1
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Prenatal and Preweaning Environmental Effects upon Pubertal Development and Sperm Production. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:331-347. [PMID: 40272593 DOI: 10.1007/978-3-031-70126-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This chapter examines the role of early life perturbations upon the developing bull calf. Surprisingly, we observe effects upon sexual development and sperm quality, including sperm morphology, as early as the periconception period (-60 to 23 days post conception). Similarly, during postnatal life (prior to 6mths of age) dietary perturbations retard sexual development and sperm quality. Herein we discuss the ontology of development and examine why these periods of development are fundamental to fertility in the bull. Ultimately, this leads to recommendations for changes to current husbandry protocols.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Barbato O, Barile VL, Menchetti L, Ricci G, Achihaei EL, Porcu C, Sotgiu FD, Pasciu V, Berlinguer F. Maternal Undernutrition Effect on Pregnancy-Associated Glycoprotein (PAG) Concentration in Sheep Carrying Single and Multiple Fetuses. Animals (Basel) 2024; 14:3427. [PMID: 39682391 DOI: 10.3390/ani14233427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
To the best of our knowledge, no studies in the literature have reported on the relationship between the pregnancy-associated glycoprotein (PAG) concentration and undernutrition during pregnancy in sheep. Therefore, the aim of this study was to investigate the effects of undernutrition on the blood concentration of PAGs in pregnant ewes carrying single and multiple fetuses, undergoing either dietary energy restriction or receiving 100% of their energy requirements during the period of maximal placenta growth. From d 24 to 100 of pregnancy, the ewes were fed ryegrass hay and two different iso-proteic concentrates, fulfilling either 100% of the ewes' energy requirements (control group; n = 30, 14 singleton pregnancies, 16 multiple pregnancies) or only 50% (feed-restricted group; n = 29; 11 singleton pregnancies, 18 multiple pregnancies). Blood samples were collected from all the ewes the day before intravaginal sponge insertion (T0) and, thereafter, every 30 days starting from d 24 of gestation (T1) until d 30 after parturition (T6), to determine the PAG, progesterone, NEFA, total protein, and glucose concentrations. Our results showed that PAG concentrations are not only influenced by the number of fetuses, but also by the ewe's diet. In particular, the PAG marginal means were higher in the feed-restricted group than in the control group (7.8 ± 0.6 and 10.8 ± 0.9 ng/mL for the control and feed-restricted groups, respectively; p = 0.040). This finding confirms that a dietary restriction between d 24 and d 100 of gestation leads to a growth in placental functions as inferred from the increase in the concentration of the PAG levels. Therefore, the measurement of PAG concentrations, in addition to serving as a marker of pregnancy, can also serve as a marker of placental functionality.
Collapse
Affiliation(s)
- Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Vittoria Lucia Barile
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Via Salaria 31, 00015 Monterotondo, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Giovanni Ricci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Emilia Larisa Achihaei
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
3
|
Oliveira KR, Neto APO, Diamantino CA, Eiterer IO, Araújo RD, Sancler-Silva YFR, Silva AL, Duarte MS, Rotta PP. Differential average daily gain of pregnant Holstein × Gyr dairy heifers causes placental adaptations to support fetal growth and development. J Dairy Sci 2023; 106:6938-6950. [PMID: 37268585 DOI: 10.3168/jds.2022-23201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
This study aimed to evaluate the effects of differential average daily gain targets of dairy heifers throughout gestation on placental hemodynamics, uterine involution, colostrum production of the heifers, and effects on newborn calf weight and immunity transfer. Fourteen Holstein × Gyr heifers with an average body weight of 446 ± 46.7 kg and age of 25 ± 3.9 mo were randomly assigned to the following treatments: moderate body weight gain (MOD, n = 7), where heifers were fed to achieve 0.50 kg/d; and high body weight gain (HIG, n = 7), where heifers were fed to achieve 0.75 kg/d. Target average daily gains were established based on common tropical dairy production systems. The heifers received a total mixed ration feed twice daily starting at 70 d of gestation. Placentome vascularization was assessed using a color Doppler ultrasound at 180, 210, and 240 d of gestation. After calving, cotyledons were counted and sampled to analyze the mRNA expression of placental angiogenesis markers. After birth, calves were weighed and fed colostrum, and transfer of passive immunity efficiency was assessed. A significant increase in cotyledons was detected for MOD placenta soon after expulsion (81.5 ± 12.91 vs. 63.6 ± 10.52). Placentome vascularization at the final third of gestation increased for MOD heifers compared with HIG. Greater mRNA expression after membrane expulsion of VEGFB and IGFR1 in cotyledons and a greater estradiol concentration in circulation 1 d before calving was found for MOD heifers compared with HIG heifers; however, uterine involution postpartum was not different between treatment groups. Greater colostrum production was observed in HIG heifers (3.9 ± 1.05 vs. 2.2 ± 1.57 L) but with lower quality (25.2 ± 0.51 vs. 29.5 ± 0.65 Brix). No differences were observed in birth weight or transfer of passive immunity efficiency between treatments; however, HIG calves had significantly greater vitality scores than MOD calves. The results of this study indicate that a moderate feeding regimen enhances placental blood flow by increasing angiogenesis, which suggests improved nutrient transfer to the fetus without major effects on its development during the neonatal stage, colostrum production, or uterine involution in the heifers.
