1
|
Luo B, Liu S, Zheng L, Zhang B, Shang Y, Shang T, Zheng J, Kuang B, Zou W. The role of immune cells glycolysis in neuroinflammation secondary to intracerebral hemorrhage. Clin Immunol 2025; 279:110543. [PMID: 40516639 DOI: 10.1016/j.clim.2025.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/27/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, making the effective prevention and treatment of inflammatory secondary injury crucial. Recently, the role of immune cell metabolism in ICH has gained attention, particularly the regulatory mechanisms of glycolytic reprogramming in neuroinflammation. This review explores how glycolysis activation in peripheral immune cells (including neutrophils, macrophages, T cells, and natural killer cells), central immune cells (microglia), and other glial cells (including astrocytes and oligodendrocytes) involved in immune regulation influences the inflammatory response following ICH. We analyze the metabolic shifts in glycolysis within these immune cells, highlighting its dual role in neuroinflammation: glycolysis not only provides rapid energy to immune cells, which can either promote or inhibit inflammation, but lactate-a glycolysis byproduct-can modulate inflammatory damage by altering pH and immune cell function. Furthermore, we explore the therapeutic potential of targeting glycolysis in immune cells for neuroinflammation treatment. A deeper understanding of the glycolytic mechanism in ICH may facilitate the development of clinical therapeutic strategies targeting metabolism.
Collapse
Affiliation(s)
- Baochun Luo
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Sifan Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China; Molecular Biology Laboratory of clinical integrated of Traditional Chinese and Western Medicine of Heilongjiang Province, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Baiwen Zhang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China; Molecular Biology Laboratory of clinical integrated of Traditional Chinese and Western Medicine of Heilongjiang Province, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Jia Zheng
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China; The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Binglin Kuang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China; Molecular Biology Laboratory of clinical integrated of Traditional Chinese and Western Medicine of Heilongjiang Province, Heilongjiang University of Chinese Medicine, Harbin 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM restrains Th17 pathogenicity and Th17-dependent autoimmunity. Cell Rep 2025; 44:115799. [PMID: 40482033 DOI: 10.1016/j.celrep.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/19/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate how individual glycolytic reactions determine the pathogenicity of T helper 17 (Th17) cells using Compass, an algorithm we previously developed for inferring metabolic states from single-cell RNA sequencing. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in Th17 cells. Indeed, perturbation of phosphoglycerate mutase (PGAM), the enzyme catalyzing 3PG to 2PG conversion, induces a pathogenic gene expression program by suppressing a gene module associated with the least pathogenic state of Th17 cells. Finally, PGAM inhibition in Th17 cells exacerbates neuroinflammation in the adoptive transfer model of experimental autoimmune encephalomyelitis, consistently with PGAM promoting the non-pathogenic phenotype of Th17 cells. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of pathogenic Th17 cell differentiation.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes Fessler
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - David DeTomaso
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Lai Y, Wang S, Ren T, Shi J, Qian Y, Wang S, Zhou M, Watanabe R, Li M, Ruan X, Wang X, Zhuang L, Ke Z, Yang N, Huang Y, Zhang H. TIGIT deficiency promotes autoreactive CD4 + T-cell responses through a metabolic‒epigenetic mechanism in autoimmune myositis. Nat Commun 2025; 16:4502. [PMID: 40374622 PMCID: PMC12081758 DOI: 10.1038/s41467-025-59786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025] Open
Abstract
Polymyositis (PM) is a systemic autoimmune disease characterized by muscular inflammatory infiltrates and degeneration. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) contributes to immune tolerance by inhibiting T cell-mediated autoimmunity. Here, we show that a reduced expression of TIGIT in CD4+ T cells from patients with PM promotes these cells' differentiation into Th1 and Th17 cells, which could be rescued by TIGIT overexpression. Knockout of TIGIT enhances muscle inflammation in a mouse model of experimental autoimmune myositis. Mechanistically, we find that TIGIT deficiency enhances CD28-mediated PI3K/AKT/mTOR co-stimulatory pathway, which promotes glucose oxidation, citrate production, and increased cytosolic acetyl-CoA levels, ultimately inducing epigenetic reprogramming via histone acetylation. Importantly, pharmacological inhibition of histone acetylation suppresses the differentiation of Th1 and Th17 cells, alleviating muscle inflammation. Thus, our findings reveal a mechanism by which TIGIT directly affects the differentiation of Th1 and Th17 T cells through metabolic‒epigenetic reprogramming, with important implications for treating systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yimei Lai
