1
|
Liu L, Xu Y, Ma Y, Duan F, Wang C, Feng J, Yin H, Sun L, Li P, Li ZH. Fate of polystyrene micro- and nanoplastics in zebrafish liver cells: Influence of protein corona on transport, oxidative stress, and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137596. [PMID: 39952126 DOI: 10.1016/j.jhazmat.2025.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Micro- and nanoplastics (MNPs) form protein corona (PC) upon contact with biological fluids, but their impact on the intracellular transport, distribution, and toxicity of MNPs remains unclear. Fetal bovine serum (FBS) and bovine serum albumin (BSA) were used to simulate in vivo environment, this study explored their influence on the transport and toxicity of polystyrene (PS) MNPs in zebrafish liver (ZFL) cells. Results showed PS MNPs were wrapped by proteins into stable complexes. Nanoparticles (NP, 50 nm) and their protein complexes (NP@PC) were internalized by cells within 6 h, with PC formation enhancing NP uptake. NP primarily entered cells through clathrin- and caveolae-mediated endocytosis, while NP@PC via clathrin-mediated pathways. Internalized particles were predominantly in lysosomes where PC degraded and some were also in mitochondria. Eventually, particles were expelled from cells through energy-dependent lysosomal pathways and energy-independent membrane penetration mechanisms. Notably, PC formation limited the clearance of NP. In toxicity, NP had a more severe impact than microplastics (MP, 5 μm). FBS more effectively mitigated PS MNPs-induced reactive oxygen species accumulation, subcellular structural damage, and dysregulation of glycolipid metabolism than BSA did. This study elucidates the modulatory role of PC on biological effects of MNPs, providing safety and risk management strategies.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Le Sun
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Ping Li
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Shandong, Weihai 264209, China.
| |
Collapse
|
2
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Huang D, Sun H, Su L, Yang F, Huang D, Gao H, Cao M. Inhibition of SIK1 Alleviates the Pathologies of Psoriasis by Disrupting IL-17 Signaling. Mediators Inflamm 2025; 2025:3540219. [PMID: 39959414 PMCID: PMC11828648 DOI: 10.1155/mi/3540219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Psoriasis is an inflammatory skin disease mediated by multiple immune cells, including T cells, macrophages, and dendritic cells, which exhibit complex pathologies and limited clinical treatment. Here, we found that salt-inducible kinase 1 (SIK1) was upregulated in the imiquimod (IMQ)-induced psoriasis mouse model. This increment may be due to a higher level of interleukin-17, which promoted the expression of SIK1 in keratinocytes. Inhibition of SIK1 kinase activity using a small molecular inhibitor (HG-9-91-01 or YKL-06-062) dramatically alleviated IMQ-induced psoriasis, showing reduced epidermal thickness, inflammation, and hyperproliferative epidermal keratinocytes. Our data demonstrated that SIK1 inhibitors HG-9-91-01 or YKL-06-062 blocked the expression of IL-17-induced proinflammatory cytokines and chemokines, including Il6, Kc, and Ccl20. Mechanistically, we found that SIK1 inhibitor HG-9-91-01 or YKL-06-062 suppressed the phosphorylation of Iκbα and P38. Consistently, SIK1 overexpression in keratinocytes promoted the activation of Iκbα and P38. Collectively, our results reveal that SIK1 participates to promote IL17-induced signaling through enhancing activation of NF-κB and MAPKs and exacerbates psoriasis-like skin inflammation. Thus, inhibition of SIK1 presents a potential new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Dongxuan Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Lianhui Su
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Fan Yang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Dongsheng Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen 518110, China
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
- Department of Clinical Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518110, China
| |
Collapse
|
4
|
Hou Q, Hu W, Peterson L, Gilbert J, Liu R, Man HY. SIK1 Downregulates Synaptic AMPA Receptors and Contributes to Cognitive Defects in Alzheimer's Disease. Mol Neurobiol 2024; 61:10365-10380. [PMID: 38727976 DOI: 10.1007/s12035-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 11/24/2024]
Abstract
A reduction in AMPA receptor (AMPAR) expression and weakened synaptic activity is early cellular phenotypes in Alzheimer's disease (AD). However, the molecular processes leading to AMPAR downregulation are complex and remain less clear. Here, we report that the salt inducible kinase SIK1 interacts with AMPARs, leading to a reduced accumulation of AMPARs at synapses. SIK1 protein level is sensitive to amyloid beta (Aβ) and shows a marked increase in the presence of Aβ and in AD brains. In neurons, Aβ incubation causes redistribution of SIK1 to synaptic sites and enhances SIK1-GluA1 association. SIK1 function is required for Aβ-induced AMPAR reduction. Importantly, in 3xTG AD mice, knockdown of SIK1 in the brain leads to restoration of AMPAR expression and a rescue of the cognitive deficits. These findings indicate an important role for SIK1 in meditating the cellular and functional pathology in AD.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, 266071, China
| | - Wenting Hu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Lucy Peterson
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - James Gilbert
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Rong Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Zhang X, Liu J, Zuo C, Peng X, Xie J, Shu Y, Ao D, Zhang Y, Ye Q, Cai J. Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review). Oncol Rep 2024; 52:169. [PMID: 39422046 PMCID: PMC11544583 DOI: 10.3892/or.2024.8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Salt‑induced kinase 1 (SIK1) is a serine/threonine protein kinase that is a member of the AMP‑activated protein kinase family. SIK is catalytically activated through its phosphorylation by the upstream kinase LKB1. SIK1 has been reported to be associated with numerous types of cancer. The present review summarizes the structure, regulatory factors and inhibitors of SIK1, and also describes how SIK1 is a signal regulatory factor that fulfills connecting roles in various signal regulatory pathways. Furthermore, the anti‑inflammatory effects of SIK1 during the early stage of tumor occurrence and its different regulatory effects following tumor occurrence, are summarized, and through collating the tumor signal regulatory mechanisms in which SIK1 participates, it has been demonstrated that SIK1 acts as a necessary node in cancer signal transduction. In conclusion, SIK1 is discussed independent of the SIKs family, its research results and recent progress in oncology are summarized in detail with a focus on SIK1, and its potential as a therapeutic target is highlighted, underscoring the need for SIK1‑targeted regulatory strategies in future cancer therapy.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jing Liu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Chenyang Zuo
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinyuan Xie
- Department of Joint Surgery and Sports Medicine, Jingmen Central Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ya Shu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Dongxu Ao
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yang Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingqing Ye
- Department of Breast Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jun Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
6
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611228. [PMID: 39282451 PMCID: PMC11398370 DOI: 10.1101/2024.09.04.611228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs. Summary statement SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass.
Collapse
|
8
|
Bournez C, Gally JM, Aci-Sèche S, Bernard P, Bonnet P. Virtual screening of natural products to enhance melanogenosis. Mol Inform 2024; 43:e202300335. [PMID: 38864978 DOI: 10.1002/minf.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
Natural products have long been an important source of inspiration for medicinal chemistry and drug discovery. In the cosmetic field, they remain the major elements of the composition and serve as marketing asset. Recent research showed the implication of salt-inducible kinases on the melanin production in skin via MITF regulation. Finding new potent modulators on such target could open the way to several cosmetic applications to attenuate visible signs of photoaging and improve the tan without sun. Since virtual screening can be a powerful tool for detecting hit compounds in the early stages of a drug discovery process, we applied this method on salt-inducible kinase 2 to discover potential interesting compounds. Here, we present the different steps from the construction of a database of natural products, to the validation of a docking protocol and the results of the virtual screening. Hits from the screening were tested in vitro to confirm their efficiency and results are discussed.
