1
|
Shan Y, Hu H, Yang A, Zhao W, Chu Y. An integrative approach to identifying NPC1 as a susceptibility gene for gestational diabetes mellitus. J Matern Fetal Neonatal Med 2025; 38:2445665. [PMID: 39746811 DOI: 10.1080/14767058.2024.2445665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE The objective of this study was to identify a novel gene and its potential mechanisms associated with susceptibility to gestational diabetes mellitus (GDM) through an integrative approach. METHODS We analyzed data from genome-wide association studies (GWAS) of GDM in the FinnGen R11 dataset (16,802 GDM cases and 237,816 controls) and Genotype Tissue Expression v8 expression quantitative trait locus data. We used summary-data-based Mendelian randomization to determine associations between transcript levels and phenotypes, transcriptome-wide association studies to provide insights into gene-trait associations, multi-marker analysis of genomic annotation to perform gene-based analysis, genome-wide complex trait analysis-multivariate set-based association test-combo to determine gene prioritization, and polygenic priority scores to prioritize the causal genes to screen candidate genes. Subsequent Mendelian randomization analysis was performed to infer causality between the candidate genes and GDM and phenome-wide association study (PheWAS) analysis was used to explore the associations between selected genes and other characteristics. Furthermore, to gain a deeper understanding of the functional implications of these susceptibility genes, GeneMANIA analysis was used to determine the fundamental biological functions of the therapeutic targets and protein-protein interaction network analysis was performed to identify intracellular protein interactions. RESULTS We identified two novel susceptibility genes associated with GDM: NPC1 and KIAA1191. Magnetic resonance imaging revealed a strong correlation between NPC1 expression levels and a lower incidence of GDM (odds ratio: 0.922, 95% confidence interval: 0.866-0.981, p = 0.011). PheWAS at the gene level indicated that NPC1 was not associated with any other trait. The biological significance of this gene was evidenced by its strong association with sterol metabolism. CONCLUSION Our study identified NPC1 as a novel gene whose predicted expression level is linked to a reduced risk of GDM, providing new insights into the genetic framework of this disease.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Hu
- Clinical medicine, Nantong University, Nantong, China
| | - Anning Yang
- Department of Obstetrics and Gynecology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Wendi Zhao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zhong L, Purushothaman B, Tu Q, Boopathi S, Zhang Y. GCNT3-mediated glycosylation in cancer biology: Implications for tumorigenesis, metastasis, and therapeutic targeting. Int J Biol Macromol 2025; 315:144427. [PMID: 40403799 DOI: 10.1016/j.ijbiomac.2025.144427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Glycosylation is a fundamental post-translational modification that plays a pivotal role in cancer progression, influencing cell adhesion, immune evasion, metastasis, and drug resistance. Among glycosyltransferases, Core 2 β-1,6-N-acetylglucosaminyltransferase 3 (GCNT3) has emerged as a key regulator of tumor behavior, with its effects varying across different cancers. While elevated GCNT3 expression is associated with better prognosis and chemotherapy response in ovarian cancer, it correlates with poor survival, tumor invasiveness, and immune suppression in pancreatic and lung cancers. This dual nature underscores the complexity of GCNT3's role in cancer biology. As a biomarker, GCNT3 has shown potential for prognostic and therapeutic applications, particularly in colorectal and ovarian cancers. Targeting GCNT3 therapeutically presents challenges due to its role in normal physiological glycosylation, and the lack of selective inhibitors. Current research suggests that GCNT3-targeted therapies, in combination with immunotherapy or chemotherapy, could improve treatment outcomes by modulating mucin production, tumor metabolism, and immune responses. This review critically explores GCNT3's diverse functions, its impact on cancer progression, and its potential as a therapeutic target, highlighting the need for cancer-specific approaches and future innovations in drug development to harness its clinical potential effectively.
Collapse
Affiliation(s)
- Lin Zhong
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
| | | | - Qiang Tu
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China; Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Seenivasan Boopathi
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Youming Zhang
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China; Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Wang Y, Chen J, Wang Z, Luo X, Wu N, Wang J. HKDC1 promotes ovarian cancer progression through boosting lipid metabolism and immune escape by stabilizing G6PC/G6PC2. Commun Biol 2025; 8:615. [PMID: 40234623 PMCID: PMC12000390 DOI: 10.1038/s42003-025-08031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Ovarian cancer (OC) is a significant health challenge, yet the mechanisms driving its progression remain unclear. This study explored the role of hexokinase domain-containing protein 1 (HKDC1) in OC, focusing on tumor growth, lipid metabolism, and immune evasion. Human OC cell lines (SKOV3 and HEY) and the murine OC cell line (ID8) were used to knock down and overexpress HKDC1. An ID8-based epithelial OC mouse model was established to validate the in vitro findings. Our results demonstrated that HKDC1 was upregulated in OC and promoted cell proliferation, migration, and invasion. HKDC1 enhanced lipid accumulation by elevating levels of free fatty acids (FFA), triglycerides, phospholipids, cholesterol, and neutral lipid, while upregulating key enzymes (ACC1, FASN, SCD1, HMGCS1, and HMGCR). It promoted immune escape through PD-L1 upregulation, inhibiting T cell proliferation and reducing IFN-γ, granzyme B, and perforin levels while increasing PD-1 levels. HKDC1 knockdown reversed these effects, which were restored by adding FFA. Mechanistically, HKDC1 interacted with and stabilized glucose-6-phosphatase catalytic subunits (G6PC/G6PC2), supporting its tumor-promoting functions. These findings were confirmed in an OC mouse model, highlighting HKDC1 as a key driver of OC progression through lipid biosynthesis and immune suppression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhan Wang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Xia Luo
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Nayiyuan Wu
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Jing Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| |
Collapse
|
4
|
Xu K, Corona-Avila I, Frutos MD, Núñez-Sánchez MÁ, Makhanasa D, Shah PV, Guzman G, Ramos-Molina B, Priyadarshini M, Khan MW. Hepatic HKDC1 deletion alleviates western diet-induced MASH in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167746. [PMID: 40020530 DOI: 10.1016/j.bbadis.2025.167746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatohepatitis (MASH) has been rising sharply, closely mirroring the increasing rates of obesity and metabolic syndrome. MASH exhibits a strong sexual dimorphism where females are affected with more severe forms after menopause. Hexokinase domain-containing protein 1 (HKDC1) has recently been recognized for its role in liver diseases, where its expression is minimal under normal conditions but significantly increases in response to metabolic stressors like obesity and liver injury. This selective upregulation suggests HKDC1's potential specialization in hepatic glucose and lipid dysregulation, linking it closely to the progression of MASH. This study aims to clarify the role of HKDC1 in Western diet-induced MASH in female mice by examining its impact on hepatic glucose and lipid metabolism, offering insights into its potential as a therapeutic target and addressing the need for sex-specific research in liver disease. This study reveals that HKDC1 expression is elevated in obese women with MASH and correlates with liver pathology. In a mouse model, liver-specific HKDC1 knockout (HKDC1LKO) protected against Western diet-induced obesity, glucose intolerance, and MASH features, including steatosis, inflammation, and fibrosis. Transcriptomic analysis showed that HKDC1 deletion reduced pro-inflammatory and pro-fibrotic gene expression, while gut microbiome analysis indicated a shift toward MASH-protective bacteria. These findings suggest that HKDC1 may exacerbate MASH progression through its role in metabolic and inflammatory pathways, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Kai Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Irene Corona-Avila
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - María Ángeles Núñez-Sánchez
- Obesity, Diabetes and Metabolism Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Dhruvi Makhanasa
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Pratham Viral Shah
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Medha Priyadarshini
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America.
