PMC6788010 DOI: 10.1186/s12864-019-6089-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The underlying physiological mechanisms associated with aging are still complex and unclear. As a very important tissue of human body, the circulatory system also plays a very important role in the process of aging. In this study, we use the isobaric tags for relative and absolute quantification (iTRAQ) method to identify differentially expressed proteins in plasma for humans and monkeys between young and aged. Western blotting and behavioral experiment in mice were performed to validate the expression of the candidate protein. RESULTS Between the young / the old humans and the young / the old monkeys 74 and 69 proteins were found to be differently expressed, respectively. For the human samples, these included 38 up-regulated proteins and 36 down-regulated proteins (a fold change ≥1.3 or ≤ 0.667, p value ≤0.05).For the monkey samples, 51 up-regulated proteins and 18 down-regulated proteins (a fold change ≥1.3 or ≤ 0.667, p value ≤0.05). KEGG pathway analysis revealed that phagosome, focal adhesion, ECM-receptor interaction and PI3K/AKT signaling pathway were the most common pathways involved in aging. We found only IGFBP4 protein that existed in up-regulated proteins in aged both for human and monkey. In addition, the differential expression of IGFBP4 was validated by western blot analysis and IGFBP4 treatment mimicked aging-related cognitive dysfunction in mice. CONCLUSIONS This first, the integrated proteomics for the plasma protein of human and monkey reveal one protein-IGFBP4, which was validated by western blotting and behavioral analysis can promote the process of aging. And, iTRAQ analysis showed that proteolytic systems, and inflammatory responses plays an important role in the process of aging. These findings provide a basis for better understanding of the underlying mechanisms involved in aging.
Collapse
Affiliation(s)
- Hao Wang
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Xiaoqi Zhu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Junyan Shen
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - En-Feng Zhao
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Dajun He
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Haitao Shen
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Hailiang Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yongxin Zhou
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Macháčková K, Mlčochová K, Potalitsyn P, Hanková K, Socha O, Buděšínský M, Muždalo A, Lepšík M, Černeková M, Radosavljević J, Fábry M, Mitrová K, Chrudinová M, Lin J, Yurenko Y, Hobza P, Selicharová I, Žáková L, Jiráček J. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem 2019; 294:17371-17382. [PMID: 31558604 PMCID: PMC6873181 DOI: 10.1074/jbc.ra119.010072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Indexed: 11/26/2022] Open
Abstract
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58–IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
Collapse
Affiliation(s)
- Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Květoslava Mlčochová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Kateřina Hanková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Anja Muždalo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Michaela Černeková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, 166 37 Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| |
Collapse
|
38
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
39
|
Campbell GA, Patrie JT, Gaylinn BD, Thorner MO, Bolton WK. Oral ghrelin receptor agonist MK-0677 increases serum insulin-like growth factor 1 in hemodialysis patients: a randomized blinded study. Nephrol Dial Transplant 2019; 33:523-530. [PMID: 28340044 DOI: 10.1093/ndt/gfw474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
Background Protein-energy wasting (PEW) in end-stage renal disease (ESRD) patients is associated with increased morbidity and mortality, but options for treatment are limited. Growth hormone (GH) increases insulin-like growth factor 1 (IGF-1), with improved nutritional parameters, but must be given subcutaneously and does not provide normal GH secretion patterns. MK-0677, an oral ghrelin receptor agonist (GRA), maintains normal GH secretion and increases lean body mass in normal subjects; it has not been studied in dialysis patients, an essential step in assessing efficacy and safety prior to clinical trials. Methods We performed a randomized crossover double-blind study in assessing the effect of MK-0677 versus placebo on IGF-1 levels, the primary outcome, in hemodialysis patients. In total, 26 subjects enrolled and 22 completed the 3-month crossover study. Results The geometric mean IGF-1 was 1.07-fold greater [95% confidence interval (CI) 0.89-1.27; P = 0.718] after placebo. In patients receiving MK-0677, the geometric mean IGF-1 were 1.76-fold greater (95% CI 1.48-2.10; P < 0.001) following MK-0677. When the data were adjusted for preintervention IGF-1 concentration, the ratio of geometric means (MK-0677 relative to placebo) for the pre- versus postintervention change in the IGF-1 was 1.65 (95% CI 1.33-2.04; P < 0.001). These data demonstrate a 65% greater increase (95% CI 33-104%) in IGF-1 in MK-0677-dosed subjects compared with placebo. There were no serious adverse effects attributable to MK-0677. Conclusions MK-0677 increased serum IGF-1 levels with minimal adverse effects in hemodialysis subjects. Studies are needed to evaluate whether long-term therapy with MK-0677 improves PEW, lean body mass, physical strength, quality of life and survival in CKD/ESRD patients.