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Ren
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Shi
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yichao Qian
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mengyuan Li
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinyuan Ruan
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Molecular Diagnosis and Gene Test Centre, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Hewison M. COVID-19 and our understanding of vitamin D and immune function. J Steroid Biochem Mol Biol 2025; 249:106710. [PMID: 39986580 DOI: 10.1016/j.jsbmb.2025.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The interaction between vitamin D and the immune system is perhaps the most well recognised extraskeletal facet of vitamin D, encompassing early studies of therapy for TB and leprosy through to more recent links with autoimmune disease. However, the spotlight on vitamin D and immune function has been particularly intense in the last five years following the COVID-19 pandemic. This was due, in part, to the many association studies of vitamin D status and COVID-19 infection and disease prognosis, as well as the smaller number of clinical trials of vitamin D supplementation. However, a potential role for vitamin D in COVID-19 also stemmed from the basic biology of vitamin D that provides a plausible mechanistic rationale for beneficial effects of vitamin D for improved immune health in the setting of respiratory infection. The aim of this review is to summarise the different strands of mechanistic evidence supporting a beneficial effect of vitamin D in COVID-19, how this was modified during the pandemic itself, and the potential new aspects of vitamin D and immune function that are likely to arise in the near future. Key topics that feature in this review are: antibacterial versus antiviral innate immune responses to 1,25-dihydroxyvitamin D (1,25(OH)2D); the function of immune 1α-hydroxylase (CYP27B1) activity and metabolism of 25-hydroxyvitamin D (25(OH)D) beyond antigen-presenting cells; advances in immune cell target gene responses to 1,25-dihydroxyvitamin D (notably changes in metabolic profile). Whilst much of the interest during the COVID-19 era has focused on vitamin D and public health, the continued evolution of our understanding of how vitamin D interacts with different components of the immune system continues to support a beneficial role for vitamin D in immune health.
Collapse
Affiliation(s)
- Martin Hewison
- Department of Metabolism and Systems Science, School of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Al Sayegh R, Wan J, Caër C, Azoulai M, Gasperment M, Baweja S, Chouillard MA, Kandiah J, Cadoux M, Mabire M, Pignolet C, Thibault-Sogorb T, Hammoutene A, Paradis V, Saveanu L, Nicolle R, Gilgenkrantz H, Weiss E, Lotersztajn S. Defective autophagy in CD4 T cells drives liver fibrosis via type 3 inflammation. Nat Commun 2025; 16:3860. [PMID: 40274816 PMCID: PMC12022296 DOI: 10.1038/s41467-025-59218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Conventional CD4 T cells represent a major source of inflammatory mediators that drive progression of chronic liver disease to fibrosis and to end-stage cirrhosis. Identification of T cell pathways that limits the inflammatory response could thus have therapeutic relevance. Here we show, using both human samples and mouse models, that autophagy is deficient in CD4 T cells from patients with advanced fibrosis, and that loss of autophagy following genomic deletion of ATG5 in T cells is associated with the emergence of pathogenic IL-17A + IFN-γ + Th17 T cells that drive liver fibrosis in mice. Mechanistically, liver CD4 T cells lacking autophagy display a Th17 glycolytic phenotype associated with enhanced type 3 cytokine (i.e., IL-17A and GM-CSF) release, shifting hepatic myofibroblasts, hepatocytes and macrophages toward a proinflammatory phenotype. We also show that autophagy can be rescued in CD4 T cells from patients with extensive liver fibrosis, leading to decreased frequency of pathogenic Th17 cells and reduced GM-CSF levels; in addition, limited fibrosis is observed in mice in which Rubicon, a negative regulator of autophagy, is deleted specifically in their T cells. Our findings thus implicate autophagy in CD4 T cells as a key therapeutic target to control inflammation-driven fibrosis during chronic liver injury.