Collapse
Affiliation(s)
- Colin Bournez
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - José-Manuel Gally
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | | | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| |
Collapse
|
9
|
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL, Ono W. Etiological Mechanisms and Genetic/Biological Modulation Related to PTH1R in Primary Failure of Tooth Eruption. Calcif Tissue Int 2024; 115:101-116. [PMID: 38833001 DOI: 10.1007/s00223-024-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Man-Ting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhi-Fang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiang Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Xiao-Long Zang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
10
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Lee HM, Muhammad N, Lieu EL, Cai F, Mu J, Ha YS, Cao G, Suchors C, Joves K, Chronis C, Li K, Ducker GS, Olszewski K, Cai L, Allison DB, Bachert SE, Ewing WR, Wong H, Seo H, Kim IY, Faubert B, Kim J, Kim J. Concurrent loss of LKB1 and KEAP1 enhances SHMT-mediated antioxidant defence in KRAS-mutant lung cancer. Nat Metab 2024; 6:1310-1328. [PMID: 38877143 PMCID: PMC11809267 DOI: 10.1038/s42255-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
Non-small-cell lung cancer (NSCLC) with concurrent mutations in KRAS and the tumour suppressor LKB1 (KL NSCLC) is refractory to most therapies and has one of the worst predicted outcomes. Here we describe a KL-induced metabolic vulnerability associated with serine-glycine-one-carbon (SGOC) metabolism. Using RNA-seq and metabolomics data from human NSCLC, we uncovered that LKB1 loss enhanced SGOC metabolism via serine hydroxymethyltransferase (SHMT). LKB1 loss, in collaboration with KEAP1 loss, activated SHMT through inactivation of the salt-induced kinase (SIK)-NRF2 axis and satisfied the increased demand for one-carbon units necessary for antioxidant defence. Chemical and genetic SHMT suppression increased cellular sensitivity to oxidative stress and cell death. Further, the SHMT inhibitor enhanced the in vivo therapeutic efficacy of paclitaxel (first-line NSCLC therapy inducing oxidative stress) in KEAP1-mutant KL tumours. The data reveal how this highly aggressive molecular subtype of NSCLC fulfills their metabolic requirements and provides insight into therapeutic strategies.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Nefertiti Muhammad
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizabeth L Lieu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Feng Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiawei Mu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Guoshen Cao
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chamey Suchors
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Joves
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kailong Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Ling Cai
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sara E Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Harvey Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hyosun Seo
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Isaac Y Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon Faubert
- Department of Medicine-Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - James Kim
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Wang Y, Liu L, Gu JH, Wang CN, Guan W, Liu Y, Tang WQ, Ji CH, Chen YM, Huang J, Li WY, Shi TS, Chen WJ, Zhu BL, Jiang B. Salt-inducible kinase 1-CREB-regulated transcription coactivator 1 signalling in the paraventricular nucleus of the hypothalamus plays a role in depression by regulating the hypothalamic-pituitary-adrenal axis. Mol Psychiatry 2024; 29:1660-1670. [PMID: 36434056 DOI: 10.1038/s41380-022-01881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Öster L, Castaldo M, de Vries E, Edfeldt F, Pemberton N, Gordon E, Cederblad L, Käck H. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. J Biol Chem 2024; 300:107201. [PMID: 38508313 PMCID: PMC11061224 DOI: 10.1016/j.jbc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.
Collapse
Affiliation(s)
- Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Pemberton
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Cederblad
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
14
|
Peixoto C, Joncour A, Temal-Laib T, Tirera A, Dos Santos A, Jary H, Bucher D, Laenen W, Pereira Fernandes A, Lavazais S, Delachaume C, Merciris D, Saccomani C, Drennan M, López-Ramos M, Wakselman E, Dupont S, Borgonovi M, Roca Magadan C, Monjardet A, Brys R, De Vos S, Andrews M, Jimenez JM, Amantini D, Desroy N. Discovery of Clinical Candidate GLPG3970: A Potent and Selective Dual SIK2/SIK3 Inhibitor for the Treatment of Autoimmune and Inflammatory Diseases. J Med Chem 2024; 67:5233-5258. [PMID: 38552030 PMCID: PMC11017251 DOI: 10.1021/acs.jmedchem.3c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
The salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 belong to the adenosine monophosphate-activated protein kinase (AMPK) family of serine/threonine kinases. SIK inhibition represents a new therapeutic approach modulating pro-inflammatory and immunoregulatory pathways that holds potential for the treatment of inflammatory diseases. Here, we describe the identification of GLPG3970 (32), a first-in-class dual SIK2/SIK3 inhibitor with selectivity against SIK1 (IC50 of 282.8 nM on SIK1, 7.8 nM on SIK2 and 3.8 nM on SIK3). We outline efforts made to increase selectivity against SIK1 and improve CYP time-dependent inhibition properties through the structure-activity relationship. The dual activity of 32 in modulating the pro-inflammatory cytokine TNFα and the immunoregulatory cytokine IL-10 is demonstrated in vitro in human primary myeloid cells and human whole blood, and in vivo in mice stimulated with lipopolysaccharide. Compound 32 shows dose-dependent activity in disease-relevant mouse pharmacological models.
Collapse
|
15
|
Jiang ZF, Xuan LN, Sun XW, Liu SB, Yin J. Knockdown of SIK3 in the CA1 Region can Reduce Seizure Susceptibility in Mice by Inhibiting Decreases in GABA AR α1 Expression. Mol Neurobiol 2024; 61:1404-1416. [PMID: 37715891 DOI: 10.1007/s12035-023-03630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.
Collapse
Affiliation(s)
- Zhen-Fu Jiang
- Dalian Medical University, Dalian, 116044, Liaoning, China.
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou, Dalian, 116023, Liaoning, China.
| | - Li-Na Xuan
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiao-Wan Sun
- East China Normal University, Shanghai, 200241, China
| | - Shao-Bo Liu
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jian Yin
- Dalian Medical University, Dalian, 116044, Liaoning, China.
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou, Dalian, 116023, Liaoning, China.
| |
Collapse
|
16
|
Temal-Laib T, Peixoto C, Desroy N, De Lemos E, Bonnaterre F, Bienvenu N, Picolet O, Sartori E, Bucher D, López-Ramos M, Roca Magadán C, Laenen W, Flower T, Mollat P, Bugaud O, Touitou R, Pereira Fernandes A, Lavazais S, Monjardet A, Borgonovi M, Gosmini R, Brys R, Amantini D, De Vos S, Andrews M. Optimization of Selectivity and Pharmacokinetic Properties of Salt-Inducible Kinase Inhibitors that Led to the Discovery of Pan-SIK Inhibitor GLPG3312. J Med Chem 2024; 67:380-401. [PMID: 38147525 PMCID: PMC10788895 DOI: 10.1021/acs.jmedchem.3c01428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 are serine/threonine kinases and form a subfamily of the protein kinase AMP-activated protein kinase (AMPK) family. Inhibition of SIKs in stimulated innate immune cells and mouse models has been associated with a dual mechanism of action consisting of a reduction of pro-inflammatory cytokines and an increase of immunoregulatory cytokine production, suggesting a therapeutic potential for inflammatory diseases. Following a high-throughput screening campaign, subsequent hit to lead optimization through synthesis, structure-activity relationship, kinome selectivity, and pharmacokinetic investigations led to the discovery of clinical candidate GLPG3312 (compound 28), a potent and selective pan-SIK inhibitor (IC50: 2.0 nM for SIK1, 0.7 nM for SIK2, and 0.6 nM for SIK3). Characterization of the first human SIK3 crystal structure provided an understanding of the binding mode and kinome selectivity of the chemical series. GLPG3312 demonstrated both anti-inflammatory and immunoregulatory activities in vitro in human primary myeloid cells and in vivo in mouse models.
Collapse
Affiliation(s)
- Taouès Temal-Laib
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Nicolas Desroy
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Elsa De Lemos
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Natacha Bienvenu
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Olivier Picolet
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Eric Sartori
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Denis Bucher
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | | | - Wendy Laenen
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Thomas Flower
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Patrick Mollat
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Olivier Bugaud
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Robert Touitou
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | | | - Alain Monjardet
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Monica Borgonovi
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Romain Gosmini
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - David Amantini
- Galapagos
SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Steve De Vos
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Martin Andrews
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| |
Collapse
|
17
|
Tao ZG, Yuan YX, Wang GW. Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis. World J Gastrointest Oncol 2023; 15:1974-1987. [DOI: 10.4251/wjgo.v15.i11.1974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND A series of long non-coding RNAs (lncRNAs) have been reported to play a crucial role in cancer biology. Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies. However, its role in hepatocellular carcinoma (HCC) has not been fully deciphered.
AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.
METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction. The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method, EdU method, and flow cytometry, respectively. RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1 (E2F1). Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z (GNAZ). E2F1 and GNAZ were detected by western blot in HCC cells.
RESULTS In HCC tissues, CDKN2B-AS1 was upregulated. Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells, and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis. CDKN2B-AS1 could interact with E2F1. Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region. Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.
CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression.
Collapse
Affiliation(s)
- Zhi-Gang Tao
- Department of Radiology, Hangzhou Cancer Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Yu-Xiao Yuan
- Department of Radiology, Hangzhou Xixi Hospital, Hangzhou 310012, Zhejiang Province, China
| | - Guo-Wei Wang
- Department of Radiology, Hangzhou Xixi Hospital, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
18
|
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D, Luo L. Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 2023; 63:118. [PMID: 37654200 PMCID: PMC10546379 DOI: 10.3892/ijo.2023.5566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Salt inducible kinases (SIKs) with three subtypes SIK1, SIK2 and SIK3, belong to the AMP‑activated protein kinase family. They are expressed ubiquitously in humans. Under normal circumstances, SIK1 regulates adrenocortical function in response to high salt or adrenocorticotropic hormone stimulation, SIK2 is involved in cell metabolism, controlling insulin signaling and gluconeogenesis and SIK3 coordinates with the mTOR complex, promoting cancer. The dysregulation of SIKs has been widely detected in various types of cancers. Based on most of the existing studies, SIK1 is mostly considered a tumor inhibitor, SIK2 and SIK3 are usually associated with tumor promotion. However, the functions of SIKs have shown contradictory in certain tumors, suggesting that SIKs cannot be simply classified as oncogenes or tumor suppressor genes. The present review provided a comprehensive summary of the roles of SIKs in the initiation and progression of different cancers, aiming to elucidate their clinical value and discuss potential strategies for targeting SIKs in cancer therapy.
Collapse
Affiliation(s)
- Shenghui Feng
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fangyi Wei
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoran Shi
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Chen
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bangqi Wang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Rodriguez Esquivel M, Hayes E, Lakomy O, Hassan M, Foretz M, Stocco C. Salt-inducible kinases regulate androgen synthesis in theca cells by enhancing CREB signaling. Mol Cell Endocrinol 2023; 577:112030. [PMID: 37499999 PMCID: PMC10592241 DOI: 10.1016/j.mce.2023.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Ovulation is the pinnacle of folliculogenesis, a process that requires an interplay between the oocyte, the granulosa cells, and the theca cells (TCs). TCs are the only source of ovarian androgens, which play a vital role in female fertility. However, abnormally elevated androgen levels reduce fertility. Therefore, uncovering novel mechanisms regulating androgen synthesis in TCs is of great significance. We have shown that salt-inducible kinases (SIKs) regulate granulosa cell steroidogenesis. Here, we investigated whether SIKs regulate androgen production in TCs. SIK2 and SIK3 were detected in the TCs of mouse ovaries and isolated TCs. Next, TCs in culture were treated with luteinizing hormone (LH) in the presence or absence of a highly specific SIK inhibitor. SIK inhibition enhanced the stimulatory effect of LH on steroidogenic gene expression and androgen production in a concentration-dependent manner. SIK inhibition alone stimulated the expression of steroidogenic genes and increased androgen production. Activation of adenylyl cyclase with forskolin or emulation of increased intracellular cyclic AMP levels stimulated steroidogenesis, an effect that was enhanced by the inhibition of SIK activity. The stimulatory effect of downstream targets of cyclic AMP was also significantly augmented by SIK inhibition, suggesting that SIKs control targets downstream cyclic AMP. Finally, it is shown that SIK2 knockout mice have higher circulating testosterone than controls. This evidence shows that TCs express SIKs and reveal novel roles for SIKs in the regulation of TC function and androgen production. This information could contribute to uncovering therapeutic targets to treat hyperandrogenic diseases.
Collapse
Affiliation(s)
| | - Emily Hayes
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Oliwia Lakomy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mariam Hassan
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014, Paris, France
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Liang G, Zhao J, Zhao D, Dou Y, Huang H, Yang W, Zhou G, Gu Z, Pan J, Liu J. Longbie capsules reduce bone loss in the subchondral bone of rats with comorbid osteoporosis and osteoarthritis by regulating metabolite alterations. Front Med (Lausanne) 2023; 10:1256238. [PMID: 37915330 PMCID: PMC10616798 DOI: 10.3389/fmed.2023.1256238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background and objective With the development of global population aging, comorbidity (≥2 diseases) is a common health problem among elderly people. Osteoarthritis (OA) and osteoporosis (OP) are common in elderly individuals. There is a lack of drug therapy for OA and OP comorbidities. The purpose of this study was to explore the efficacy and mechanism of Longbie capsule (LBJN), which contains various plant herbs, in treating OA and OP comorbidities (OA + OP) in rats using metabolomics techniques. Methods We created an OA + OP rat model through bilateral oophorectomy combined with meniscus instability surgery. Thirty SD rats were randomly divided into five groups (six in each group), namely, the sham group, OA group, OA + OP group, LBJN low-dose group (0.625 g/kg, OA + OP+LB-L group) and LBJN high-dose group (1.25 g/kg, OA + OP+LB-H group). After 8 weeks of intervention, we used micro-CT to detect bone microstructure status, ELISA to measure bone metabolism indicators, and UPLC-MS technology for metabolomics analysis. Finally, the screened differentially expressed metabolites were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and functional enrichment analysis. Results The micro-CT results showed that LBJN significantly improved the bone mineral density (BMD) and bone quality of subchondral bone in OA + OP rats, and LBJN regulated the expression of bone alkaline phosphatase (BALP), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRACP) in serum to maintain bone metabolism balance. Metabolomics analysis showed that the metabolic trajectory of OA + OP rats after intervention in the OA + OP+LB-H group showed significant changes, and 107 potential biomarkers could be identified. Among them, 50 metabolites were upregulated (such as zeranol) and 57 were downregulated (such as vanillactic acid). The KEGG functional enrichment results indicated that the differentially expressed metabolites are mainly involved in amino acid metabolism, lipid metabolism, and carbohydrate metabolism. The KEGG pathway enrichment results indicated that LBJN may exert therapeutic effects on OA + OP rats by regulating the cAMP signaling pathway, and the FoxO signaling pathway. Conclusion LBJN can maintain bone metabolism balance by regulating serum lipid metabolism, amino acid metabolism, carbohydrate metabolism, and estrogen, thereby reducing bone loss in subchondral bone, which may be a potential mechanism through which LBJN treats OA + OP.