| | - Md Wasim Khan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America.
| |
Collapse
|
5
|
Liang Z, Zhang T, Huang J, Huang Z, Zhao Z, Cai S, Ma J. A comprehensive prognostic and immunological analysis of hexokinase domain containing protein-1 (HKDC1) in pan-cancer. PeerJ 2025; 13:e19083. [PMID: 40124623 PMCID: PMC11929506 DOI: 10.7717/peerj.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Background Currently, research on the role of hexokinase domain-containing protein-1 (HKDC1) in neoplasm metabolism remains sparse. This study seeks to conduct a thorough investigation of HKDC1's potential functions across thirty-three different tumor types, utilizing data obtained from The Cancer Genome Atlas (TCGA). Method We conducted a thorough data extraction from the TCGA database, subsequently employing R (version 4.2.2) and its associated software packages for detailed analysis. Our investigation centered on evaluating the differential expression and prognostic significance of HKDC1, while also examining its connections to tumor heterogeneity, mutation profiles, and RNA modifications. Furthermore, we analyzed the relationship between HKDC1 expression and tumor immunity utilizing the TIMER analysis approach. Results A comprehensive analysis of various tumor types has revealed that HKDC1 is significantly upregulated in many malignant tumors. Importantly, patients with elevated HKDC1 levels in their tumor tissues often experience poorer prognoses. The association between HKDC1 expression, immune cell infiltration, and the existence of immune checkpoints suggests a possible connection between the tumor microenvironment and HKDC1, alongside tumor advancement. Gene set enrichment analysis (GSEA) further substantiates the idea that HKDC1 may play a role in several critical pathways and biological processes associated with neoplasm. Additionally, the overexpression of HKDC1 is influenced by promoter methylation and alterations in DNA copy number amplification. Furthermore, in vitro experiments demonstrated that silencing HKDC1 resulted in a marked reduction in the proliferation, migration, and invasion capabilities of neoplasm cells. Conclusion Our initial pan-cancer analysis provided a comprehensive understanding of the oncogenic roles of HKDC1 across diverse cancer types. Moreover, HKDC1 has the potential to serve as a significant prognostic biomarker.
Collapse
Affiliation(s)
- Zhi Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiajia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhixin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zeyu Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jinping Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Wang C, Lv S, Zhao H, He G, Liang H, Chen K, Qu M, He Y, Ou C. Hypoxia-inducible factor-1 as targets for neuroprotection : from ferroptosis to Parkinson's disease. Neurol Sci 2025; 46:1111-1120. [PMID: 39466326 DOI: 10.1007/s10072-024-07832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by motor paralysis, tremor,and cognitive impairment. Risk factors such as brain hypoxia caused by aging and abnormal expression of HIF-1α areconsidered to be key to the development of PD, including α-synuclein accumulation and ferroptosis. However, therelationship between HIF-1α signaling and ferroptosis in PD has not been elucidated. The stable expression of HIF-1αinhibits the pathological development of PD. Aging aggravates PD pathology by promoting α-synuclein accumulationand oxidative stress. METHODS The literature on lipid peroxidation, oxidative stress, iron metabolism and other key factors in Parkinson'sdisease in recent years was reviewed through a variety of literature search channels, such as PubMed and Elsevier. RESULTS HIF-1α mediated ferroptosis through oxidative stress and GPX4-GSH system. HIF-1α mediates ferroptosisthrough Keap1-Nrf2-ARE, Grx3 and Grx4. HIF-1α mediates ferroptosis through iron metabolism. CONCLUSION This article reviews the oxygen-dependent regulatory mechanism of HIF-1α and its role in cerebralhypoxia homeostasis. Studies in the past decade have shown that Hif-1α mediated ferroptosis is important in PD.HIF-1α has a dual role, depending on the degree of cellular hypoxia and the environment. The equilibrium complexityneeds to be explained, and the role of ferroptosis needs to be investigated. The literature shows that the stabilizationof HIF-1α with PHD inhibitors and the combination of antioxidants and iron chelators are potential therapeuticdirections. In the future, the optimal use time and dose of inhibitors should be studied to improve the efficacy.