Collapse
Affiliation(s)
- Garland A Campbell
- Division of Nephrology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - James T Patrie
- PBHS Public Health Sciences Administration, Public Health Sciences, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Bruce D Gaylinn
- Division of Endocrinology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Michael O Thorner
- Division of Endocrinology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Warren K Bolton
- Division of Nephrology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| |
Collapse
|
40
|
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol 2019; 107:205-219. [PMID: 31330095 DOI: 10.1002/jlb.mr0519-143r] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
41
|
Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 ( insulin-like growth factor 1). J Biol Chem 2019; 294:9746-9759. [PMID: 31073032 PMCID: PMC6597841 DOI: 10.1074/jbc.ra119.008759] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer-associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and suggested that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara A Grimm
- the Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - John P Lydon
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J Demayo
- Pregnancy & Female Reproduction Group, Reproductive and Developmental Biology Laboratory and
| | | |
Collapse
|
42
|
Abstract
The aim of the review is to examine the role of growth factors and cytokines in the management of Diabetic Foot Ulcers, such as platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and Insulin like growth factor (IGF). Taking this a step further, the role of Hypoxia-inducible factors (HIFs), Transforming growth factor beta 1 (TGF-β-1) and other growth factors have also been examined, with regard to the treatment of diabetic foot ulcers. The roles of these above-mentioned growth cytokines have been analyzed by studying various scholastic articles. The complete process of wound healing is implemented and regulated by numerous cytokines and human growth factors. The findings of the study indicate that wound healing of diabetic foot ulcers is a complex and extremely challenging biological and molecular process that involves coordinated efforts of multiple cell types. The therapeutic effects of various growth factors in the clinical management of wounds are chronic venous ulcers, pressure ulcers, and diabetic foot ulcers. It has been concluded that altercations of various cytokines are found in patients enduring diabetic foot ulcers. In a similar way, changes in the level of cytokines are also found in patients suffering from other diabetic complications such as diabetic nephropathy, retinopathy, and neuropathy. Subsequently, the diabetic wound healing process can be accelerated by regulating the levels of the cytokines.
Collapse
Affiliation(s)
- Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia.
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
43
|
Seonwoo H, Kim SW, Shin B, Jang KJ, Lee M, Choo OS, Choi MJ, Kim J, Lim KT, Jang JH, Chung JH, Choung YH. Latent stem cell-stimulating therapy for regeneration of chronic tympanic membrane perforations using IGFBP2-releasing chitosan patch scaffolds. J Biomater Appl 2019; 34:198-207. [PMID: 31060420 DOI: 10.1177/0885328219845082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hoon Seonwoo
- 1 Department of Industrial Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon, Republic of Korea
| | - Seung Won Kim
- 2 Department of Burns and Plastic Surgery, Affiliated Hospital of Yanbian University, Yanji, Jilin, P. R. China
| | - Beomyong Shin
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Kyoung-Je Jang
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Myungchul Lee
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Oak-Sung Choo
- 5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,6 Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Jin Choi
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jangho Kim
- 7 Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Ki-Taek Lim
- 8 Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong Hun Jang
- 5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jong Hoon Chung
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,9 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hoon Choung
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.,5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,6 Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
44
|
Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS One 2019; 14:e0215913. [PMID: 31022261 PMCID: PMC6483353 DOI: 10.1371/journal.pone.0215913] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/04/2022] Open
Abstract
The study of selection signatures helps to find genomic regions that have been under selective pressure and might host genes or variants that modulate important phenotypes. Such knowledge improves our understanding of how breeding programmes have shaped the genomes of livestock. In this study, 942 stallions were included from four, exemplarily chosen, German warmblood breeds with divergent historical and recent selection focus and different crossbreeding policies: Trakehner (N = 44), Holsteiner (N = 358), Hanoverian (N = 319) and Oldenburger (N = 221). Those breeds are nowadays bred for athletic performance and aptitude for show-jumping, dressage or eventing, with a particular focus of Holsteiner on the first discipline. Blood samples were collected during the health exams of the stallion preselections before licensing and were genotyped with the Illumina EquineSNP50 BeadChip. Autosomal markers were used for a multi-method search for signals of positive selection. Analyses within and across breeds were conducted by using the integrated Haplotype Score (iHS), cross-population Extended Haplotype Homozygosity (xpEHH) and Runs of Homozygosity (ROH). Oldenburger and Hanoverian showed very similar iHS signatures, but breed specificities were detected on multiple chromosomes with the xpEHH. The Trakehner clustered as a distinct group in a principal component analysis and also showed the highest number of ROHs, which reflects their historical bottleneck. Beside breed specific differences, we found shared selection signals in an across breed iHS analysis on chromosomes 1, 4 and 7. After investigation of these iHS signals and shared ROH for potential functional candidate genes and affected pathways including enrichment analyses, we suggest that genes affecting muscle functionality (TPM1, TMOD2-3, MYO5A, MYO5C), energy metabolism and growth (AEBP1, RALGAPA2, IGFBP1, IGFBP3-4), embryonic development (HOXB-complex) and fertility (THEGL, ZPBP1-2, TEX14, ZP1, SUN3 and CFAP61) have been targeted by selection in all breeds. Our findings also indicate selection pressure on KITLG, which is well-documented for influencing pigmentation.