Collapse
Affiliation(s)
- Kellen R Oliveira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Antônio P O Neto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Caio A Diamantino
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, 36571-000, Brazil
| | - Isabela O Eiterer
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Renato D Araújo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | | | - Alex L Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Marcio S Duarte
- Department of Animal Biosciences, University of Guelph, Guelph, N1G2W1, Canada
| | - Polyana P Rotta
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
4
|
Influence of corn supplementation to beef cows during mid- to late-gestation: Supplementation decreases placental microvascular surface density but does not alter uterine blood flow or neonatal performance. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Different prenatal supplementation strategies and its impacts on reproductive and nutrigenetics assessments of bulls in finishing phase. Vet Res Commun 2022; 47:457-471. [PMID: 35750996 DOI: 10.1007/s11259-022-09963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
This study investigated the effect of different prenatal nutrition approaches in 126 pregnant Nellore cows on reproductive and nutrigenetic traits of the male offspring during the finishing phase. For that purpose, three nutritional treatments were used in these cows during pregnancy: PP - protein-energy supplementation in the final third, FP - protein-energy supplementation during the entire pregnancy, and NP - (control) only mineral supplementation. The male progeny (63 bulls; 665 ± 28 days of age) were evaluated for scrotal circumference, seminal traits, number of Sertoli cells and testicular area. We performed a genomic association (700 K SNPs) for scrotal circumference at this age. In addition, a functional enrichment was performed in search of significant metabolic pathways (P < 0.05) with inclusion of genes that are expressed in these genomic windows by the MetaCore software. With the exception of major sperm defects (P < 0.1), the other phenotypes showed no difference between prenatal treatments. We found genes and metabolic pathways (P < 0.05) that are associated with genomic windows (genetic variance explained >1%) in different treatments. These molecular findings indicate that there is genotype-environment interaction among the different prenatal treatments and that the FP treatment showed greater major sperm defects compared to the NP treatment.
Collapse
|
6
|
Moriel P, Palmer EA, Harvey KM, Cooke RF. Improving Beef Progeny Performance Through Developmental Programming. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.728635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutritional management during gestation appears to modulate fetal development and imprint offspring postnatal health and performance, via altered organ and tissue development and tissue-specific epigenetics. This review highlighted the studies demonstrating how developmental programming could be explored by beef producers to enhance offspring performance (growth, immune function, and reproduction), including altering cow body condition score (BCS) during pregnancy and maternal supplementation of protein and energy, polyunsaturated fatty acids (PUFA), trace minerals, frequency of supplementation, specific amino acids, and vitamins. However, this review also highlighted that programming effects on offspring performance reported in the literature were highly variable and depended on level, duration, timing, and type of nutrient restriction during gestation. It is suggested that maternal BCS gain during gestation, rather than BCS per se, enhances offspring preweaning growth. Opportunities for boosting offspring productive responses through maternal supplementation of protein and energy were identified more consistently for pre- vs. post-weaning phases. Maternal supplementation of specific nutrients (i.e., PUFA, trace minerals, and methionine) demonstrated potential for improving offspring performance, health and carcass characteristics during immunological challenging scenarios. Despite the growing body of evidence in recent years, the complexity of investigating developmental programming in beef cattle production is also growing and potential reasons for current research challenges are highlighted herein. These challenges include: (1) intrinsic difficulty of accurately measuring cow milk production multiple times in cow-calf systems; (2) larger focus on Bos taurus vs. Bos indicus breeds despite the predominance of Bos indicus-influenced beef breeds in tropical/subtropical environments and their specific, and sometimes opposite, physiological and performance outcomes compared to Bos taurus breeds; (3) limited focus on interaction between prenatal and postnatal management; (4) sex-specific outcomes following similar maternal nutrition during gestation; (5) greater focus on nutrient deficiency vs. excess; (6) limited implementation of immunological challenges; and (7) lack of multigeneration and longer periods of offspring evaluation. This review provides multiple evidence that such obstacles need to be overcome in order to significantly advance the scientific knowledge of developmental programming in beef cattle and promote global beef production.