Collapse
Affiliation(s)
- Changyong Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Shanyu Lv
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongyan Zhao
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Guoguo He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongshuo Liang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Kemiao Chen
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minghai Qu
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Yonghua He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Chaoyan Ou
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| |
Collapse
|
7
|
Glymenaki M, Curio S, Shrestha S, Zhong Q, Rushton L, Barry R, El-Bahrawy M, Marchesi JR, Wang Y, Gooderham NJ, Guerra N, Li JV. Roux-en-Y gastric bypass-associated fecal tyramine promotes colon cancer risk via increased DNA damage, cell proliferation, and inflammation. MICROBIOME 2025; 13:60. [PMID: 40022152 PMCID: PMC11869571 DOI: 10.1186/s40168-025-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Fecal abundances of Enterobacteriaceae and Enterococcaceae are elevated in patients following Roux-en-Y gastric bypass (RYGB) surgery. Concurrently, fecal concentrations of tyramine, derived from gut bacterial metabolism of tyrosine and/or food, increased post-RYGB. Furthermore, emerging evidence suggests that RYGB is associated with increased colorectal cancer (CRC) risk. However, the causal link between RYGB-associated microbial metabolites and CRC risk remains unclear. Hence, this study investigated the tyrosine metabolism of Enterobacteriaceae and Enterococcaceae strains isolated from patients post-RYGB and explored the causal effects of tyramine on the CRC risk and tumorigenesis using both human colonic cancer cell line (HCT 116) and wild-type and ApcMin/+ mice. RESULTS We isolated 31 bacterial isolates belonging to Enterobacteriaceae and Enterococcaceae families from the feces of patients with RYGB surgery. By culturing the isolates in tyrosine-supplemented medium, we found that Citrobacter produced phenol as a main product of tyrosine, whereas Enterobacter and Klebsiella produced 4-hydroxyphenylacetate, Escherichia produced 4-hydroxyphenyllactate and 4-hydroxyphenylpyruvate, and Enterococcus and two Klebsiella isolates produced tyramine. These observations suggested the gut bacterial contribution to increased fecal concentrations of tyramine post-RYGB. We subsequently evaluated the impact of tyramine on CRC risk and development. Tyramine induced necrosis and promoted cell proliferation and DNA damage of HCT 116 cells. Daily oral administration of tyramine for 49 days to wild-type mice resulted in visible adenomas in 5 out of 12 mice, accompanied by significantly enhanced DNA damage (γH2AX +) and an increased trend of cell proliferation (Ki67 +) in the ileum, along with an upregulated expression of the cell division cycle gene (Cdc34b) in the colon. To evaluate the impact of tyramine on intestinal tumor growth, we treated ApcMin/+ mice with the same doses of tyramine and duration. These mice showed larger colonic tumor size and increased intestinal cell proliferation and inflammation (e.g., increased mRNA expression of IL-17A and higher number of Ly6G + neutrophils) compared to water-treated ApcMin/+ control mice. CONCLUSIONS Our results collectively suggested that RYGB-associated fecal bacteria could contribute to tyramine production and tyramine increased CRC risk by increasing DNA damage, cell proliferation, and pro-inflammatory responses of the gut. Monitoring and modulating tyramine concentrations in high-risk individuals could aid CRC prognosis and management. Video Abstract.
Collapse
Affiliation(s)
- Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sophie Curio
- Department of Life Sciences, Imperial College London, London, UK
- The University of Queensland Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Smeeta Shrestha
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Qi Zhong
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Laura Rushton
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department for Environment Food and Rural Affairs, London, UK
| | - Rachael Barry
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mona El-Bahrawy
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Nigel J Gooderham
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Xu K, Corona-Avila I, Frutos MD, Nunez-Sanchez MA, Makhanasa D, Shah PV, Guzman G, Ramos-Molina B, Priyadarshini M, Khan MW. Hepatic HKDC1 Deletion Alleviates Western Diet-Induced MASH in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625530. [PMID: 39651120 PMCID: PMC11623584 DOI: 10.1101/2024.11.26.625530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The global prevalence of Metabolic dysfunction-associated steatohepatitis (MASH) has been rising sharply, closely mirroring the increasing rates of obesity and metabolic syndrome. MASH exhibits a strong sexual dimorphism where females are affected with more severe forms after menopause. Hexokinase domain-containing protein 1 (HKDC1) has recently been recognized for its role in liver diseases, where its expression is minimal under normal conditions but significantly increases in response to metabolic stressors like obesity and liver injury. This selective upregulation suggests HKDC1s potential specialization in hepatic glucose and lipid dysregulation, linking it closely to the progression of MASLD and MASH. This study aims to clarify the role of HKDC1 in Western diet-induced MASH in female mice by examining its impact on hepatic glucose and lipid metabolism, offering insights into its potential as a therapeutic target and addressing the need for sex-specific research in liver disease. This study reveals that HKDC1 expression is elevated in obese women with MASH and correlates with liver pathology. In a mouse model, liver-specific HKDC1 knockout (HKDC1LKO) protected against Western diet-induced obesity, glucose intolerance, and MASH features, including steatosis, inflammation, and fibrosis. Transcriptomic analysis showed that HKDC1 deletion reduced pro-inflammatory and pro-fibrotic gene expression, while gut microbiome analysis indicated a shift toward MASH-protective bacteria. These findings suggest that HKDC1 may exacerbate MASH progression through its role in metabolic and inflammatory pathways, making it a potential therapeutic target.