Collapse
Affiliation(s)
- Rola Al Sayegh
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Jinghong Wan
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Charles Caër
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Margot Azoulai
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Maxime Gasperment
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Sukriti Baweja
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Institute of Liver Biliary Sciences, Delhi, India
| | - Marc-Anthony Chouillard
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Janany Kandiah
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Inovarion, Paris, France
| | - Mathilde Cadoux
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Morgane Mabire
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Camille Pignolet
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Tristan Thibault-Sogorb
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Adel Hammoutene
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Valérie Paradis
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Loredana Saveanu
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Rémy Nicolle
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Hélène Gilgenkrantz
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Emmanuel Weiss
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France.
| |
Collapse
|
7
|
Ayrga S, Koorsen G. Metabolic Reprogramming in HIV+ CD4 + T-Cells: Implications for Immune Dysfunction and Therapeutic Targets in M. tuberculosis Co-Infection. Metabolites 2025; 15:285. [PMID: 40422863 DOI: 10.3390/metabo15050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: HIV and Mycobacterium tuberculosis (M.tb) co-infection presents a major global health burden. The immune response to M.tb is largely orchestrated by cluster of differentiation 4-positive (CD4+) T cells, with CD8+ T cells playing an auxiliary role. This study aims to investigate the immunometabolic response of CD4+ and CD8+ T cells to M.tb antigens, analysed using metabolomics, to elucidate metabolic shifts that may influence immune function in an HIV+ environment. Methods: Whole blood samples from newly diagnosed, treatment-naïve HIV+ individuals were stimulated with M.tb antigens early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) using the QuantiFERON® (QFT) Gold Plus assay. Following incubation, plasma samples were analysed through untargeted nuclear magnetic resonance (1H-NMR) spectroscopy. Metabolomic data were processed using MetaboAnalyst, with differential metabolites identified through multivariate statistical analyses. Results: Metabolic profiling of PBMCs revealed distinct differences in response to M.tb antigens between CD4+ and CD4+/CD8+ T-cell activation. CD4+ T cells exhibited enhanced glycolysis, with elevated levels of metabolites that are linked largely to the Warburg effect. Additionally, vitamin D levels were found to correlate with certain metabolites, suggesting a role in modulating immune responses. Conclusions: These findings suggest a complex interplay between immune cell metabolism and activation in HIV+ individuals. The study demonstrates that HIV and M.tb co-infection significantly influences the broader metabolic profile of peripheral blood mononuclear cells (PBMCs), highlighting the altered metabolic pathways that are critical in immune responses and disease progression. These findings contribute to the understanding of immunometabolism in co-infection and emphasise the need for further research into targeted metabolic interventions.
Collapse
Affiliation(s)
- Suheena Ayrga
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Gerrit Koorsen
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
8
|
Jiang C, Zeng X, Wang J, Wu X, Song L, Yang L, Li Z, Xie N, Yuan X, Wei Z, Guan Y. Andrographolide sulfonate alleviates rheumatoid arthritis by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation. Chin J Nat Med 2025; 23:480-491. [PMID: 40274350 DOI: 10.1016/s1875-5364(25)60855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 04/26/2025]
Abstract
Andrographolide sulfonate (AS) is a sulfonated derivative of andrographolide extracted from Andrographis paniculata (Burm.f.) Nees, and has been approved for several decades in China. The present study aimed to investigate the novel therapeutic application and possible mechanisms of AS in the treatment of rheumatoid arthritis. Results indicated that administration of AS by injection or gavage significantly reduced the paw swelling, improved body weights, and attenuated pathological changes in joints of rats with adjuvant-induced arthritis. Additionally, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in the serum and ankle joints were reduced. Bioinformatics analysis, along with the spleen index and measurements of IL-17 and IL-10 levels, suggested a potential relationship between AS and Th17 cells under arthritic conditions. In vitro, AS was shown to block Th17 cell differentiation, as evidenced by the reduced percentages of CD4+ IL-17A+ T cells and decreased expression levels of RORγt, IL-17A, IL-17F, IL-21, and IL-22, without affecting the cell viability and apoptosis. This effect was attributed to the limited glycolysis, as indicated by metabolomics analysis, reduced glucose uptake, and pH measurements. Further investigation revealed that AS might bind to hexokinase2 (HK2) to down-regulate the protein levels of HK2 but not glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or pyruvate kinase M2 (PKM2), and overexpression of HK2 reversed the inhibition of AS on Th17 cell differentiation. Furthermore, AS impaired the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signals in vivo and in vitro, which was abolished by the addition of lactate. In conclusion, AS significantly improved adjuvant-induced arthritis (AIA) in rats by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Collapse
Affiliation(s)
- Chunhong Jiang
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Wang
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Song
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injection, Ganzhou 341000, China
| | - Xiaomei Yuan
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chen B, Zhang C, Zhou M, Deng H, Xu J, Yin J, Chen C, Zhang D, Pu Y, Zheng L, Wang B, Fu J. CD4+ T-cell metabolism in the pathogenesis of Sjogren's syndrome. Int Immunopharmacol 2025; 150:114320. [PMID: 39970711 DOI: 10.1016/j.intimp.2025.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.