Collapse
|
7
|
Copping KJ, Callaghan MJ, Geesink GH, Gugusheff JR, McMillen IC, Rodgers RJ, Muhlhausler BS, Vithayathil MA, Perry VEA. Periconception and First Trimester Diet Modifies Appetite, Hypothalamic Gene Expression, and Carcass Traits in Bulls. Front Genet 2021; 12:720242. [PMID: 34539749 PMCID: PMC8448419 DOI: 10.3389/fgene.2021.720242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Nulliparous yearling beef heifers (n=360) were used to evaluate the effects of maternal dietary protein during the periconception and first trimester periods of gestation on postnatal growth, feedlot performance, carcass characteristics, and the expression of genes associated with appetite in the arcuate nucleus of their male progeny. Heifers were individually fed a diet of 1.18g crude protein (CP)/day High protein (HPeri) or 0.62g CP/day Low protein (LPeri) beginning 60days before conception. From 24 to 98days post-conception (dpc), half of each treatment group changed to the alternative post-conception diet and were fed 1.49g CP/day (HPost) or 0.88g CP/day (LPost) yielding four treatment groups in a 2×2 factorial design. From day 98 of gestation, heifers received a common diet until parturition. Calves were weaned at 183days and developed on pasture before feedlot entry. Bulls underwent a 70-day Residual Feed Intake (RFI) feedlot test commencing at 528days of age. Feedlot entry and final body weight (BW), feedlot average daily gain (ADG) and RFI were not different (p>0.05). Progeny of dams that had a change in diet (LPeri/HPost and HPeri/LPost) had 9% higher daily dry matter intake (DMI) during the RFI test (p<0.05) than progeny of dams that received low diet throughout both the peri-conception period and first trimester (LPeri/LPost). Further, mRNA expression of the appetite-stimulating agouti-related protein (AGRP) was increased in the arcuate nucleus of High Peri/LPost bulls (p<0.05). Longissimus dorsi muscle cross sectional area, carcass dressing percentage, and estimated retail beef yield (RBY) were all higher (p<0.05), and rump (P8) fat tended to be lower (p=0.07), for bulls from HPost dams despite no difference in carcass weight (p<0.05). This study is of commercial importance to the livestock industry as specific periods of maternal dietary supplementation may increase feed intake, enhance progeny muscling, and alter fat deposition leading to improvement in efficiency of meat production in beef cattle.