Collapse
|
9
|
Qian Y, Wu J, Yang W, Lyu R, You Q, Li J, He Q, Zhuang Y, Wang W, Wang Y, Zhu Y, Wu Z, Chen D. FTO-associated osteoclastogenesis promotes alveolar bone resorption in apical periodontitis male rat via the HK1/USP14/RANK pathway. Nat Commun 2025; 16:1519. [PMID: 39934129 PMCID: PMC11814306 DOI: 10.1038/s41467-025-56615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Alveolar bone resorption (ABR) is a key pathological manifestation in the development of apical periodontitis (AP) and contributes to the AP-associated tooth loss among AP patients in the clinic. However, the underlying mechanism of ABR development is largely unknown. Here we show, the total levels of N6-methyladenosine (m6A) were reduced in AP male rat alveolar bone tissues and BMDM-derived osteoclasts (OC), which was associated with the up-regulation of obesity-associated protein (FTO). Subsequently FTO-mediated hexokinase (HK1) demethylation modification enhancing glycolytic pathway that stabilizes receptor activator of NF-κB (RANK) protein via the deubiquitination activity of ubiquitin-specific protease 14 (USP14), which further promotes osteoclastogenesis to participate in the AP-related ABR development. Finally, Dac51 (an FTO inhibitor) and 2-DG (an HK1 inhibitor) both exhibit the inhibitory activity of osteoclastogenesis. Our current study reveals a molecular mechanism on osteoclastogenesis-related ABR and provides a therapeutic target of AP via modulating the FTO/HK1/USP14/RANK axis.
Collapse
Affiliation(s)
- Yajie Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jing Wu
- Medical School of Nanjing University, Nanjing, China
| | - Weidong Yang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, China
| | - Jingjing Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qin He
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuan Zhuang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yong Wang
- Medical School of Nanjing University, Nanjing, China.
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China.
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
| | - Deyan Chen
- Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Shan S, Jin R, Cheng X, He J, Luo X. Mechano-induced arachidonic acid metabolism promotes keratinocyte proliferation through cPLA2 activity regulation. FASEB J 2024; 38:e70226. [PMID: 39636236 DOI: 10.1096/fj.202402088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Mechano-induced keratinocyte hyperproliferation is reported to be associated with various skin diseases. Enhanced cell proliferation often requires the active metabolism of nutrients to produce energy. However, how keratinocytes adapt their cellular metabolism homeostasis to mechanical cues remains unclear. Here, we first found that mechanical stretched keratinocytes showed the accumulation of metabolic arachidonic acid by metabolomic analysis. Second, we found that mechanical stretch promoted keratinocyte proliferation through the activation of cytosolic calcium-dependent phospholipase A2 (cPLA2). Knockdown or inhibition of cPLA2 could reduce the release of arachidonic acid and inhibit the proliferation of stretched keratinocytes in vitro and in vivo. Third, by analyzing overlapping transcriptomes of stretched keratinocytes and arachidonic acid-stimulated keratinocytes, we identified the upregulation of hexokinase domain-containing protein 1 (HKDC1) expression, a novel gene involved in glucose metabolism, which was associated with arachidonic acid-induced keratinocyte proliferation during stretching. Our data reveal a metabolic regulation mechanism by which mechanical stretch induces keratinocyte proliferation, thereby coupling cellular metabolism to the mechanics of the cellular microenvironment. Strategies to change the metabolism process may lead to a new way to treat skin diseases that are related to biophysical forces.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
12
|
Liu P, Luo Y, Wu H, Han Y, Wang S, Liu R, Wen S, Huang P. HKDC1 functions as a glucose sensor and promotes metabolic adaptation and cancer growth via interaction with PHB2. Cell Death Differ 2024; 31:1595-1610. [PMID: 39375512 PMCID: PMC11618360 DOI: 10.1038/s41418-024-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Glucose sensing and metabolic adaptation to glucose availability in the tumor microenvironment are critical for cancer development. Here we show that HKDC1, a hexokinase highly expressed in cancer associated with poor prognosis, functions as a glucose sensor that alters its stability in response to environmental glucose. The glucose-sensing domain is located between amino acids 751-917, with Ser896 as a key residue that regulates HKDC1 stability by affecting Lys620 ubiquitination. This sensing mechanism enables cellular adaptation to glucose starvation by promoting mitochondrial fatty acid utilization. Furthermore, HKDC1 promotes tumor growth by sequestering prohibitin 2 (PHB2) to disable its suppressive effect on SP1, thus promoting the expression of pro-oncogenic molecules. Abrogation of HKDC1 by genetic knockout or by glucose depletion releases PHB2, leading to suppression of cancer cell proliferation and inhibition of tumor growth. Our study reveals a previously unrecognized role of HKDC1 in glucose sensing and metabolic adaptation, and identifies HKDC1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Panpan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yao Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shoujie Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Research Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
13
|
Feng Y, Liu CH, Yang J, Zhang H, Li L, Yang Q, Gan W, Yang Z, Gong P, Fu C, Qian G, Li D. Integrative analysis of non12-hydroxylated bile acid revealed the suppressed molecular map of alternative pathway in nonalcoholic steatohepatitis mice. FASEB J 2024; 38:e70167. [PMID: 39556333 DOI: 10.1096/fj.202401630r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bile acids (BAs) are significantly altered in the liver and serum of patients with nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms of these changes, particularly BA alternative pathways (BAP) responsible for non12-OH BAs, remain unclear. RNA-seq data were initially analyzed to reveal the changes of gene expression in NASH patients. Targeted metabolomics were conducted on plasma from NASH mice induced by high-fat or western diet with CCl4 for 10-24 weeks. Liver tissues were examined using proteomics, RT-qPCR, and western blotting. An integrated approach was then employed to analyze protein interactions and network correlations. Analysis of RNA-seq data revealed the inhibition of CYP7B1 in NASH patients, indicating the dysregulation of BAP. In NASH mouse models, dysregulation of BA circulation was observed by increased plasma total BA (TBA) levels and decreased liver TBA, with liver swelling and histopathological changes. Targeted metabolomics revealed suppressed levels of non12-OH BAs, which inversely correlated with increased liver injury markers. The reduced mRNA and protein expression of Fxr and upregulation of Lxr signaling in livers suggested the suppressed BAP was modulated by Fxr-Lxr signaling. Moreover, BAP interactions predominantly implicated multiple metabolism disruptions, involving 7 hub proteins (Hk1, Acadsb, Pklr, Insr, Ldlr, Cyp27a1, and Cyp7b1), offering promising therapeutic targets for NASH. We presented the metabolic and proteomic map of BAP and its regulatory network in NASH progression. Therapeutic targeting of BAP or its co-regulatory proteins holds promise for NASH treatment and metabolic syndrome management.