Collapse
Affiliation(s)
- Baixi Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenji Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Mengyuan Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hongyu Deng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jiabao Xu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg 97255, Germany
| | - Junhao Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Changyu Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200001, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Jiayao Fu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
10
|
Loaiza JD, Gómez JF, Muñoz-Escudero D, Gonzalez SM, Eubank TK, Rugeles MT, Rodríguez-Perea AL, Aguilar-Jimenez W. Vitamin D Decreases Susceptibility of CD4 + T Cells to HIV Infection by Reducing AKT Phosphorylation and Glucose Uptake: A Bioinformatic and In Vitro Approach. Biomolecules 2025; 15:432. [PMID: 40149968 PMCID: PMC11940553 DOI: 10.3390/biom15030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 03/29/2025] Open
Abstract
Activated immune cells are highly susceptible to human immunodeficiency virus (HIV) infection. Vitamin D (VitD) induces antimicrobial responses and reduces cellular activation. We investigated VitD effects on HIV-1 replication, glucose uptake, and gene regulation using computational and in vitro approaches. CD4+ T cells from healthy male donors were treated with VitD and infected with HIV-1. After 72 h, p24 protein was measured to assess viral replication. VitD effects on anti- and pro-HIV genes were analyzed by a Boolean network model based on curated databases and the literature. CCR5 and CXCR4 coreceptor expression, AKT phosphorylation, and glucose uptake were evaluated by flow cytometry, and expression of some model-identified genes was quantified by qPCR. VitD reduced p24 by 53.2% (p = 0.0078). Boolean network modeling predicted that VitD upregulates antiviral, migration, and cell-differentiation related genes, while downregulating genes related to cellular activation, proliferation, glucose metabolism, and HIV replication, notably AKT1, CCNT1, SLC2A1, HIF1A, and PFKL. In vitro, VitD reduced AKT phosphorylation by 26.6% (p = 0.0156), transcription of CCNT1 by 22.7% (p = 0.0391), and glucose uptake by 22.8% (p = 0.0039) without affecting classic antiviral genes or coreceptor expression. These findings suggest an anti-HIV effect of VitD, mediated through AKT and glucose metabolism downmodulation, both involved in cell activation and HIV-1 replication.
Collapse
Affiliation(s)
- John D. Loaiza
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Jose Fernando Gómez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Daniel Muñoz-Escudero
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Sandra M. Gonzalez
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Timothy Kyle Eubank
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Ana Lucía Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| |
Collapse
|
11
|
Wong BHS, Poh ZS, Wei JTC, Amuthavalli K, Ho YS, Chen S, Mak SY, Bi X, Webster RD, Shelat VG, Chandy KG, Verma NK. High Extracellular K + Skews T-Cell Differentiation Towards Tumour Promoting Th2 and T reg Subsets. Eur J Immunol 2025; 55:e202451440. [PMID: 39651799 PMCID: PMC11830381 DOI: 10.1002/eji.202451440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Potassium ions (K+) released from dying necrotic tumour cells accumulate in the tumour microenvironment (TME) and increase the local K+ concentration to 50 mM (high-[K+]e). Here, we demonstrate that high-[K+]e decreases expression of the T-cell receptor subunits CD3ε and CD3ζ and co-stimulatory receptor CD28 and thereby dysregulates intracellular signal transduction cascades. High-[K+]e also alters the metabolic profiles of T-cells, limiting the metabolism of glucose and glutamine, consistent with functional exhaustion. These changes skew T-cell differentiation, favouring Th2 and iTreg subsets that promote tumour growth while restricting antitumour Th1 and Th17 subsets. Similar phenotypes were noted in T-cells present within the necrosis-prone core versus the outer zones of hepatocellular carcinoma (HCC)/colorectal carcinoma (CRC) tumours as analysed by GeoMx digital spatial profiling and flow-cytometry. Our results thus expand the understanding of the contribution of high-[K+]e to the immunosuppressive milieu in the TME.