Collapse
Affiliation(s)
- Katrina J Copping
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Geert H Geesink
- School of Rural and Environmental Science, University of New England, Armidale, NSW, Australia
| | - Jessica R Gugusheff
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Raymond J Rodgers
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Beverly S Muhlhausler
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia.,Nutrition and Health Program, Health and Biosecurity Business Unit, CSIRO, Adelaide, SA, Australia
| | - Mini A Vithayathil
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Viv E A Perry
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Maternal Nutrition and Developmental Programming of Male Progeny. Animals (Basel) 2021; 11:ani11082216. [PMID: 34438674 PMCID: PMC8388505 DOI: 10.3390/ani11082216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of the following review is to describe available literature on the interaction between maternal nutrition and developmental programming in male offspring. The majority of current research focuses on female offspring or fails to take offspring sex into account, though sexual dimorphisms in response to maternal diet are well-recognized. This leaves a large gap in the understanding of male developmental programming. This review will specifically discuss the impacts of maternal dietary energy and protein on bull and ram growth, development, and reproductive capacity in later life. Abstract Poor maternal nutrition can cause several maladaptive phenotypes in exposed offspring. While non-sex-specific and female-specific adaptations are well-documented, male-specific outcomes are still poorly understood. Of particular interest are the outcomes in bulls and rams, as developmental programming directly impacts long-term productivity of the animal as well as human food security. The following review discusses the impact of poor maternal dietary energy and protein on bull and ram developmental programming as it relates to growth, development, and reproductive capacity. The review also highlights the importance of the timing of maternal dietary insult, as early-, mid-, and late-gestational insults can all have varying effects on offspring.
Collapse
|
9
|
Copping KJ, Hoare A, McMillen IC, Rodgers RJ, Wallace CR, Perry VEA. Maternal periconceptional and first trimester protein restriction in beef heifers: effects on maternal performance and early fetal growth. Reprod Fertil Dev 2021; 32:835-850. [PMID: 32527374 DOI: 10.1071/rd19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the effect of protein restriction during the periconception (PERI) and first trimester (POST) periods on maternal performance, physiology and early fetal growth. Yearling nulliparous heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri respectively) beginning 60 days before conception. From 24 to 98 days post-conception (dpc), half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost respectively), yielding four groups in a 2×2 factorial design with a common diet until parturition. Protein restriction was associated with lower bodyweight subsequent to reduced (but positive) average daily weight gain (ADG) during the PERI and POST periods. During the POST period, ADG was greater in LPeri than HPeri heifers and tended to be greater in LPost than HPost heifers during the second and third trimester. Bodyweight was similar at term. The pregnancy rate did not differ, but embryo loss between 23 and 36 dpc tended to be greater in LPeri than HPeri heifers. Overall, a greater proportion of male fetuses was detected (at 60 dpc 63.3% male vs 36.7% female). Protein restriction altered maternal plasma urea, non-esterified fatty acids, progesterone, leptin and insulin-like growth factor 1 at critical stages of fetal development. However, profiles varied depending on the sex of the conceptus.
Collapse
Affiliation(s)
- Katrina J Copping
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew Hoare
- South East Vets, 314 Commercial Street, Mount Gambier, SA 5290, Australia
| | | | - Raymond J Rodgers
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia
| | - Charles R Wallace
- Animal and Veterinary Sciences, University of Maine, Orono, ME 04469, USA
| | - Viv E A Perry
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
10
|
Maternal nutrient restriction in late pregnancy programs postnatal metabolism and pituitary development in beef heifers. PLoS One 2021; 16:e0249924. [PMID: 33831110 PMCID: PMC8031383 DOI: 10.1371/journal.pone.0249924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Maternal undernutrition during pregnancy followed by ad libitum access to nutrients during postnatal life induces postnatal metabolic disruptions in multiple species. Therefore, an experiment was conducted to evaluate postnatal growth, metabolism, and development of beef heifers exposed to late gestation maternal nutrient restriction. Pregnancies were generated via transfer of in vitro embryos produced using X-bearing sperm from a single Angus sire. Pregnant dams were randomly assigned to receive either 100% (control; n = 9) or 70% (restricted; n = 9) of their total energy requirements from gestational day 158 to parturition. From post-natal day (PND) 301 until slaughter (PND485), heifers were individually fed ad libitum in a Calan gate facility. Calves from restricted dams were lighter than controls at birth (P<0.05) through PND70 (P<0.05) with no difference in body weight from PND105 through PND485 (P>0.10). To assess pancreatic function, glucose tolerance tests were performed on PND315 and PND482 and a diet effect was seen with glucose area under the curve being greater (P<0.05) in calves born to restricted dams compared to controls. At slaughter, total internal fat was greater (P<0.05) in heifers born to restricted dams, while whole pituitary weight was lighter (P<0.05). Heifers from restricted dams had fewer growth hormone-positive cells (somatotrophs) compared to controls (P<0.05). Results demonstrate an impaired ability to clear peripheral glucose in heifers born to restricted dams leading to increased deposition of internal fat. A reduction in the number of somatotrophs may contribute to the adipogenic phenotype of heifers born to restricted dams due to growth hormone’s known anabolic roles in growth, lipolysis, and pancreatic islet function.