Collapse
Affiliation(s)
- Yanruyu Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Ninth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingtao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qian Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Chunmei Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guangsheng Qian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Xing Y, Ge J, Wang Y, Zhou X, Yuan Z, Lv M, Zhao M, Liu L, Gong D, Geng T, Xie K. Mitochondrial HKDC1 suppresses oxidative stress and apoptosis by regulating mitochondrial function in goose fatty liver. Int J Biol Macromol 2024; 282:137222. [PMID: 39491705 DOI: 10.1016/j.ijbiomac.2024.137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Different from human non-alcoholic fatty liver disease (NAFLD), goose fatty liver is physiological with no inflammation. Consistently, mitochondrial dysfunction, oxidative stress and apoptosis are rarely seen in goose fatty liver. Hexokinase domain-containing protein 1 (HKDC1) is involved in maintaining systemic glucose homeostasis, and its absence causes mitochondrial dysfunction. Here, we demonstrated that mitochondrial outer membrane-bound HKDC1 (mHKDC1) had an expression pattern different from that of whole-cell HKDC1 (wHKDC1). Data indicated that the protein level of whole-cell HKDC1 (wHKDC1) was increased but mHKDC1 was decreased in mouse fatty liver. Interestingly, both the protein levels of wHKDC1 and mHKDC1 were significantly increased in goose fatty liver. Treatment of goose or mouse hepatocytes with fatty liver-related factors could influence the expression of wHKDC1 and mHKDC1, but the influence on wHKDC1 was not identical to mHKDC1. HKDC1 overexpression in goose hepatocytes increased wHKDC1 and mHKDC1 expression, mitochondrial membrane potential (MMP), mitochondrial respiratory chain activity, and suppressed reactive oxygen species (ROS) generation, apoptosis and cytokine-cytokine receptor signaling pathway. In addition, mutations in mitochondrial signal peptide or activation domain of HKDC1 altered MMP or ROS levels. In conclusion, HKDC1, particularly mHKDC1, may protect goose fatty liver by regulating mitochondrial function, ROS generation, apoptosis, and inflammation-related pathways.
Collapse
Affiliation(s)
- Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zijin Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengqing Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Huangfu L, Zhu H, Wang G, Chen J, Wang Y, Fan B, Wang X, Yao Q, Guo T, Han J, Hu Y, Du H, Li X, Ji J, Xing X. The deubiquitinase USP15 drives malignant progression of gastric cancer through glucose metabolism remodeling. J Exp Clin Cancer Res 2024; 43:235. [PMID: 39164728 PMCID: PMC11334570 DOI: 10.1186/s13046-024-03152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Ubiquitin-specific protease 15 (USP15) exhibits amplifications in various tumors, including gastric cancer (GC), yet its biological function and mechanisms in GC progression remain elusive. METHODS Here, we established stable USP15 knockdown or overexpression GC cell lines and explored the potential mechanism of USP15 in GC. Besides, we also identified interacting targets of USP15. RESULTS USP15 knockdown significantly impeded cell proliferation, invasion, epithelial-mesenchymal transition, and distal colonization in xenograft models, while enhancing oxaliplatin's antitumor effect. USP15 was involved in ubiquitination modification of glycolytic regulators. Silencing of USP15 suppressed glycolytic activity and impaired mitochondrial functions. Interference with USP15 expression reversed tumor progression and distal colonization in vivo. HKDC1 and IGF2BP3 were found as core interacting targets of USP15, and HKDC1 was identified as a substrate for ubiquitination modification by USP15, whereby USP15 regulated glucose metabolism activity by inhibiting the ubiquitination degradation of HKDC1. CONCLUSIONS Our study unveiled aberrantly high expression of USP15 in GC tissues, correlating with malignant progression and nonresponse to neoadjuvant therapy. USP15 inhibitors, if developed, could be effective in promoting chemotherapy through glucose metabolism remodeling.
Collapse
Affiliation(s)
- Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Yongqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Biao Fan
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaoyang Wang
- Department of Pharmacy, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Qian Yao
- Department of Pathology, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaomei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China.
| |
Collapse
|
16
|
Jiang Y, Wang L, Dong Z, Xia B, Pang S. Recent drug development of dorzagliatin, a new glucokinase activator, with the potential to treat Type 2 diabetes: A review study. J Diabetes 2024; 16:e13563. [PMID: 38783768 PMCID: PMC11116947 DOI: 10.1111/1753-0407.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 05/25/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complicated disease related to metabolism that results from resistance to insulin and sustained hyperglycemia. Traditional antidiabetic drugs cannot meet the demand of different diabetes patients for reaching the glycemic targets; thus, the identification of new antidiabetic drugs is urgently needed for the treatment of T2DM to enhance glycemic control and the prognosis of patients suffering from T2DM. Recently, glucokinase (GK) has attracted much attention and is considered to be an effective antidiabetic agent. Glucokinase activators (GKA) represented by dorzagliatin could activate GK and mimic its function that triggers a counter-regulatory response to blood glucose changes. Dorzagliatin has shown great potential for glycemic control in diabetic patients in a randomized, double-blind, placebo-controlled Phase 3 trial (SEED study) and had a favorable safety profile and was well tolerated (DAWN study). In the SEED study, dorzagliatin significantly reduced glycosylated hemoglobin (HbA1c) by 1.07% and postprandial blood glucose by 2.83 mol/L, showing the great potential of this drug to control blood glucose in diabetic patients, with good safety and good tolerance. An extension of the SEED study, the DREAM study, confirmed that dorzagliatin monotherapy significantly improved 24-h glucose variability and increased time in range (TIR) to 83.7% over 46 weeks. Finally, the clinical study of dorzagliatin combined with metformin (DAWN study) confirmed that dorzagliatin could significantly reduce HbA1c by 1.02% and postprandial blood glucose by 5.45 mol/L. The current review summarizes the development of GK and GKA, as well as the prospects, trends, applications, and shortcomings of these treatments, especially future directions of clinical studies of dorzagliatin.