Collapse
Affiliation(s)
- Brandon Han Siang Wong
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Interdisciplinary Graduate ProgrammeNTU Institute for Health Technologies (HealthTech NTU)Nanyang Technological UniversitySingaporeSingapore
| | - Zhi Sheng Poh
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - James Tan Chia Wei
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | | | - Ying Swan Ho
- Bioprocessing Technology InstituteAgency for Science Technology and Research (A*STAR)Singapore
| | - Shuwen Chen
- Bioprocessing Technology InstituteAgency for Science Technology and Research (A*STAR)Singapore
| | - Shi Ya Mak
- Bioprocessing Technology InstituteAgency for Science Technology and Research (A*STAR)Singapore
| | - Xuezhi Bi
- Bioprocessing Technology InstituteAgency for Science Technology and Research (A*STAR)Singapore
| | - Richard D. Webster
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingaporeSingapore
| | - Vishalkumar G. Shelat
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of General SurgeryTan Tock Seng HospitalSingapore
| | - K. George Chandy
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Navin Kumar Verma
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- National Skin CentreSingapore
- Skin Research Institute of SingaporeSingapore
| |
Collapse
|
12
|
Zhang B, Wen J, Li M, Wang J, Ji Z, Lv X, Usman M, Mauck J, Loor JJ, Yang W, Wang G, Ma J, Xu C. Fatty acids promote migration of CD4 + T cells through calcium release-activated calcium modulator ORAI1 sensitive glycolysis in dairy cows. J Dairy Sci 2025; 108:856-867. [PMID: 39477060 DOI: 10.3168/jds.2024-24845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/17/2024] [Indexed: 12/28/2024]
Abstract
Nutritional and metabolic state in dairy cows are important determinants of the immune response. During the periparturient period, a state of negative energy balance in the cow increases plasma concentrations of fatty acids (FA), which are associated with inflammation. Among immune cells, CD4+ T are able to function under high-FA conditions, but the underlying mechanisms regulating these events remain unclear. The objective of this study was to clarify the functional mechanisms of CD4+ T cells under high-FA conditions. The effects of glycolysis and calcium release-activated calcium modulator 1 (ORAI1) on migration of CD4+ T cells exposed to high FA were investigated in vivo and in vitro. The CD4+ T cells were isolated from peripheral blood of healthy (n = 9) and high-FA (n = 9) Holstein cows (average 2.5 ± 0.2 lactations [SE], 12.3 ± 0.8 DIM). In the first experiment, real-time quantitative PCR was used to assess chemokine receptors in isolated CD4+ T cells and migration capacity. The relative mRNA measurements results revealed downregulation of CCR1 and CXCR2, and upregulation of CCR2, CCR4, CCR5, CCR7, CCR8, CCR10, CXCR1, CXCR3, CXCR4, and CX3CR1. Among them, the expression of CXCR4 was relatively high. Therefore, CXCL12, a ligand chemokine of CXCR4, was an inducer of CD4+ T cell migration. The CD4+ T cells were inoculated in the upper chamber and CXCL12 (100 ng/mL, Peprotech) in RPMI1640 was added to the lower chamber and transmigrated for 3 h at 37°C and 5% CO2. The cell migration assay revealed that the migration capacity of CD4+ T cells from high-FA cows was greater. Real-time-qPCR indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA and Western blotting indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA in CD4+ T cells of high-FA cows. To characterize specific mechanisms of CD4+ T cell migration in vitro, cells from the spleens of 3 newborn (1 d old, 40-50 kg) healthy female Holstein calves were isolated after euthanasia. Inhibition of glycolysis attenuated the migration ability of cells, but had no effect on the protein and mRNA abundance of store-operated Ca2+ entry (SOCE)-associated calcium release-activated calcium modulator 1 (ORAI1) and stromal interaction molecule 1 (STIM1). In contrast, ORAI1 was upregulated in CD4+ T cells of cows exposed to high FA. To explore the potential mechanisms whereby an active glycolytic metabolism affects CD4+ T cells under high-FA conditions, we knocked down ORAI1 using small interfering RNA (siORAI1). Isolated CD4+ T cells from high-FA cows with the siORAI1 had an attenuated glycolytic metabolism and migration capacity. Taken together, these data suggested that calcium ions in CD4+ T cells from cows with high FA regulate glycolytic metabolism and influence cell migration at least in part by modulating ORAI1. Thus, these studies identified a novel mechanism of Ca2+ regulation of CD4+ T cell glycolytic metabolism affecting their migration through the SOCE pathway.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 032699, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ziwei Ji
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Muhammad Usman
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
13
|