Collapse
|
11
|
Copping KJ, Hernandez-Medrano J, Hoare A, Hummitzsch K, McMillen IC, Morrison JL, Rodgers RJ, Perry VEA. Maternal periconceptional and first trimester protein restriction in beef heifers: effects on placental parameters and fetal and neonatal calf development. Reprod Fertil Dev 2021; 32:495-507. [PMID: 32029064 DOI: 10.1071/rd19017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Few studies have investigated the effects of nutrition during the periconception and early gestation periods on fetal and placental development in cattle. In this study, nulliparous yearling heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri) beginning 60 days before conception. From 24 to 98 days after conception, half of each treatment group was changed to the alternative high- or low-protein diet (HPost and LPost) yielding four groups in a 2×2 factorial design. A subset of heifers (n=46) was necropsied at 98 days after conception and fetoplacental development assessed. Placentome number and volume decreased in response to LPeri and LPost diets respectively. Absolute lung, pancreas, septum and ventricle weights decreased in LPost versus HPost fetuses, whereas the post-conception diet altered absolute and relative liver and brain weights depending on sex. Similarly, changes in fetal hepatic gene expression of factors regulating growth, glucose output and lipid metabolism were induced by protein restriction in a sex-specific manner. At term, neonatal calf and placental measures were not different. Protein restriction of heifers during the periconception and early gestation periods alters fetoplacental development and hepatic gene expression. These changes may contribute to functional consequences for progeny, but this may not be apparent from gross morphometry at birth.
Collapse
Affiliation(s)
- K J Copping
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - J Hernandez-Medrano
- Department of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, NG7 2UH, UK
| | - A Hoare
- South East Vets, 314 Commercial Street, Mount Gambier, SA 5290, Australia
| | - K Hummitzsch
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J L Morrison
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5001, Australia
| | - R J Rodgers
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - V E A Perry
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
12
|
Pregnant beef cow's nutrition and its effects on postnatal weight and carcass quality of their progeny. PLoS One 2020; 15:e0237941. [PMID: 32854111 PMCID: PMC7452729 DOI: 10.1371/journal.pone.0237941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
A systematic review (SR) and meta-analysis (MA) were performed to evaluate the effects of different energy levels (metabolizable energy, ME) and crude protein (CP), supplied to pregnant cows, on weight of their progenies at 60 (BW60), 100 (BW100), 180 (BW180) and 205 (BW205) days of age, average daily gain (ADG), and weight, age, loin eye area (LEA), marbling and fat thickness (FT) at slaughter. The SR was performed on two electronic databases. The MA for random effects was performed for each response variable separately. The BW60 was reduced (P<0.001; I2 = 78.9%) when cows consumed CP and ME above the required levels during the third trimester of pregnancy (3TRI). The BW205 was lower (P<0.001; I2 = 92.6%) when cows consumed ME above the recommended levels in the second trimester of pregnancy (2TRI) and 3TRI. Conversely, the ADG was higher when cows consumed CP (P = 0.032; I2 = 96.1%) and ME (P<0.001; I2 = 96.1%) above the required levels. The steers whose mothers consumed CP and ME above the required levels during the 3TRI were slaughtered 5.5 days earlier (P = 0.015; I2 = 98.5%) compared to other steers. The marbling was higher (P<0.001; I2 = 91.7%) in calves born to mothers consuming CP and ME above the recommended levels, regardless of the gestation phase. The FT was higher (P<0.001; I2 = 0%) in the offspring of cows that consumed CP and ME above the required levels during the 3TRI. Thus, CP and ME intake, at levels higher than those recommended by the NRC, by pregnant cows in the 3TRI reduces the progeny weight up to 205 days of age. However, this is advantageous during the finishing phase, as it reduces slaughter age and increases the ADG and carcass quality by improving marbling and FT.