Collapse
Affiliation(s)
- Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Di Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hetao Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Weiyi Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoxu Gu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianke Pan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| |
Collapse
|
21
|
Yu K, Ramkumar N, Wong KKL, Tettweiler G, Verheyen EM. The AMPK-like protein kinases Sik2 and Sik3 interact with Hipk and induce synergistic tumorigenesis in a Drosophila cancer model. Front Cell Dev Biol 2023; 11:1214539. [PMID: 37854071 PMCID: PMC10579798 DOI: 10.3389/fcell.2023.1214539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Homeodomain-interacting protein kinases (Hipks) regulate cell proliferation, apoptosis, and tissue development. Overexpression of Hipk in Drosophila causes tumorigenic phenotypes in larval imaginal discs. We find that depletion of Salt-inducible kinases Sik2 or Sik3 can suppress Hipk-induced overgrowth. Furthermore, co-expression of constitutively active forms of Sik2 or Sik3 with Hipk caused significant tissue hyperplasia and tissue distortion, indicating that both Sik2 and Sik3 can synergize with Hipk to promote tumorous phenotypes, accompanied by elevated dMyc, Armadillo/β-catenin, and the Yorkie target gene expanded. Larvae expressing these hyperplastic growths also display an extended larval phase, characteristic of other Drosophila tumour models. Examination of total protein levels from fly tissues showed that Hipk proteins were reduced when Siks were depleted through RNAi, suggesting that Siks may regulate Hipk protein stability and/or activity. Conversely, expression of constitutively active Siks with Hipk leads to increased Hipk protein levels. Furthermore, Hipk can interact with Sik2 and Sik3 by co-immunoprecipitation. Co-expression of both proteins leads to a mobility shift of Hipk protein, suggesting it is post-translationally modified. In summary, our research demonstrates a novel function of Siks in synergizing with Hipk to promote tumour growth.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Niveditha Ramkumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
23
|
Li Y, Li C, Liu Y, Yu J, Yang J, Cui Y, Wang TV, Li C, Jiang L, Song M, Rao Y. Sleep need, the key regulator of sleep homeostasis, is indicated and controlled by phosphorylation of threonine 221 in salt-inducible kinase 3. Genetics 2023; 225:iyad136. [PMID: 37477881 DOI: 10.1093/genetics/iyad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Sleep need drives sleep and plays a key role in homeostatic regulation of sleep. So far sleep need can only be inferred by animal behaviors and indicated by electroencephalography (EEG). Here we report that phosphorylation of threonine (T) 221 of the salt-inducible kinase 3 (SIK3) increased the catalytic activity and stability of SIK3. T221 phosphorylation in the mouse brain indicates sleep need: more sleep resulting in less phosphorylation and less sleep more phosphorylation during daily sleep/wake cycle and after sleep deprivation (SD). Sleep need was reduced in SIK3 loss of function (LOF) mutants and by T221 mutation to alanine (T221A). Rebound after SD was also decreased in SIK3 LOF and T221A mutant mice. By contrast, SIK1 and SIK2 do not satisfy criteria to be both an indicator and a controller of sleep need. Our results reveal SIK3-T221 phosphorylation as a chemical modification which indicates and controls sleep need.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Chengang Li
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Yuxiang Liu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Jianjun Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingqun Yang
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Yunfeng Cui
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Tao V Wang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chaoyi Li
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Lifen Jiang
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Meilin Song
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China
- Capital Medical University, Beijing 10069, China
- Chinese Institute for Brain Research, Changping Laboratory, Yard 28, Science Park Road, ZGC Life Science Park, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
24
|
Cai X, Wang L, Yi Y, Deng D, Shi M, Tang M, Li N, Wei H, Zhang R, Su K, Ye H, Chen L. Discovery of pyrimidine-5-carboxamide derivatives as novel salt-inducible kinases (SIKs) inhibitors for inflammatory bowel disease (IBD) treatment. Eur J Med Chem 2023; 256:115469. [PMID: 37178481 DOI: 10.1016/j.ejmech.2023.115469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lun Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyao Yi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dexin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoche Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
25
|
Borrmann H, Ismed D, Kliszczak AE, Borrow P, Vasudevan S, Jagannath A, Zhuang X, McKeating JA. Inhibition of salt inducible kinases reduces rhythmic HIV-1 replication and reactivation from latency. J Gen Virol 2023; 104:001877. [PMID: 37529926 PMCID: PMC10721046 DOI: 10.1099/jgv.0.001877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes a major burden on global health, and eradication of latent virus infection is one of the biggest challenges in the field. The circadian clock is an endogenous timing system that oscillates with a ~24 h period regulating multiple physiological processes and cellular functions, and we recently reported that the cell intrinsic clock regulates rhythmic HIV-1 replication. Salt inducible kinases (SIK) contribute to circadian regulatory networks, however, there is limited evidence for SIKs regulating HIV-1 infection. Here, we show that pharmacological inhibition of SIKs perturbed the cellular clock and reduced rhythmic HIV-1 replication in circadian synchronised cells. Further, SIK inhibitors or genetic silencing of Sik expression inhibited viral replication in primary cells and in a latency model, respectively. Overall, this study demonstrates a role for salt inducible kinases in regulating HIV-1 replication and latency reactivation, which can provide innovative routes to better understand and target latent HIV-1 infection.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Shi F, de Fatima Silva F, Liu D, Patel HU, Xu J, Zhang W, Türk C, Krüger M, Collins S. Salt-inducible kinase inhibition promotes the adipocyte thermogenic program and adipose tissue browning. Mol Metab 2023; 74:101753. [PMID: 37321371 PMCID: PMC10319839 DOI: 10.1016/j.molmet.2023.101753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Norepinephrine stimulates the adipose tissue thermogenic program through a β-adrenergic receptor (βAR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. We discovered that a noncanonical activation of the mechanistic target of rapamycin complex 1 (mTORC1) by PKA is required for the βAR-stimulation of adipose tissue browning. However, the downstream events triggered by PKA-phosphorylated mTORC1 activation that drive this thermogenic response are not well understood. METHODS We used a proteomic approach of Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) to characterize the global protein phosphorylation profile in brown adipocytes treated with the βAR agonist. We identified salt-inducible kinase 3 (SIK3) as a candidate mTORC1 substrate and further tested the effect of SIK3 deficiency or SIK inhibition on the thermogenic gene expression program in brown adipocytes and in mouse adipose tissue. RESULTS SIK3 interacts with RAPTOR, the defining component of the mTORC1 complex, and is phosphorylated at Ser884 in a rapamycin-sensitive manner. Pharmacological SIK inhibition by a pan-SIK inhibitor (HG-9-91-01) in brown adipocytes increases basal Ucp1 gene expression and restores its expression upon blockade of either mTORC1 or PKA. Short-hairpin RNA (shRNA) knockdown of Sik3 augments, while overexpression of SIK3 suppresses, Ucp1 gene expression in brown adipocytes. The regulatory PKA phosphorylation domain of SIK3 is essential for its inhibition. CRISPR-mediated Sik3 deletion in brown adipocytes increases type IIa histone deacetylase (HDAC) activity and enhances the expression of genes involved in thermogenesis such as Ucp1, Pgc1α, and mitochondrial OXPHOS complex protein. We further show that HDAC4 interacts with PGC1α after βAR stimulation and reduces lysine acetylation in PGC1α. Finally, a SIK inhibitor well-tolerated in vivo (YKL-05-099) can stimulate the expression of thermogenesis-related genes and browning of mouse subcutaneous adipose tissue. CONCLUSIONS Taken together, our data reveal that SIK3, with the possible contribution of other SIKs, functions as a phosphorylation switch for β-adrenergic activation to drive the adipose tissue thermogenic program and indicates that more work to understand the role of the SIKs is warranted. Our findings also suggest that maneuvers targeting SIKs could be beneficial for obesity and related cardiometabolic disease.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Flaviane de Fatima Silva
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hari U Patel
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan Xu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clara Türk
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Gonsalez SR, Gomes DS, de Souza AM, Ferrão FM, Vallotton Z, Gogulamudi VR, Lowe J, Casarini DE, Prieto MC, Lara LS. The Triad Na + Activated Na + Channel (Nax)-Salt Inducible KINASE (SIK) and (Na + + K +)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension. Int J Mol Sci 2023; 24:ijms24097887. [PMID: 37175599 PMCID: PMC10178781 DOI: 10.3390/ijms24097887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.