Collapse
|
45
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
46
|
Gupta MB, Jansson T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†. Biol Reprod 2019; 100:872-884. [PMID: 30476008 PMCID: PMC6698747 DOI: 10.1093/biolre/ioy249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy, and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to support fetal growth. In the fetus, liver mTOR governs the secretion and phosphorylation of insulin-like growth factor binding protein 1 (IGFBP-1) thereby controlling the bioavailability of insulin-like growth factors (IGF-I and IGF-II), which function as important growth hormones during fetal life. In the placenta, mTOR responds to a large number of growth-related signals, including amino acids, glucose, oxygen, folate, and growth factors, to regulate trophoblast mitochondrial respiration, nutrient transport, and protein synthesis, thereby influencing fetal growth. In the maternal compartment, mTOR is an integral part of a decidual nutrient sensor which links oxygen and nutrient availability to the phosphorylation of IGFBP-1 with preferential effects on the bioavailability of IGF-I in the maternal-fetal interface and in the maternal circulation. These new roles of mTOR signaling in the regulation fetal growth will help us better understand the molecular underpinnings of abnormal fetal growth, such as intrauterine growth restriction and fetal overgrowth, and may represent novel avenues for diagnostics and intervention in important pregnancy complications.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado | Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
47
|
Xie S, Jiang R, Xu W, Chen Y, Tang L, Li L, Li P. The relationship between serum-free insulin- like growth factor-1 and metabolic syndrome in school adolescents of northeast China. Diabetes Metab Syndr Obes 2019; 12:305-313. [PMID: 30881074 PMCID: PMC6408198 DOI: 10.2147/dmso.s195625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Free insulin-like growth factor-1 (IGF-1) ratio (the ratio of IGF-1/insulin-like growth factor binding protein-3 [IGFBP-3]) was shown to be negatively correlated with metabolic syndrome (MetS) in adults, but it was unknown in Chinese adolescents. PATIENTS AND METHODS The cross-sectional study enrolled 701 healthy school students (aged 12-16 years, 46.1% females) and 93 of them (18-22 years old, 46.2% females) were followed after 5 years. RESULTS In the cross-sectional study, the IGF-1/IGFBP-3 ratios were found correlated with low-density lipoprotein cholesterol (LDL-C; r= -0.071, P<0.05) and diastolic blood pressure (r= -0.077, P=0.034). A lower IGF-1/IGFBP-3 ratio was an independent risk factor for MetS (OR =2.348, 95% CI: 1.040-5.303), hypertension (OR=1.729, 95% CI: 1.040-5.303), and increased LDL-C (OR=1.841, 95% CI: 1.230-2.755). In the follow-up study, all the participants were >18 years old. We found a lower baseline ratio of IGF-1/IGFBP-3 in adolescence was an independent risk factor for MetS in adulthood (OR=10.724, 95% CI: 1.032-11.403) and also indicated a higher body mass index (β=-1.361, 95% CI: -2.513 to -0.208) after 5 years. CONCLUSION The lower IGF-1/IGFBP-3 ratio was an independent risk factor for MetS, hypertension, and high LDL-C in adolescents of northeast China and was also a predictive marker for MetS and increased body mass index in the adulthood.