Collapse
|
13
|
Menchetti L, Andoni E, Barbato O, Canali C, Quattrone A, Vigo D, Codini M, Curone G, Brecchia G. Energy homeostasis in rabbit does during pregnancy and pseudopregnancy. Anim Reprod Sci 2020; 218:106505. [PMID: 32507267 DOI: 10.1016/j.anireprosci.2020.106505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
This study was conducted to evaluate the changing concentrations of metabolic hormones and metabolites in pregnant (P) and pseudopregnant (PP) rabbit does. Twenty-five New Zealand White rabbit does were submitted to artificial insemination (AI) and then classified as P (n = 15) or PP (n = 10). Blood samples were collected weekly until day 32 post AI. During pregnancy, leptin concentrations were greater on Days 14 and 21 (P < 0.05), while insulin was greater on days 21 and 32 post AI (P < 0.05) compared to PP does. The triiodothyronine/thyroxine (T3/T4) ratio was greater in the first and last week (P < 0.001); whereas, cortisol concentrations were greater in the last week of pregnancy and after parturition (P < 0.01) compared with that of PP does. Non-esterified fatty acids (NEFA) concentrations increased from day 7 until day 32 post AI (P < 0.05). Glucose concentrations were unchanged throughout pregnancy although concentrations were positively associated with litter size. These results indicate concentrations of hormones and metabolites change during pregnancy to ensure energy requirements are met for both the foetuses and the maternal tissues. Physiological hyperleptinemia, hyperinsulinemia, and changes in cortisol as well as thyroid hormones indicate there is an adaptation of metabolic functions induced by pregnancy. These adaptations could be mediated by gonadal steroids because changes mainly occur in the second half of pregnancy when the profile of the sex hormones differs between P and PP does.
Collapse
Affiliation(s)
- Laura Menchetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Albania, Rr Paisi Vodica, Koder, 1029 Kamez, Albania
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Claudio Canali
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy.
| |
Collapse
|
14
|
Medica P, Cravana C, Ferlazzo AM, Fazio E. Age-related functional changes of total thyroid hormones and glycosaminoglycans in growing calves. Vet World 2020; 13:681-686. [PMID: 32546912 PMCID: PMC7245720 DOI: 10.14202/vetworld.2020.681-686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Background and Aim: During the physiological growing, thyroid and proteoglycan glycosaminoglycan (GAG) changes dynamically occur, according to genetic and non-genetic factors. The purpose of this research was to compare the effects of early postnatal development (10 days) until 210 days of life on the triiodothyronine (T3), thyroxine (T4), the relative T4:T3 ratio, and GAGs profile, and to define the different reference intervals of the calf’s development through the various growing phases. Materials and Methods: The effect of growing on total thyroid hormones and GAG profiles was studied from 10 days to 210days of age in 64 clinically healthy Brown calves, 30males and 34females. Blood samples were collected at 10, 20, 30, 60, 90, 120, 150, 180, and 210days of age. Results: The results showed a significant effect of a calf’s growth on T3, T4, and GAG values (p<0.0001). Significant correlations between T3 and T4 were observed. Compared to the previous time point, T3 showed a significant decrease at 20days and at 60days (p<0.01), while a significant increase was observed at 90days and 210days (p<0.05); T4 showed a significant decrease at 20days (p<0.01), while significant increases were observed at both 180days and 210days (p<0.05); GAGs showed a significant increase at 120days and 210days (p<0.05). Positive and significant correlations between BW and GAGs in both males (p<0.0057) and females (p<0.0059) were observed. Conclusion: It can be concluded that the highest T3 and T4 concentrations have been associated with the early growing process (10days), with an increasing trend also at 210days, it is possible to hypothesize a probable metabolic effect of thyroid function in anabolic and/or catabolic directions during the calves’ development. Likewise, it can be reasonably inferred that the highest plasma GAGs at 210days may be due to their metabolic role during the development of growing calves. Taken together, these findings suggest the potential and relative contribution made by thyroid and GAGs effects on the dynamics of growing calves.