Collapse
Affiliation(s)
- Sabrina R Gonsalez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro 21941-901, Brazil
| | - Dayene S Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Alessandro M de Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Fernanda M Ferrão
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Universidade Federal do Rio de Janeiro, Campus Caxias, Rio de Janeiro 21941-901, Brazil
| | - Zoe Vallotton
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkateswara R Gogulamudi
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| |
Collapse
|
29
|
Shi M, Zhou Y, Wei H, Zhang X, Du M, Zhou Y, Yin Y, Li X, Tang X, Sun L, Xu D, Li X. Interactions between curcumin and human salt-induced kinase 3 elucidated from computational tools and experimental methods. Front Pharmacol 2023; 14:1116098. [PMID: 37124223 PMCID: PMC10133576 DOI: 10.3389/fphar.2023.1116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC50 (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Yan Zhou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Haoche Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Meng Du
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China
| | - Yanting Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xinghui Li
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Tang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, Shenzhen, Guangdong, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Dingguo Xu, ; Xiaoan Li,
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
- *Correspondence: Dingguo Xu, ; Xiaoan Li,
| |
Collapse
|
30
|
Sato T, Andrade CDC, Yoon SH, Zhao Y, Greenlee WJ, Weber PC, Viswanathan U, Kulp J, Brooks DJ, Demay MB, Bouxsein ML, Mitlak B, Lanske B, Wein MN. Structure-based design of selective, orally available salt-inducible kinase inhibitors that stimulate bone formation in mice. Proc Natl Acad Sci U S A 2022; 119:e2214396119. [PMID: 36472957 PMCID: PMC9897432 DOI: 10.1073/pnas.2214396119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a major public health problem. Currently, there are no orally available therapies that increase bone formation. Intermittent parathyroid hormone (PTH) stimulates bone formation through a signal transduction pathway that involves inhibition of salt-inducible kinase isoforms 2 and 3 (SIK2 and SIK3). Here, we further validate SIK2/SIK3 as osteoporosis drug targets by demonstrating that ubiquitous deletion of these genes in adult mice increases bone formation without extraskeletal toxicities. Previous efforts to target these kinases to stimulate bone formation have been limited by lack of pharmacologically acceptable, specific, orally available SIK2/SIK3 inhibitors. Here, we used structure-based drug design followed by iterative medicinal chemistry to identify SK-124 as a lead compound that potently inhibits SIK2 and SIK3. SK-124 inhibits SIK2 and SIK3 with single-digit nanomolar potency in vitro and in cell-based target engagement assays and shows acceptable kinome selectivity and oral bioavailability. SK-124 reduces SIK2/SIK3 substrate phosphorylation levels in human and mouse cultured bone cells and regulates gene expression patterns in a PTH-like manner. Once-daily oral SK-124 treatment for 3 wk in mice led to PTH-like effects on mineral metabolism including increased blood levels of calcium and 1,25-vitamin D and suppressed endogenous PTH levels. Furthermore, SK-124 treatment increased bone formation by osteoblasts and boosted trabecular bone mass without evidence of short-term toxicity. Taken together, these findings demonstrate PTH-like effects in bone and mineral metabolism upon in vivo treatment with orally available SIK2/SIK3 inhibitor SK-124.
Collapse
Affiliation(s)
- Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Yingshe Zhao
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Patricia C. Weber
- Harrington Discovery Institute, University Hospitals, Cleveland, OH44106
| | | | | | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | | | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Harvard Stem Cell Institute, Cambridge, MA02138
| |
Collapse
|
31
|
van Gijsel-Bonnello M, Darling NJ, Tanaka T, Di Carmine S, Marchesi F, Thomson S, Clark K, Kurowska-Stolarska M, McSorley HJ, Cohen P, Arthur JSC. Salt-inducible kinase 2 regulates fibrosis during bleomycin-induced lung injury. J Biol Chem 2022; 298:102644. [PMID: 36309093 PMCID: PMC9706632 DOI: 10.1016/j.jbc.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Manuel van Gijsel-Bonnello
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takashi Tanaka
- Research Centre of Specialty, Ono Pharmaceutical Co Ltd, Osaka, Japan
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, United Kingdom
| | - Kristopher Clark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
32
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
33
|
Rapid genomic changes by mineralotropic hormones and kinase SIK inhibition drive coordinated renal Cyp27b1 and Cyp24a1 expression via CREB modules. J Biol Chem 2022; 298:102559. [DOI: 10.1016/j.jbc.2022.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
34
|
Yin Y, Ma P, Wang S, Zhang Y, Han R, Huo C, Wu M, Deng H. The CRTC-CREB axis functions as a transcriptional sensor to protect against proteotoxic stress in Drosophila. Cell Death Dis 2022; 13:688. [PMID: 35933423 PMCID: PMC9357022 DOI: 10.1038/s41419-022-05122-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
cAMP Responsible Element Binding Protein (CREB) is an evolutionarily conserved transcriptional factor that regulates cell growth, synaptic plasticity and so on. In this study, we unexpectedly found proteasome inhibitors, such as MLN2238, robustly increase CREB activity in adult flies through a large-scale compound screening. Mechanistically, reactive oxidative species (ROS) generated by proteasome inhibition are required and sufficient to promote CREB activity through c-Jun N-terminal kinase (JNK). In 293 T cells, JNK activation by MLN2238 is also required for increase of CREB phosphorylation at Ser133. Meanwhile, transcriptome analysis in fly intestine identified a group of genes involved in redox and proteostatic regulation are augmented by overexpressing CRTC (CREB-regulated transcriptional coactivator). Intriguingly, CRTC overexpression in muscles robustly restores protein folding and proteasomal activity in a fly Huntington's disease (HD) model, and ameliorates HD related pathogenesis, such as protein aggregates, motility, and lifespan. Moreover, CREB activity increases during aging, and further enhances its activity can suppress protein aggregates in aged muscles. Together, our results identified CRTC/CREB downstream ROS/JNK signaling as a conserved sensor to tackle oxidative and proteotoxic stresses. Boosting CRTC/CREB activity is a potential therapeutic strategy to treat aging related protein aggregation diseases.
Collapse
Affiliation(s)
- Youjie Yin
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Peng Ma
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Saifei Wang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Yao Zhang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Ruolei Han
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Chunyu Huo
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Meixian Wu
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Hansong Deng
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| |
Collapse
|
35
|
An Epilepsy-Associated Mutation of Salt-Inducible Kinase 1 Increases the Susceptibility to Epileptic Seizures and Interferes with Adrenocorticotropic Hormone Therapy for Infantile Spasms in Mice. Int J Mol Sci 2022; 23:ijms23147927. [PMID: 35887274 PMCID: PMC9319016 DOI: 10.3390/ijms23147927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Six mutations in the salt-inducible kinase 1 (SIK1) have been identified in developmental and epileptic encephalopathy (DEE-30) patients, and two of the mutations are nonsense mutations that truncate the C-terminal region of SIK1. In a previous study, we generated SIK1 mutant (SIK1-MT) mice recapitulating the C-terminal truncated mutations using CRISPR/Cas9-mediated genome editing and found an increase in excitatory synaptic transmission and enhancement of neural excitability in neocortical neurons in SIK1-MT mice. NMDA was injected into SIK1-MT males to induce epileptic seizures in the mice. The severity of the NMDA-induced seizures was estimated by the latency and the number of tail flickering and hyperflexion. Activated brain regions were evaluated by immunohistochemistry against c-fos, Iba1, and GFAP. As another epilepsy model, pentylenetetrazol was injected into the adult SIK1 mutant mice. Seizure susceptibility induced by both NMDA and PTZ was enhanced in SIK1-MT mice. Brain regions including the thalamus and hypothalamus were strongly activated in NMDA-induced seizures. The epilepsy-associated mutation of SIK1 canceled the pharmacological effects of the ACTH treatment on NMDA-induced seizures. These results suggest that SIK1 may be involved in the neuropathological mechanisms of NMDA-induced spasms and the pharmacological mechanism of ACTH treatment.
Collapse
|
36
|
Salt-inducible kinases: new players in pulmonary arterial hypertension? Trends Pharmacol Sci 2022; 43:806-819. [PMID: 35851157 DOI: 10.1016/j.tips.2022.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022]
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases belonging to the AMP-activated protein kinase (AMPK) family. Accumulating evidence indicates that SIKs phosphorylate multiple targets, including histone deacetylases (HDACs) and cAMP response element-binding protein (CREB)-regulated transcriptional coactivators (CRTCs), to coordinate signaling pathways implicated in metabolism, cell growth, proliferation, apoptosis, and inflammation. These pathways downstream of SIKs are altered not only in pathologies like cancer, systemic hypertension, and inflammatory diseases, but also in pulmonary arterial hypertension (PAH), a multifactorial disease characterized by pulmonary vasoconstriction, inflammation and remodeling of pulmonary arteries owing to endothelial dysfunction and aberrant proliferation of smooth muscle cells (SMCs). In this opinion article, we present evidence of SIKs as modulators of key signaling pathways involved in PAH pathophysiology and discuss the potential of SIKs as therapeutic targets for PAH, emphasizing the need for deeper molecular insights on PAH.