Chen Y, Gan B, Zheng S, Zhao X, Jin L, Wei J. AMPK-mTOR pathway modulates glycolysis reprogramming in unexplained recurrent spontaneous abortion. BMC Pregnancy Childbirth 2024; 24:840. [PMID: 39707242 DOI: 10.1186/s12884-024-07054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA), whose underlying cause has yet to be fully elucidated, is often classified as unexplained recurrent spontaneous abortion (URSA). Promoting the differentiation of CD4+ T cells into Tregs may be the key to prevent URSA. The differentiation of CD4+ T cells was controlled by mTOR, but the regulatory mechanism is still unclear. This study aims to explore the regulatory role of mTOR on CD4+ T cells and evaluate the feasibility of metformin (Met) and 2-Deoxy-D-glucose (2-DG) treatment for URSA. METHODS To elucidate the mechanism of mTOR regulating Th17/Treg, transcriptome sequencing was used to analyze gene differences in clinical decidua tissue, the AMPK, mTOR and glycolytic activity in URSA mice were evaluated by RT-qPCR and WB. In addition, FCM and ELISA were also used to measure the differentiation of CD4+ T cells. RESULTS Compared to the Control group, significant differences in gene expressions of female pregnancy and Th17 cell differentiation were observed in URSA group. Activation of AMPK and inhibition of glycolysis reduced the abortion rate in URSA mice (p = 0.0013), and inhibited CD4+ T cells differentiation to Th17 cells, which increased Treg/Th17 ratio (p < 0.001) and improved the pregnancy outcomes of URSA mice. CONCLUSIONS Our research had illustrated that AMPK-mTOR pathway regulated glycolysis reprogramming and improved the pregnancy outcomes of URSA. Furthormore, Met and 2-DG promoted the differentiation of CD4+ T cells into Treg cells, providing theoretical basis for clinical prevention of URSA.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Bei Gan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Shan Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Xiumei Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Leiyi Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China.
| |
Collapse
|
14
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
15
|
Nappi TJ, Butler NS. Tragedy of the commons: the resource struggle during Plasmodium infection. Trends Parasitol 2024; 40:1135-1143. [PMID: 39547909 DOI: 10.1016/j.pt.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Plasmodium spp. have an ancient history with humans, having been described in ancient texts dating back 3500 years ago, which has led to an evolutionary arms race between Plasmodium and humans with Plasmodium successfully subverting durable, sterilizing host immunity. Mechanisms of immune evasion include polymorphism and antigenic variation, as well as dysregulated immune responses, each facilitating transmission and Plasmodium parasite persistence. Notably, metabolite signaling cues in the host and parasite have more recently been appreciated as key drivers for disease progression. Here, we highlight the metabolic interplay between the host and Plasmodium parasites during malaria. We discuss how immunometabolism studies may be leveraged to elucidate this complex relationship and offer opportunities to augment either vaccine- or infection-induced protective immunity.
Collapse
Affiliation(s)
- Taylen J Nappi
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Noureddine N, Holtzhauer G, Wawrzyniak P, Srikanthan P, Krämer SD, Rogler G, Lucchinetti E, Zaugg M, Hersberger M. Size of lipid emulsion droplets influences metabolism in human CD4 + T cells. Biochem Biophys Res Commun 2024; 733:150680. [PMID: 39278094 DOI: 10.1016/j.bbrc.2024.150680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
SCOPE Triglyceride-based lipid emulsions are critical for total parenteral nutrition (TPN), but their long-term use has adverse effects, such as severe liver dysfunction necessitating improved formulations. This study compares the uptake mechanism and intracellular fate of novel glycerol-stabilized nano-sized lipid emulsions with conventional emulsions in CD4+ T cells, focusing on their impact on cellular metabolism. METHODS AND RESULTS Nanoemulsions were formulated with increased glycerol content. Uptake of emulsions in primary human CD4+ T cells was investigated using different endocytic blockers, then quantified by flow cytometry, and visualized by confocal microscopy. To investigate emulsion intracellular fate, fatty acids in membrane phospholipids were quantified by GC-MS/MS and cellular metabolism was assessed by Seahorse technology. Results show T cells internalize both conventional and nano-sized emulsions using macropinocytosis. Fatty acids from emulsions are stored as neutral lipids in intracellular vesicles and are incorporated into phospholipids of cellular membranes. However, only nanoemulsions additionally use clathrin-mediated endocytosis and deliver fatty acids to mitochondria for increased β-oxidation. CONCLUSIONS Size of lipid emulsion droplets significantly influences their uptake and subsequent metabolism in CD4+ T cells. Our results highlight the potential for improved nutrient utilization with nanoemulsions in TPN formulations possibly leading to less adverse effects.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Gregory Holtzhauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Franz T, Stegemann-Koniszewski S, Schreiber J, Müller A, Bruder D, Dudeck A, Boehme JD, Kahlfuss S. Metabolic and ionic control of T cells in asthma endotypes. Am J Physiol Cell Physiol 2024; 327:C1300-C1307. [PMID: 39374078 DOI: 10.1152/ajpcell.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
CD4+ T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.