Collapse
Affiliation(s)
- Pietro Medica
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Alida Maria Ferlazzo
- Department of Veterinary Sciences, Unit of Veterinary Biochemistry, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Esterina Fazio
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| |
Collapse
|
15
|
Angove JL, Forder REA. The avian maternal environment: exploring the physiological mechanisms driving progeny performance. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. L. Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - R. E. A. Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
16
|
Cong R, Qu X, Zhang H, Hu Y, Ye S, Cai D, Li X, Liu HY. Maternal high-protein diet modulates hepatic growth axis in weaning piglets by reprogramming the IGFBP-3 gene. Eur J Nutr 2019; 59:2497-2506. [PMID: 31570976 PMCID: PMC7413878 DOI: 10.1007/s00394-019-02097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/19/2019] [Indexed: 10/29/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of maternal high dietary protein intake on the hepatic growth axis in offspring. METHODS Fourteen primiparous purebred Meishan sows were fed either a standard-protein (SP, n = 7) diet or a high-protein (HP, 150% of SP, n = 7) diet during pregnancy. Offspring (one male and one female per group, n = 14) on day 70 of the embryonic stage and on days 1, 35 and 180 after birth were selected, weighed and killed. Serum samples were analyzed for Tch, insulin and insulin-like growth factor-binding protein 3 (IGFBP-3) levels. Liver samples were analyzed for IGFBP-3 and IGF-I mRNA expression by qRT-PCR and for IGFBP-3, IGF1R and growth hormone receptor (GHR) protein expression by Western blotting. The underlying mechanism of IGFBP-3 regulation was determined by methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). RESULTS High-protein exposure resulted in significantly higher body and liver weights of piglets, and it increased their serum T3 and T4 levels at birth and/or at weaning. Furthermore, the IGFBP-3 protein content in the liver and serum was significantly reduced in the HP-exposed weaning piglets, whereas at the transcriptional level IGFBP-3 mRNA expression was downregulated in the livers of HP group piglets. Finally, DNA hypermethylation and higher enrichment of the histone repressive marks H3K27me3 and H3K9me3 were observed. CONCLUSIONS Taken together, these results suggest that a maternal high-protein diet during gestation epigenetically reprograms IGFBP-3 gene expression to modulate the hepatic growth axis in weaning piglets.
Collapse
Affiliation(s)
- Rihua Cong
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Yongling Hu
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Silin Ye
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, 95817, CA, USA. .,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Xian Li
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China.
| | - Hao-Yu Liu
- Department of Medical Cell Biology, Uppsala University, SE-75123, Uppsala, Sweden.
| |
Collapse
|
17
|
Robeck TR, Amaral RS, da Silva VMF, Martin AR, Montano GA, Brown JL. Thyroid hormone concentrations associated with age, sex, reproductive status and apparent reproductive failure in the Amazon river dolphin ( Inia geoffrensis). CONSERVATION PHYSIOLOGY 2019; 7:coz041. [PMID: 31384468 PMCID: PMC6669313 DOI: 10.1093/conphys/coz041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to characterize immunoreactive thyroid hormone concentrations in wild Amazon river dolphins, also called boto (Inia geoffrensis) by age group, sex, pregnancy and lactation status, and to determine if thyroid hormone concentration differences could be detected between pregnant females with and without successful parturition outcomes. Radioimmunoassays were used to analyse total T 3 and total T 4 in 182 serum samples collected from 172 botos living in the Mamirauá Sustainable Development Reserve, in the Brazilian Amazon from 2003 through 2015. Age significantly affected tT 3 and tT 4 concentrations in males, with values in immature males and females being significantly lower than those in adult males, whereas no age effects were noted between immature females and adult non-pregnant, non-lactating females. Significant sex differences were noted in tT 3 concentrations between immature males and females and in tT 4 concentrations between adult males and females. These resulted in significant differences in the tT 3:tT 4 ratio between males and females within the immature and adult groups. Lactating and non-pregnant adult females had significantly higher tT 3 concentrations than pregnant females, and this difference was primarily driven by a 12% drop in tT 3 concentrations during the last two-thirds of pregnancy. No differences in thyroid hormone concentrations were detected between females diagnosed as pregnant and later found to have or not have a live calf. These results are the first to define thyroid hormone reference intervals and normal physiological variations in a wild population of river dolphins.