Collapse
Affiliation(s)
- Yu Jiang
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of EndocrinologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Luyao Wang
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of EndocrinologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zhenhua Dong
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of EndocrinologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Baotian Xia
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of EndocrinologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shuguang Pang
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of EndocrinologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
17
|
Ward JA, Ng'ang'a SI, Randhawa IAS, McHugo GP, O'Grady JF, Flórez JM, Browne JA, Pérez O’Brien AM, Landaeta-Hernández AJ, Garcia JF, Sonstegard TS, Frantz LAF, Salter-Townshend M, MacHugh DE. Genomic insights into the population history and adaptive traits of Latin American Criollo cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231388. [PMID: 38571912 PMCID: PMC10990470 DOI: 10.1098/rsos.231388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Criollo cattle, the descendants of animals brought by Iberian colonists to the Americas, have been the subject of natural and human-mediated selection in novel tropical agroecological zones for centuries. Consequently, these breeds have evolved distinct characteristics such as resistance to diseases and exceptional heat tolerance. In addition to European taurine (Bos taurus) ancestry, it has been proposed that gene flow from African taurine and Asian indicine (Bos indicus) cattle has shaped the ancestry of Criollo cattle. In this study, we analysed Criollo breeds from Colombia and Venezuela using whole-genome sequencing (WGS) and single-nucleotide polymorphism (SNP) array data to examine population structure and admixture at high resolution. Analysis of genetic structure and ancestry components provided evidence for African taurine and Asian indicine admixture in Criollo cattle. In addition, using WGS data, we detected selection signatures associated with a myriad of adaptive traits, revealing genes linked to thermotolerance, reproduction, fertility, immunity and distinct coat and skin coloration traits. This study underscores the remarkable adaptability of Criollo cattle and highlights the genetic richness and potential of these breeds in the face of climate change, habitat flux and disease challenges. Further research is warranted to leverage these findings for more effective and sustainable cattle breeding programmes.
Collapse
Affiliation(s)
- James A. Ward
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Said I. Ng'ang'a
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - Gillian P. McHugo
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - John F. O'Grady
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Julio M. Flórez
- Acceligen, Eagan, MN55121, USA
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - John A. Browne
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | | | - Antonio J. Landaeta-Hernández
- Unidad de Investigaciones Zootécnicas, Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
| | - Jóse F. Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Laurent A. F. Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - David E. MacHugh
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| |
Collapse
|
18
|
Bai W, Liu D, Cheng Q, Yang X, Zhu L, Qin L, Fang J. Tetraarsenic tetrasulfide triggers ROS-induced apoptosis and ferroptosis in B-cell acute lymphoblastic leukaemia by targeting HK2. Transl Oncol 2024; 40:101850. [PMID: 38043497 PMCID: PMC10701457 DOI: 10.1016/j.tranon.2023.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most common type of cancer diagnosed in children. Despite cure rates of higher than 85 %, refractory or relapsed ALL still exhibits a bleak prognosis indicative of the dearth of treatment modalities specific for relapsed or refractory ALL. Prior research has implicated metabolic alterations in leukemia pathogenesis, and literature on the therapeutic efficacy of arsenic compounds targeting metabolic pathways in B-cell acute lymphoblastic leukemia (B-ALL) cells is scarce. METHODS A compound extracted from realgar, tetraarsenic tetrasulfide (As4S4), and its antitumor effects on B-ALL were experimentally examined in vitro and in vivo. RESULTS As4S4 apparently targets B-ALL cells by inducing specific cellular responses, including apoptosis, G2/M arrest, and ferroptosis. Interestingly, these effects are attributed to reactive oxygen species (ROS) accumulation, and increased ROS levels have been linked to both the mitochondria-dependent caspase cascade and the activation of p53 signaling. The ROS scavenger N-acetylcysteine (NAC) can counteract the effects of As4S4 treatment on Nalm-6 and RS4;11 cells. Specifically, by targeting Hexokinase-2 (HK2), As4S4 induces alterations in mitochondrial membrane potential and disrupts glucose metabolism, leading to ROS accumulation, and was shown to inhibit B-ALL cell proliferation in vitro and in vivo. Intriguingly, overexpression of HK2 can partially desensitize B-ALL cells to As4S4 treatment. CONCLUSION Tetraarsenic tetrasulfide can regulate the Warburg effect by controlling HK2 expression, a finding that provides both new mechanistic insight into metabolic alterations and pharmacological evidence for the clinical treatment of B-ALL.
Collapse
Affiliation(s)
- Wenke Bai
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Qianyi Cheng
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Xingge Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Science and Technology, 24 Jinghua Road Luoyang, Henan 471003, China
| | - Liwen Zhu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Lijun Qin
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
19
|
Cui M, Yamano K, Yamamoto K, Yamamoto-Imoto H, Minami S, Yamamoto T, Matsui S, Kaminishi T, Shima T, Ogura M, Tsuchiya M, Nishino K, Layden BT, Kato H, Ogawa H, Oki S, Okada Y, Isaka Y, Kosako H, Matsuda N, Yoshimori T, Nakamura S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci U S A 2024; 121:e2306454120. [PMID: 38170752 PMCID: PMC10786298 DOI: 10.1073/pnas.2306454120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Sho Matsui
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Shima
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Megumi Tsuchiya
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois Chicago, Chicago, IL60612
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Bioscience, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, World Premier International Research Center (WPI-IFReC), Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| |
Collapse
|
20
|
Martinez-Garza U, Choi J, Scafidi S, Wolfgang MJ. Proteomics identifies the developmental regulation of HKDC1 in liver of pigs and mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R389-R400. [PMID: 37545422 PMCID: PMC10639021 DOI: 10.1152/ajpregu.00253.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
During the perinatal period, unique metabolic adaptations support energetic requirements for rapid growth. To gain insight into perinatal adaptations, quantitative proteomics was performed comparing the livers of Yorkshire pigs at postnatal day 7 and adult. These data revealed differences in the metabolic control of liver function including significant changes in lipid and carbohydrate metabolic pathways. Newborn livers showed an enrichment of proteins in lipid catabolism and gluconeogenesis concomitant with elevated liver carnitine and acylcarnitines levels. Sugar kinases were some of the most dramatically differentially enriched proteins compared with neonatal and adult pigs including galactokinase 1 (Galk1), ketohexokinase (KHK), hexokinase 1 (HK1), and hexokinase 4 (GCK). Interestingly, hexokinase domain containing 1 (HKDC1), a newly identified fifth hexokinase associated with glucose disturbances in pregnant women, was highly enriched in the liver during the prenatal and perinatal periods and continuously declined throughout postnatal development in pigs and mice. These changes were confirmed via Western blot and mRNA expression. These data provide new insights into the developmental and metabolic adaptations in the liver during the transition from the perinatal period to adulthood in multiple mammalian species.