Collapse
Affiliation(s)
- Tobias Franz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
18
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
19
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
20
|
Yamamoto W, Hamada T, Suzuki J, Matsuoka Y, Omori-Miyake M, Kuwahara M, Matsumoto A, Nomura S, Konishi A, Yorozuya T, Yamashita M. Suppressive effect of the anesthetic propofol on the T cell function and T cell-dependent immune responses. Sci Rep 2024; 14:19337. [PMID: 39164311 PMCID: PMC11336218 DOI: 10.1038/s41598-024-69987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
General anesthesia is thought to suppress the immune system and negatively affect postoperative infection and the long-term prognosis of cancer. However, the mechanism underlying immunosuppression induced by general anesthetics remains unclear. In this study, we focused on propofol, which is widely used for sedation under general anesthesia and intensive care and examined its effects on the T cell function and T cell-dependent immune responses. We found that propofol suppressed T cell glycolytic metabolism, differentiation into effector T cells, and cytokine production by effector T cells. CD8 T cells activated and differentiated into effector cells in the presence of propofol in vitro showed reduced antitumor activity. Furthermore, propofol treatment suppressed the increase in the number of antigen-specific CD8 T cells during Listeria infection. In contrast, the administration of propofol improved inflammatory conditions in mouse models of inflammatory diseases, such as OVA-induced allergic airway inflammation, hapten-induced contact dermatitis, and experimental allergic encephalomyelitis. These results suggest that propofol may reduce tumor and infectious immunity by suppressing the T cell function and T cell-dependent immune responses while improving the pathogenesis and prognosis of chronic inflammatory diseases by suppressing inflammation.
Collapse
Affiliation(s)
- Waichi Yamamoto
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Yuko Matsuoka
- Translational Research Center, Ehime University Hospital, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Akira Matsumoto
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Shunsuke Nomura
- Department of Immuno-Drug Chemistry, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Translational Research Center, Ehime University Hospital, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Department of Immuno-Drug Chemistry, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
| |
Collapse
|
21
|
Ramgopal A, Braverman EL, Sun LK, Monlish D, Wittmann C, Kemp F, Qin M, Ramsey MJ, Cattley R, Hawse W, Byersdorfer CA. AMPK drives both glycolytic and oxidative metabolism in murine and human T cells during graft-versus-host disease. Blood Adv 2024; 8:4149-4162. [PMID: 38810258 PMCID: PMC11345362 DOI: 10.1182/bloodadvances.2023010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024] Open
Abstract
ABSTRACT Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia effects. In the current studies, murine AMPK knock-out (KO) T cells decreased oxidative metabolism at early time points posttransplant and lacked a compensatory increase in glycolysis after inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), with enzyme assays confirming impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma upon antigenic restimulation and a decrease in the total number of donor CD4 T cells recovered at later times posttransplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and after expansion in vivo. Xenogeneic GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Erica L. Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Darlene Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
- School of Medicine, Tsinghua University, Beijing, China
| | - Manda J. Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Richard Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - William Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
22
|
Ji J, Bi F, Zhang X, Zhang Z, Xie Y, Yang Q. Single-cell transcriptome analysis revealed heterogeneity in glycolysis and identified IGF2 as a therapeutic target for ovarian cancer subtypes. BMC Cancer 2024; 24:926. [PMID: 39085784 PMCID: PMC11292870 DOI: 10.1186/s12885-024-12688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As the most malignant tumor of the female reproductive system, ovarian cancer (OC) has garnered increasing attention. The Warburg effect, driven by glycolysis, accounts for tumor cell proliferation under aerobic conditions. However, the metabolic heterogeneity linked to glycolysis in OC remains elusive. METHODS We integrated single-cell data with OC to score glycolysis level in tumor cell subclusters. This led to the identification of a subcluster predominantly characterized by glycolysis, with a strong correlation to patient prognosis. Core transcription factors were pinpointed using hdWGCNA and metaVIPER. A specific transcription factor regulatory network was then constructed. A glycolysis-related prognostic model was developed and tested for estimating OC prognosis with a total of 85 machine-learning combinations, focusing on specific upregulated genes of two subtypes. We identified IGF2 as a key within the prognostic model and investigated its impact on OC progression and drug resistance through in vitro experiments, including the transwell assay, lactate production detection, and the CCK-8 assay. RESULTS Analysis showed that the Malignant 7 subcluster was primarily related to glycolysis. Two OC molecular subtypes, CS1 and CS2, were identified with distinct clinical, biological, and microenvironmental traits. A prognostic model was built, and IGF2 emerged as a key gene linked to prognosis. Experiments have proven that IGF2 can promote the glycolysis pathway and the malignant biological progression of OC cells. CONCLUSIONS We developed two novel OC subtypes based on glycolysis score, established a stable prognostic model, and identified IGF2 as the marker gene. These insights provided a new avenue for exploring OC's molecular mechanisms and personalized treatment approaches.