Collapse
|
37
|
Yoon SH, Tang CC, Wein MN. Salt inducible kinases and PTH1R action. VITAMINS AND HORMONES 2022; 120:23-45. [PMID: 35953111 DOI: 10.1016/bs.vh.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone is a central regulator of calcium homeostasis. PTH protects the organism from hypocalcemia through its actions in bone and kidney. Recent physiologic studies have revealed key target genes for PTH receptor (PTH1R) signaling in these target organs. However, the complete signal transduction cascade used by PTH1R to accomplish these physiologic actions has remained poorly defined. Here we will review recent studies that have defined an important role for salt inducible kinases downstream of PTH1R in bone, cartilage, and kidney. PTH1R signaling inhibits the activity of salt inducible kinases. Therefore, direct SIK inhibitors represent a promising novel strategy to mimic PTH actions using small molecules. Moreover, a detailed understanding of the molecular circuitry used by PTH1R to exert its biologic effects will afford powerful new models to better understand the diverse actions of this important G protein coupled receptor in health and disease.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
38
|
Shi M, Wang L, Liu K, Chen Y, Hu M, Yang L, He J, Chen L, Xu D. Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (SIK2) multi-state binding with bosutinib. Comput Struct Biotechnol J 2022; 20:2574-2586. [PMID: 35685353 PMCID: PMC9160496 DOI: 10.1016/j.csbj.2022.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
The kinase domain is highly conserved among protein kinases 'in terms of both sequence and structure. Conformational rearrangements of the kinase domain are affected by the phosphorylation of residues and the binding of kinase inhibitors. Interestingly, the conformational rearrangement of the active pocket plays an important role in kinase activity and can be used to design novel kinase inhibitors. We characterized the conformational plasticity of the active pocket when bosutinib was bound to salt-inducible kinase 2 (SIK2) using homology modeling and molecular dynamics simulations. Ten different initial complex models were constructed using the Morph server, ranging from open to closed conformations of SIK2 binding with bosutinib. Our simulation showed that bosutinib binds SIK2 with up or down conformations of the P-loop and with all the conformations of the activation loop. In addition, the αC-helix conformation was induced by the conformation of the activation loop, and the salt bridge formed only with its open conformation. The binding affinity of the models was also determined using the molecular mechanics generalized Born surface area method. Bosutinib was found to form a strong binding model with SIK2 and hydrophobic interactions were the dominant factor. This discovery may help guide the design of novel SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kongjun Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengshi Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
39
|
Xu W, Zhang W, Cui L, Shi L, Zhu B, Lyu TJ, Ma W. Novel mutation of SIK1 gene causing a mild form of pediatric epilepsy in a Chinese patient. Metab Brain Dis 2022; 37:1207-1219. [PMID: 35267137 DOI: 10.1007/s11011-022-00943-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
Developmental and Epileptic Encephalopathy (DEE) is a group of disorders affecting children at early stages of infancy, which is characterized by frequent seizures, epileptiform activity on EEG, and developmental delayor regression. Developmental and epileptic encephalopathy-30 (DEE30) is a severe neurologic disorder characterized by onset of refractory seizures soon after birth or in the first months of life. Which was recently found to be caused by heterozygous mutations in the salt-inducible kinase SIK1. In this study, we investigated a patient with early onset epilepsy. DNA sequencing of the whole coding region revealed a de novel heterozygous nucleotide substitution (c.880G > A) causing a missense mutation (p.A294T). This mutation was classified as variant of unknown significance (VUS) by American College of Medical Genetics and Genomics (ACMG). To further investigate the pathogenicity and pathogenesis of this mutation, we established a human neuroblastoma cell line (SH-SY5Y) stably-expressing wild type SIK1 and A294T mutant, and compared the transcriptome and metabolomics profiles. We presented a pediatric patient suffering from infantile onset epilepsy. Early EEG showed a boundary dysfunction of activity and MRI scan of the brain was normal. The patient responded well to single anti-epileptic drug treatment. Whole-exome sequencing found a missense mutation of SIK1 gene (c.880G > A chr21: 43,420,326 p. A294T). Dysregulated transcriptome and metabolome in cell models expressing WT and MUT SIK1 confirmed the pathogenicity of the mutation. Specifically, we found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation. We found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation. Our finding further expanded the disease spectrum and provided novel mechanistic insights of DEE30.
Collapse
Affiliation(s)
- Wangshu Xu
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China
| | - Wenqun Zhang
- Department of Pediatrics, Chongqing Youyoubaobei Women and Children's Hospital, Chongqing, 400000, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Lei Shi
- Department of Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| | - Tina-Jie Lyu
- China National Clinical Research Center for Neurological Diseases, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| | - Wenping Ma
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
40
|
Wang Q, Wu Y, Lin M, Wang G, Liu J, Xie M, Zheng B, Shen C, Shen J. BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int 2022; 22:136. [PMID: 35346195 PMCID: PMC8961961 DOI: 10.1186/s12935-022-02552-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
Osteosarcoma (OS) is the most common malignant tumor of bone, and the clinical efficacy of current treatments and associated survival rates need to be further improved by employing novel therapeutic strategies. Although various studies have shown that BMI1 protein is universally upregulated in OS cells and tissues, its specific role and underlying mechanism have not yet been fully explored.
Methods
Expression of BMI1 protein in OS cells was detected by western blot. The effect of BMI1 on proliferation and migration of OS cells (143B and U-2OS cell lines) was investigated in vitro using CCK-8, colony formation and transwell assays, and in vivo using subcutaneous tumorigenesis and lung metastasis assays in xenograft nude mice. Expression of epithelial–mesenchymal transition (EMT)-associated proteins was detected by immunofluorescence imaging. Bioinformatic analysis was performed using ENCODE databases to predict downstream targets of BMI1. SIK1 mRNA expression in osteosarcoma cells was detected by quantitative real-time reverse transcription PCR (qPCR). Chromatin immunoprecipitation-qPCR (ChIP-qPCR) was used to investigate expression of BMI1-associated, RING1B-associated, H2AK119ub-associated and H3K4me3-associated DNA at the putative binding region of BMI1 on the SIK1 promoter in OS cells.
Results
Using both in vitro and in vivo experimental approaches, we found that BMI1 promotes OS cell proliferation and metastasis. The tumor suppressor SIK1 was identified as the direct target gene of BMI1 in OS cells. In vitro experiments demonstrated that SIK1 could inhibit proliferation and migration of OS cells. Inhibition of SIK1 largely rescued the altered phenotypes of BMI1-deficient OS cells. Mechanistically, we demonstrated that BMI1 directly binds to the promoter region of SIK1 in a complex with RING1B to promote monoubiquitination of histone H2A at lysine 119 (H2AK119ub) and inhibit H3K4 trimethylation (H3K4me3), resulting in inhibition of SIK1 transcription. We therefore suggest that BMI1 promotes OS cell proliferation and metastasis by inhibiting SIK1.
Conclusions
Our results reveal a novel molecular mechanism of OS development promoted by BMI1 and provides a new potential target for OS treatment.