Collapse
Affiliation(s)
- Ursula Martinez-Garza
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joseph Choi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Susana Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
21
|
Zhang J, Yang Y, Wang Z, Zhang X, Zhang Y, Lin J, Du Y, Wang S, Si D, Bao J, Tian X. Integration of Metabolomics, Lipidomics, and Proteomics Reveals the Metabolic Characterization of Nonalcoholic Steatohepatitis. J Proteome Res 2023; 22:2577-2592. [PMID: 37403919 DOI: 10.1021/acs.jproteome.3c00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metabolic dysfunction is associated with nonalcoholic steatohepatitis (NASH) development. However, omics studies investigating metabolic changes in NASH patients are limited. In this study, metabolomics and lipidomics in plasma, as well as proteomics in the liver, were performed to characterize the metabolic profiles of NASH patients. Moreover, the accumulation of bile acids (BAs) in NASH patients prompted us to investigate the protective effect of cholestyramine on NASH. The liver expression of essential proteins involved in FA transport and lipid droplets was significantly elevated in patients with NASH. Furthermore, we observed a distinct lipidomic remodeling in patients with NASH. We also report a novel finding suggesting an increase in the expression of critical proteins responsible for glycolysis and the level of glycolytic output (pyruvic acid) in patients with NASH. Furthermore, the accumulation of branched chain amino acids, aromatic amino acids, purines, and BAs was observed in NASH patients. Similarly, a dramatic metabolic disorder was also observed in a NASH mouse model. Cholestyramine not only significantly alleviated liver steatosis and fibrosis but also reversed NASH-induced accumulation of BAs and steroid hormones. In conclusion, NASH patients were characterized by perturbations in FA uptake, lipid droplet formation, glycolysis, and accumulation of BAs and other metabolites.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingfan Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | | | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
22
|
Li D, Cao J, Zhang J, Mu T, Wang R, Li H, Tang H, Chen L, Lin X, Peng X, Zhao K. The Effects and Regulatory Mechanism of Casein-Derived Peptide VLPVPQK in Alleviating Insulin Resistance of HepG2 Cells. Foods 2023; 12:2627. [PMID: 37444365 DOI: 10.3390/foods12132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The liver plays a key role in keeping the homeostasis of glucose and lipid metabolism. Insulin resistance of the liver induced by extra glucose and lipid ingestion contributes greatly to chronic metabolic disease, which is greatly threatening to human health. The small peptide, VLPVPQK, originating from casein hydrolysates of milk, shows various health-promoting functions. However, the effects of VLPVPQK on metabolic disorders of the liver are still not fully understood. Therefore, in the present study, the effects and regulatory mechanism of VLPVPQK on insulin-resistant HepG2 cells was further investigated. The results showed that VLPVPQK exerted strong scavenging capacities against various free radicals, including oxygen radicals, hydroxyl radicals, and cellular reactive oxygen species. In addition, supplementation of VLPVPQK (62.5, 125, and 250 μM) significantly reversed the high glucose and fat (30 mM glucose and 0.2 mM palmitic acid) induced decrement of glucose uptake in HepG2 cells without affecting cell viability. Furthermore, VLPVPQK intervention affected the transcriptomic profiling of the cells. The differentially expressed (DE) genes (FDR < 0.05, and absolute fold change (FC) > 1.5) between VLPVPQK and the model group were mostly enriched in the carbohydrate metabolism-related KEGG pathways. Interestingly, the expression of two core genes (HKDC1 and G6PC1) involved in the above pathways was dramatically elevated after VLPVPQK intervention, which played a key role in regulating glucose metabolism. Furthermore, supplementation of VLPVPQK reversed the high glucose and fat-induced depression of AKR1B10. Overall, VLPVPQK could alleviate the metabolic disorder of hepatocytes by elevating the glucose uptake and eliminating the ROS, while the HKDC1 and AKR1B10 genes might be the potential target genes and play important roles in the process.