Collapse
Affiliation(s)
- Shuang Xie
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
- Department of General Medicine (VIP ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, P.R. China
| | - Ranhua Jiang
- Department of Endocrinology, Liaoyang Diabetes Hospital, Liaoyang, Liaoning Province, P.R. China
| | - Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Yu Chen
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Lei Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| |
Collapse
|
48
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
49
|
Al-Khafaji H, Noer PR, Alkharobi H, Alhodhodi A, Meade J, El-Gendy R, Oxvig C, Beattie J. A characteristic signature of insulin-like growth factor (IGF) axis expression during osteogenic differentiation of human dental pulp cells (hDPCs): Potential co-ordinated regulation of IGF action. Growth Horm IGF Res 2018; 42-43:14-21. [PMID: 30071469 PMCID: PMC6259625 DOI: 10.1016/j.ghir.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023]
Abstract
The IGF axis is represented by two growth factors (IGF1 and IGF2), two cognate cell surface receptors (IGF1R and IGF2R), six soluble high affinity IGF binding proteins (IGFBP1-6) and several IGFBP proteases. IGF1 and IGF2 are present at high concentrations in bone and play a crucial role in the maintenance and differentiation of both foetal and adult skeleton. In order to understand the role of the IGF axis in bone and other tissues it is necessary to profile the expression and activity of all genes in the axis together with the activity of relevant ancillary proteins (including IGFBP proteases). In the current report we used differentiating human dental pulp cells (hDPC) to examine the expression and activity of the IGF axis during osteogenic differentiation of these cells. We found that, with the exception of IGF1 and IGFBP1, all components of the IGF axis are expressed in hDPCs. IGFBP-4 is the most abundantly expressed IGFBP species at both mRNA and protein levels under both basal and osteogenic conditions. Although we found no difference in IGFBP-4 expression under osteogenic conditions, we report increased expression and activity of pregnancy associated plasma protein-A (PAPP-A - an IGFBP-4 proteinase) leading to increased IGFBP-4 proteolysis in differentiating cell cultures. Further to this we report increased expression of IGF-2 (an activator of PAPP-A), and decreased expression of stanniocalcin-2 (STC2- a recently discovered inhibitor of PAPP-A) under osteogenic conditions. We also demonstrate that STC2 and PAPP-A are able to form complexes in hDPC conditioned medium indicating the potential for regulation of IGFBP-4 proteolysis through this mechanism. We suggest that these changes in the expression and activity of the IGF axis may represent part of an osteogenic signature characteristic of differentiating hDPCs.
Collapse
Affiliation(s)
- Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Pernille R Noer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Hanna Alkharobi
- Department of Oral Biology, Dental College, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Josephine Meade
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom; Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom.
| |
Collapse
|
50
|
Jafari E, Gheysarzadeh A, Mahnam K, Shahmohammadi R, Ansari A, Bakhtyari H, Mofid MR. In silico interaction of insulin-like growth factor binding protein 3 with insulin-like growth factor 1. Res Pharm Sci 2018; 13:332-342. [PMID: 30065766 PMCID: PMC6040160 DOI: 10.4103/1735-5362.235160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a vital protein exist in circulation which interacts with high affinity to insulin-like growth factor (IGFs) altering their activities. Therefore, the interaction between IGFs and IGFBP-3 has a key role altering large spectrum of activities such as cell cycle progression, proliferation and apoptosis. Despite decades of research, the crystal structure of IGFBP-3 has not been identified possibly due to some technical challenge in its crystallizing. The three-dimensional (3D) structure of IGFBP-3 was predicted using homology modeling, Phyre2, and molecular dynamic. Its interaction with IGF-1 was also identified by HADDOCK software. IGFBP-3 has the most identity with other IGFBPs in N and C-domain; however, its linker domain has lower identity. Our data predicted that IGF-1 structurally interacts with N-domain and linker domain of IGFBP-3. Some conserved residues of IGFBP-3 such as Glu33, Arg36, Gly39, Arg60, Arg66, Asn109, and Ile146 interacts with Glu3, Asp12, Phe16, Gly19, Asp20, Arg21, and Glu58 of IGF-1. In addition, our data predict that the linker domain has a loop structure which covers post translational modification and interacts with IGF-1. The phosphorylation of Ser111 in linker domain, which previously has been shown to induce apoptosis make a repulsive force interrupting this interaction to IGF-1, which enables IGFBP-3 to induce apoptosis. The present study suggests that the linker domain has a key role in recognition of IGFBP-3 with IGF-1.
Collapse
Affiliation(s)
- Elham Jafari
- Department of Medicinal Chemistry, Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Gheysarzadeh
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, I.R. Iran
| | | | - Amir Ansari
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hadi Bakhtyari
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|