Collapse
|
41
|
Huang D, Chen P, Huang G, Sun H, Luo X, He C, Chen F, Wang Y, Zeng C, Su L, Zeng X, Lu J, Li S, Huang D, Gao H, Cao M. Salt-inducible kinases inhibitor HG-9-91-01 targets RIPK3 kinase activity to alleviate necroptosis-mediated inflammatory injury. Cell Death Dis 2022; 13:188. [PMID: 35217652 PMCID: PMC8881470 DOI: 10.1038/s41419-022-04633-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) functions as a central regulator of necroptosis, mediating signaling transduction to activate pseudokinase mixed lineage kinase domain-like protein (MLKL) phosphorylation. Increasing evidences show that RIPK3 contributes to the pathologies of inflammatory diseases including multiple sclerosis, infection and colitis. Here, we identified a novel small molecular compound Salt-inducible Kinases (SIKs) inhibitor HG-9-91-01 inhibiting necroptosis by targeting RIPK3 kinase activity. We found that SIKs inhibitor HG-9-91-01 could block TNF- or Toll-like receptors (TLRs)-mediated necroptosis independent of SIKs. We revealed that HG-9-91-01 dramatically decreased cellular activation of RIPK3 and MLKL. Meanwhile, HG-9-91-01 inhibited the association of RIPK3 with MLKL and oligomerization of downstream MLKL. Interestingly, we found that HG-9-91-01 also trigger RIPK3-RIPK1-caspase 1-caspase 8-dependent apoptosis, which activated cleavage of GSDME leading to its dependent pyroptosis. Mechanistic studies revealed that SIKs inhibitor HG-9-91-01 directly inhibited RIPK3 kinase activity to block necroptosis and interacted with RIPK3 and recruited RIPK1 to activate caspases leading to cleave GSDME. Importantly, mice pretreated with HG-9-91-01 showed resistance to TNF-induced systemic inflammatory response syndrome. Consistently, HG-9-91-01 treatment protected mice against Staphylococcus aureus-mediated lung damage through targeting RIPK3 kinase activity. Overall, our results revealed that SIKs inhibitor HG-9-91-01 is a novel inhibitor of RIPK3 kinase and a potential therapeutic target for the treatment of necroptosis-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Dongxuan Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Pengfei Chen
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Guoqing Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Huimin Sun
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Xiaohua Luo
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Chaowen He
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Fei Chen
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Yong Wang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Lianhui Su
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China
| | - Xiaobin Zeng
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Shiyue Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Dongsheng Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China.
| | - Hanchao Gao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China.
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
42
|
Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines 2022; 10:biomedicines10020221. [PMID: 35203431 PMCID: PMC8869621 DOI: 10.3390/biomedicines10020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Sympathetic nervous system overdrive with chronic release of catecholamines is the most important neurohormonal mechanism activated to maintain cardiac output in response to heart stress. Beta-adrenergic signaling behaves first as a compensatory pathway improving cardiac contractility and maladaptive remodeling but becomes dysfunctional leading to pathological hypertrophy and heart failure (HF). Cardiac remodeling is a complex inflammatory syndrome where macrophages play a determinant role. This study aimed at characterizing the temporal transcriptomic evolution of cardiac macrophages in mice subjected to beta-adrenergic-stimulation using RNA sequencing. Owing to a comprehensive bibliographic analysis and complementary lipidomic experiments, this study deciphers typical gene profiles in early compensated hypertrophy (ECH) versus late dilated remodeling related to HF. We uncover cardiac hypertrophy- and proliferation-related transcription programs typical of ECH or HF macrophages and identify lipid metabolism-associated and Na+ or K+ channel-related genes as markers of ECH and HF macrophages, respectively. In addition, our results substantiate the key time-dependent role of inflammatory, metabolic, and functional gene regulation in macrophages during beta-adrenergic dependent remodeling. This study provides important and novel knowledge to better understand the prevalent key role of resident macrophages in response to chronically activated beta-adrenergic signaling, an effective diagnostic and therapeutic target in failing hearts.
Collapse
|
43
|
Tian F, Cai D. Overexpressed GNAZ predicts poor outcome and promotes G0/G1 cell cycle progression in hepatocellular carcinoma. Gene 2022; 807:145964. [PMID: 34530087 DOI: 10.1016/j.gene.2021.145964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
AIMS We aimed to investigate the role of G protein subunit alpha Z(GNAZ) in the progression and prognosis of patients with hepatocellular carcinoma (HCC). METHODS Oncomine, GEO, TCGA, GEPIA2, Kaplan-Meier Plotter, TIMER2, Metascape, CCLE, LinkedOmics, and UALCAN databases were used to analyze the differential expression of GNAZ in HCC and normal liver tissues, relationship between GNAZ expression and prognosis of patients with HCC, and expression of GNAZ in common human HCC cell lines. Western blotting was performed to analyze GNAZ expression, while the Cell Counting Kit 8 assay was used to determine cell proliferation, and flow cytometry was used to evaluate the cell cycle and apoptosis. Wound healing and transwell invasion assays were used to investigate cell metastasis and invasion. RESULTS Using Oncomine, Gene Expression Omnibus (GEO), and GEPIA2 databases, GNAZ was found to be overexpressed in HCC tissues compared with that in adjacent normal liver tissues, and western blotting analysis showed GNAZ overexpression in seven patients with HCC who underwent surgical resection of HCC and para-cancerous tissues (p < 0.01). Survival analysis revealed that high GNAZ expression was negatively associated with overall survival (OS), recurrence-free survival, progression-free survival, and disease-specific survival in patients with HCC (p < 0.05). GNAZ overexpression was associated with worse 4- month, 6- month, 12- month, 24- month, 36- month, 48- month, and 60-month OS, as well as with different clinicopathological characteristics of patients with HCC, including hepatitis virus infection state; alcohol consumption state; male; female; Asian; microvascular invasion, Stage I-II, Stage II-III, and Stage III-IV; and grade II (Cox regression, p < 0.05). KEGG/GO biological process enrichment indicated that the genes similar to GNAZ in HCC were mainly enriched in the cell cycle, cell cycle phase transition, DNA replication checkpoint, and regulation of G0 to G1 transition. siRNA-GNAZ significantly reduced the viability of JHH-2 and SNU-761 cells from 12 to 96 h; increased the percentage of cells in the G0/G1 phase and decreased that of cells in the S and G2/M phases (p < 0.05); and markedly downregulated the expression of cyclin D, cyclin E, and CDK2 protein. siRNA-GNAZ also significantly increased the percentage of JHH-2 and SNU-761 cell apoptosis at late stages, while the number of surviving cells decreased (p < 0.05), and upregulated the expression of apoptosis-related proteins Bax and caspase 3 protein. Furthermore, siRNA-GNAZ remarkably reduced the healing of scratch wounds in JHH-2 and SNU-761 cells and the number of invasive cells compared with that in the control group (p < 0.001). CONCLUSION Our study demonstrated that GNAZ plays a pivotal role as a potential oncogene and predicts poor prognosis in patients with HCC. It promotes tumor proliferation via cell cycle arrest, apoptosis, migration, and invasion. Thus, GNAZ may be a potential candidate biomarker providing useful insight into hepatocarcinogenesis and aggressiveness.
Collapse
Affiliation(s)
- Feng Tian
- Department of General Surgery, Lishui People's Hospital, the Six Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Daxia Cai
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Research, Lishui Central Hospital, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China.
| |
Collapse
|
44
|
Jin Y, Wang H. Circ_0078607 inhibits the progression of ovarian cancer via regulating the miR-32-5p/SIK1 network. J Ovarian Res 2022; 15:3. [PMID: 34983607 PMCID: PMC8729016 DOI: 10.1186/s13048-021-00931-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNA (circRNA) has been shown to be involved in the regulation of human disease progression, including ovarian cancer (OC). Circ_0078607 was found to participate in OC progression. But its function and mechanism in OC deserve further exploration. Methods The expression levels of circ_0078607, salt-inducible kinase 1 (SIK1) and microRNA (miR)-32-5p were examined by qRT-PCR. And the protein expression levels of SIK1, metastasis marker and apoptosis marker were determined using western blot analysis. EDU staining, colony formation assay, transwell assay and flow cytometry were used to detect the proliferation, migration, invasion and apoptosis of cells. Moreover, dual-luciferase reporter assay was employed to verify the interaction between miR-32-5p and circ_0078607 or SIK1. Xenograft models were constructed to perform in vivo experiments. Results Circ_0078607 and SIK1 were downregulated in OC tissues and cells. Overexpressed circ_0078607 and SIK1 could inhibit OC cell proliferation, migration, invasion, and promote apoptosis. MiR-32-5p could be sponged by circ_0078607, and its overexpression could reverse the suppressive effect of circ_0078607 on OC progression. Furthermore, SIK1 was a target of miR-32-5p, and circ_0078607 could regulate SIK1 by sponging miR-32-5p. The inhibitory effect of circ_0078607 on OC progression also could be reversed by SIK1 silencing. In vivo experiments showed that circ_0078607 reduced OC tumorigenesis by regulating the miR-32-5p/SIK1 axis. Conclusion Circ_0078607 could serve as a sponge of miR-32-5p to regulate SIK1 expression, thereby inhibiting OC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00931-9. Circ_0078607 acts as a sponge of miR-32-5p. MiR-32-5p targets SIK1.