Collapse
Affiliation(s)
- Jinting Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Zhiming Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Yichi Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
23
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
24
|
Zou Y, Zhang J, Sun F, Xu Q, Chen L, Luo X, Wang T, Zhou Q, Zhang S, Xiong F, Kong W, Yang P, Yu Q, Liu S, Wang CY. Fluvoxamine inhibits Th1 and Th17 polarization and function by repressing glycolysis to attenuate autoimmune progression in type 1 diabetes. Mol Med 2024; 30:23. [PMID: 38317106 PMCID: PMC10845844 DOI: 10.1186/s10020-024-00791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved β cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.
Collapse
Affiliation(s)
- Yuan Zou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jing Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qianqian Xu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Longmin Chen
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xi Luo
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ting Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ping Yang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
| | - Shiwei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical ScienceTongji Shanxi Hospital, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Third Hospital of Shanxi Medical University, Taiyuan, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical ScienceTongji Shanxi Hospital, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
25
|
Zhao Y, Wang P, Sun X, Zhao M, Chen Y, Gao X. Candida albicans Infection Disrupts the Metabolism of Vaginal Epithelial Cells and Inhibits Cellular Glycolysis. Microorganisms 2024; 12:292. [PMID: 38399696 PMCID: PMC10891792 DOI: 10.3390/microorganisms12020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is a common gynecologic disorder caused by fungal infections of the vaginal mucosa, with the most common pathogen being Candida albicans (C. albicans). Exploring metabolite changes in the disease process facilitates further discovery of targets for disease treatment. However, studies on the metabolic changes caused by C. albicans are still lacking. In this study, we used C. albicans-infected vaginal epithelial cells to construct an in vitro model of VVC, analyzed the metabolites by UHPLC-Q-Exactive MS, and screened the potential metabolites based on metabolomics. The results showed that C. albicans infection resulted in significant up-regulation of D-arabitol, palmitic acid, adenosine, etc.; significant down-regulation of lactic acid, nicotinamide (NAM), nicotinate (NA), etc.; and disruption of amino acid metabolism, and that these significantly altered metabolites might be potential therapeutic targets of VVC. Further experiments showed that C. albicans infection led to a decrease in glycolytic enzymes in damaged cells, inhibiting glycolysis and leading to significant alterations in glycolytic metabolites. The present study explored the potential metabolites of VVC induced by C. albicans infection based on metabolomics and verified the inhibitory effect of C. albicans on vaginal epithelial cell glycolysis, which is valuable for the diagnosis and treatment of VVC.
Collapse
Affiliation(s)
- Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| | - Mei Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| | - Yixuan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550031, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
26
|
Cao J, Liao S, Zeng F, Liao Q, Luo G, Zhou Y. Effects of altered glycolysis levels on CD8 + T cell activation and function. Cell Death Dis 2023; 14:407. [PMID: 37422501 PMCID: PMC10329707 DOI: 10.1038/s41419-023-05937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
CD8+ T cells are an important component of the body's adaptive immune response. During viral or intracellular bacterial infections, CD8+ T cells are rapidly activated and differentiated to exert their immune function by producing cytokines. Alterations in the glycolysis of CD8+ T cells have an important effect on their activation and function, while glycolysis is important for CD8+ T cell functional failure and recovery. This paper summarizes the importance of CD8+ T cell glycolysis in the immune system. We discuss the link between glycolysis and CD8+ T cell activation, differentiation, and proliferation, and the effect of altered glycolysis on CD8+ T cell function. In addition, potential molecular targets to enhance and restore the immune function of CD8+ T cells by affecting glycolysis and the link between glycolysis and CD8+ T cell senescence are summarized. This review provides new insights into the relationship between glycolysis and CD8+ T cell function, and proposes novel strategies for immunotherapy by targeting glycolysis.
Collapse
Affiliation(s)
- Jiaying Cao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, 410008, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|