Collapse
Affiliation(s)
- Dapeng Li
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jianxin Cao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jin Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tong Mu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rubin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huanhuan Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honggang Tang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lihong Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiuyu Lin
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| | - Ke Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
23
|
Zhao P, Yuan F, Xu L, Jin Z, Liu Y, Su J, Yuan L, Peng L, Wang C, Zhang G. HKDC1 reprograms lipid metabolism to enhance gastric cancer metastasis and cisplatin resistance via forming a ribonucleoprotein complex. Cancer Lett 2023:216305. [PMID: 37423558 DOI: 10.1016/j.canlet.2023.216305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
As essential modulators of transcription and translation, RNA-binding proteins (RBPs) are frequently dysregulated in cancer. Bioinformatics study reveals that the RNA-binding protein hexokinase domain component 1 (HKDC1) is overexpressed in gastric cancer (GC). As HKDC1 plays a role in lipid homeostasis in the liver and glucose metabolism in certain cancers, the exact mechanism of action of HKDC1 in GC remains largely unknown. Upregulation of HKDC1 correlates with chemoresistance and poor prognosis in GC patients. HKDC1 enhances invasion, migration and resistance to cisplatin (CDDP) in GC cells in vitro and in vivo. Comprehensive transcriptomic sequencing and metabolomic analysis reveal that HKDC1 mediates abnormal lipid metabolism in GC cells. Herein, we identify a number of HKDC1-binding endogenous RNAs in GC cells, including protein kinase, DNA-activated, catalytic subunit (PRKDC) mRNA. We further validate that PRKDC is a crucial downstream effector of HKDC1 induced-GC tumorigenesis depends on lipid metabolism. Interestingly, G3BP1, a well-known oncoprotein, can be bound by HKDC1. HKDC1 cooperates with G3BP1 to enhance the stability of PRKDC transcript. Our results reveal a novel HKDC1/G3BP1-PRKDC regulatory axis that induces GC metastasis and chemoresistance via reprogramming lipid metabolism, which may provide an effective therapeutic strategy for a subset of GC with HKDC1 overexpression.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Lijuan Xu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhenghao Jin
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Liu
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Jing Su
- Department of Gastroenterology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, 221009, China
| | - Lin Yuan
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Peng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Guoxin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
24
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Jääskeläinen T, Klemetti MM. Genetic Risk Factors and Gene-Lifestyle Interactions in Gestational Diabetes. Nutrients 2022; 14:nu14224799. [PMID: 36432486 PMCID: PMC9694797 DOI: 10.3390/nu14224799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Paralleling the increasing trends of maternal obesity, gestational diabetes (GDM) has become a global health challenge with significant public health repercussions. In addition to short-term adverse outcomes, such as hypertensive pregnancy disorders and fetal macrosomia, in the long term, GDM results in excess cardiometabolic morbidity in both the mother and child. Recent data suggest that women with GDM are characterized by notable phenotypic and genotypic heterogeneity and that frequencies of adverse obstetric and perinatal outcomes are different between physiologic GDM subtypes. However, as of yet, GDM treatment protocols do not differentiate between these subtypes. Mapping the genetic architecture of GDM, as well as accurate phenotypic and genotypic definitions of GDM, could potentially help in the individualization of GDM treatment and assessment of long-term prognoses. In this narrative review, we outline recent studies exploring genetic risk factors of GDM and later type 2 diabetes (T2D) in women with prior GDM. Further, we discuss the current evidence on gene-lifestyle interactions in the development of these diseases. In addition, we point out specific research gaps that still need to be addressed to better understand the complex genetic and metabolic crosstalk within the mother-placenta-fetus triad that contributes to hyperglycemia in pregnancy.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Correspondence:
| | - Miira M. Klemetti
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, P.O. Box 140, 00029 Helsinki, Finland
| |
Collapse
|
27
|
The intersection of metabolism and inflammation is governed by the intracellular topology of hexokinases and the metabolic fate of glucose. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00011. [PMID: 36337735 PMCID: PMC9616595 DOI: 10.1097/in9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
Hexokinases (HKs) catalyze the first and irreversible step of glucose metabolism. Its product, glucose-6-phosphate (G-6P) serves as a precursor for catabolic processes like glycolysis for adenosine 5'-triphosphate (ATP) production and anabolic pathways including the pentose phosphate pathway (PPP) for the generation of intermediaries like nicotinamide adenine dinucleotide phosphate (NADPH) and ribulose-5-P. Thus, the cellular fate of glucose is important not only for growth and maintenance, but also to determine different cellular activities. Studies in immune cells have demonstrated an intimate linkage between metabolic pathways and inflammation, however the precise molecular mechanisms that determine the cellular fate of glucose during inflammation or aging are not completely understood. Here we discuss a study by De Jesus et al that describes the role of HK1 cytosolic localization as a critical regulator of glucose flux by shunting glucose into the PPP at the expense of glycolysis, exacerbating the inflammatory response of macrophages. The authors convincingly demonstrate a novel mechanism that is independent of its mitochondrial functions, but involve the association to a protein complex that inhibits glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase. We expand the discussion by comparing previous studies related to the HK2 isoform and how cells have evolved to regulate the mitochondrial association of these two isoforms by non-redundant mechanism.
Collapse
|
28
|
CTHRC1 is a prognosis-related biomarker correlated with immune infiltrates in colon adenocarcinoma. World J Surg Oncol 2022; 20:89. [PMID: 35307012 PMCID: PMC8934523 DOI: 10.1186/s12957-022-02557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is one of the common cancers worldwide. Collagen triple helix repeat containing 1 (CTHRC1) has been reported to be involved in cell invasion, angiogenesis, and the promotion of epithelial-mesenchymal transformation by mediating multiple signaling pathways. However, the role of CTHRC1 in COAD has not yet been determined. Methods Differentially expressed genes were evaluated using gene expression data from the Oncomine and TIMER databases. Correlations between CTHRC1 gene expression and clinicopathological factors were analyzed using gene expression data from UALCAN databases. Then, we searched the GEPIA database to evaluate the association of CTHRC1 gene expression with clinical outcomes. The cBioPortal database was used to analyze CTHRC1 genetic alterations. Subsequently, the TIMER website was chosen to assess the correlation of CTHRC1 with the tumor immune cell infiltration level. The TCGA dataset was used for a gene set enrichment analysis (GSEA). Result CTHRC1 was highly expressed in COAD patients, and significantly related to poor prognosis. In addition, elevated expression of CTHRC1 was related to the clinical stage and pathological type of COAD. The GSEA analysis showed that CTHRC1 was enriched in Gα signaling, GCPR ligand binding, neutrophil degranulation, interleukin signaling, and tumor-associated pathways. In addition, CTHRC1 was significantly associated with the expression of multiple immune markers related to specific immune cells. Conclusion This study suggest that CTHRC1 expression is related to the prognosis and immune infiltration of COAD patients. Therefore, CTHRC1 may be a new candidate prognostic biomarker for determining immune infiltration levels and providing COAD prognoses.
Collapse
|