Collapse
Affiliation(s)
- Yangqiu Jin
- Department of Reproductive Medicine, Liaocheng People's Hospital, NO.67, Dongchang West Road, Liaocheng City, 252000, Shandong Province, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Liaocheng Tird People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
45
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
46
|
Armouti M, Rodriguez-Esquivel M, Stocco C. Mechanism of negative modulation of FSH signaling by salt-inducible kinases in rat granulosa cells. Front Endocrinol (Lausanne) 2022; 13:1026358. [PMID: 36246922 PMCID: PMC9556844 DOI: 10.3389/fendo.2022.1026358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
The optimal development of preovulatory follicles needs follicle-stimulating hormone (FSH). Recent findings revealed that salt-inducible kinases (SIKs) inhibit FSH actions in humans and rodents. This report seeks to increase our understanding of the molecular mechanisms controlled by SIKs that participate in the inhibition of FSH actions in primary rat granulosa cells (GCs). The results showed that FSH causes a transient induction of Sik1 mRNA. In contrast, SIK inhibition had no effects on FSH receptor expression. Next, we determined whether SIK inhibition enhances the effect of several sequential direct activators of the FSH signaling pathway. The findings revealed that SIK inhibition stimulates the induction of steroidogenic genes by forskolin, cAMP, protein kinase A (PKA), and cAMP-response element-binding protein (CREB). Strikingly, FSH stimulation of CREB and AKT phosphorylation was not affected by SIK inhibition. Therefore, we analyzed the expression and activation of putative CREB cofactors and demonstrated that GCs express CREB-regulated transcriptional coactivators (CRTC2) and that FSH treatment and SIK inhibition increase the nuclear expression of this factor. We concluded that SIKs target the FSH pathway by affecting factors located between cAMP/PKA and CREB and propose that SIKs control the activity of CRTC2 in ovarian GCs. The findings demonstrate for the first time that SIKs blunt the response of GCs to FSH, cAMP, PKA, and CREB, providing further evidence for a crucial role for SIKs in regulating ovarian function and female fertility.
Collapse
|
47
|
Fu Y, Ma G, Zhang Y, Wang W, Shi T, Zhu J, Zhang J, Huang Z, Chen J. HG-9-91-01 Attenuates Murine Experimental Colitis by Promoting Interleukin-10 Production in Colonic Macrophages Through the SIK/CRTC3 Pathway. Inflamm Bowel Dis 2021; 27:1821-1831. [PMID: 33988718 DOI: 10.1093/ibd/izab072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. METHODS The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium-induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. RESULTS Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01-treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. CONCLUSIONS We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gailing Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuqian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenli Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongguo Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
48
|
Distinct Effects of Escitalopram and Vortioxetine on Astroglial L-Glutamate Release Associated with Connexin43. Int J Mol Sci 2021; 22:ijms221810013. [PMID: 34576176 PMCID: PMC8468507 DOI: 10.3390/ijms221810013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
It has been established that enhancement of serotonergic transmission contributes to improvement of major depression; however, several post-mortem studies and experimental depression rodent models suggest that functional abnormalities of astrocytes play important roles in the pathomechanisms/pathophysiology of mood disorders. Direct effects of serotonin (5-HT) transporter inhibiting antidepressants on astroglial transmission systems has never been assessed in this context. Therefore, to explore the effects of antidepressants on transmission associated with astrocytes, the present study determined the effects of the selective 5-HT transporter inhibitor, escitalopram, and the 5-HT partial agonist reuptake inhibitor, vortioxetine, on astroglial L-glutamate release through activated hemichannels, and the expression of connexin43 (Cx43), type 1A (5-HT1AR) and type 7 (5-HT7R) 5-HT receptor subtypes, and extracellular signal-regulated kinase (ERK) in astrocytes using primary cultured rat cortical astrocytes in a 5-HT-free environment. Both escitalopram and 5-HT1AR antagonist (WAY100635) did not affect basal astroglial L-glutamate release or L-glutamate release through activated hemichannels. Subchronic (for seven days) administrations of vortioxetine and the 5-HT7R inverse agonist (SB269970) suppressed both basal L-glutamate release and L-glutamate release through activated hemichannels, whereas 5-HT1AR agonist (BP554) inhibited L-glutamate release through activated hemichannels, but did not affect basal L-glutamate release. In particular, WAY100635 did not affect the inhibitory effects of vortioxetine on L-glutamate release. Subchronic administration of vortioxetine, BP554 and SB269970 downregulated 5-HT1AR, 5-HT7R and phosphorylated ERK in the plasma membrane fraction, but escitalopram and WAY100635 did not affect them. Subchronic administration of SB269970 decreased Cx43 expression in the plasma membrane but did not affect the cytosol; however, subchronic administration of BP554 increased Cx43 expression in the cytosol but did not affect the plasma membrane. Subchronic vortioxetine administration increased Cx43 expression in the cytosol and decreased it in the plasma membrane. WAY100635 prevented an increased Cx43 expression in the cytosol induced by vortioxetine without affecting the reduced Cx43 expression in the plasma membrane. These results suggest that 5-HT1AR downregulation probably increases Cx43 synthesis, but 5-HT7R downregulation suppresses Cx43 trafficking to the plasma membrane. These results also suggest that the subchronic administration of therapeutic-relevant concentrations of vortioxetine inhibits both astroglial L-glutamate and Cx43 expression in the plasma membrane via 5-HT7R downregulation but enhances Cx43 synthesis in the cytosol via 5-HT1AR downregulation. This combination of the downregulation of 5-HT1AR, 5-HT7R and Cx43 in the astroglial plasma membrane induced by subchronic vortioxetine administration suggest that astrocytes is possibly involved in the pathophysiology of depression.
Collapse
|
49
|
Cai Y, Wang XL, Lu J, Lin X, Dong J, Guzman RJ. Salt-Inducible Kinase 3 Promotes Vascular Smooth Muscle Cell Proliferation and Arterial Restenosis by Regulating AKT and PKA-CREB Signaling. Arterioscler Thromb Vasc Biol 2021; 41:2431-2451. [PMID: 34196217 PMCID: PMC8411910 DOI: 10.1161/atvbaha.121.316219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
Objective Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21CIP1 and p27KIP1. SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 (CREB-regulated transcriptional coactivator 3) signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with peripheral arterial disease.
Collapse
MESH Headings
- Animals
- CREB-Binding Protein/metabolism
- Cell Movement
- Cell Proliferation/drug effects
- Cells, Cultured
- Constriction, Pathologic
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Female
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrimidines/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular System Injuries/drug therapy
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xue-Lin Wang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jinny Lu
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xin Lin
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan Dong
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Raul J Guzman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
50
|
Zhang C, van Leeuwen W, Blotenburg M, Aguilera-Gomez A, Brussee S, Grond R, Kampinga HH, Rabouille C. Activation of salt Inducible Kinases, IRE1 and PERK leads to Sec bodies formation in Drosophila S2 cells. J Cell Sci 2021; 134:272062. [PMID: 34350957 PMCID: PMC8445602 DOI: 10.1242/jcs.258685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper. Summary: In S2 cells, the phase-separated Sec bodies form upon the combined activation of salt-inducible kinases, IRE1 and PERK.
Collapse
Affiliation(s)
- Chujun Zhang
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sem Brussee
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands.,Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| |
Collapse
|