Collapse
Affiliation(s)
- T R Robeck
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, 2595 Ingraham Rd, San Diego, CA 92109, USA
| | - R S Amaral
- Federal Institute of Education, Science and Technology of Amazonas—IFAM/CMZL, Av. Cosme Ferreira 8045, Manaus 69086-475, Brazil
| | - V M F da Silva
- Laboratory of Aquatic Mammals, National Institute of Amazonian Research—INPA, Av Andre Araujo 2936, Manaus 69067-375, Brazil
| | - A R Martin
- Centre for Remote Environments, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - G A Montano
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, 2595 Ingraham Rd, San Diego, CA 92109, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
18
|
Perry VEA, Copping KJ, Miguel-Pacheco G, Hernandez-Medrano J. The Effects of Developmental Programming upon Neonatal Mortality. Vet Clin North Am Food Anim Pract 2019; 35:289-302. [PMID: 31103182 DOI: 10.1016/j.cvfa.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The greatest loss in ruminant production systems occurs during the neonatal period. The maternal environment (nutrition and physiologic status) influences neonatal mortality and morbidity as it reportedly affects (a) Dystocia, both via increasing birth weight and placental dysfunction; (b) Neonatal thermoregulation, both via altering the amount of brown adipose tissue and its ability to function via effects upon the hypothalamic-pituitary-thyroid axis; (c) Modification of the developing immune system and its symbiotic nutrient sources; (d) Modification of maternal and neonatal behavior.
Collapse
Affiliation(s)
- V E A Perry
- Robinson Institute, University of Adelaide, Frome Road, South Australia 5001, Australia.
| | - K J Copping
- Robinson Institute, University of Adelaide, Frome Road, South Australia 5001, Australia
| | - G Miguel-Pacheco
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - J Hernandez-Medrano
- Academic Division of Child Health, Obstetrics & Gynaecology, School of Medicine, D Floor East Block, Queen's Medical Centre, The University of Nottingham, Derby Road, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
19
|
Miguel-Pacheco GG, Perry VE, Hernandez-Medrano JH, Wapenaar W, Keisler DH, Voigt JP. Low protein intake during the preconception period in beef heifers affects offspring and maternal behaviour. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Copping KJ, Ruiz-Diaz MD, Rutland CS, Mongan NP, Callaghan MJ, McMillen IC, Rodgers RJ, Perry VEA. Peri-conception and first trimester diet modifies reproductive development in bulls. Reprod Fertil Dev 2018; 30:703-720. [DOI: 10.1071/rd17102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
Nutritional perturbation during gestation alters male reproductive development in rodents and sheep. In cattle both the developmental trajectory of the feto–placental unit and its response to dietary perturbations is dissimilar to that of these species. This study examined the effects of dietary protein perturbation during the peri-conception and first trimester periods upon reproductive development in bulls. Nulliparous heifers (n = 360) were individually fed a high- or low-protein diet (HPeri and LPeri) from 60 days before conception. From 24 until 98 days post conception, half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost) yielding four treatment groups in a 2 × 2 factorial design. A subset of male fetuses (n = 25) was excised at 98 days post conception and fetal testis development was assessed. Reproductive development of singleton male progeny (n = 40) was assessed until slaughter at 598 days of age, when adult testicular cytology was evaluated. Low peri-conception diet delayed reproductive development: sperm quality was lowered during pubertal development with a concomitant delay in reaching puberty. These effects were subsequent to lower FSH concentrations at 330 and 438 days of age. In the fetus, the low peri-conception diet increased the proportion of seminiferous tubules and decreased blood vessel area in the testis, whereas low first trimester diet increased blood vessel number in the adult testis. We conclude that maternal dietary protein perturbation during conception and early gestation may alter male testis development and delay puberty in bulls.
Collapse
|
21
|
Pałkowska-Goździk E, Lachowicz K, Rosołowska-Huszcz D. Effects of Dietary Protein on Thyroid Axis Activity. Nutrients 2017; 10:nu10010005. [PMID: 29271877 PMCID: PMC5793233 DOI: 10.3390/nu10010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (TH) are essential for the normal development and function of every vertebrate. The hypothalamic-pituitary-thyroid (HPT) axis is regulated to maintain euthyroid status. One of the most influential environmental factors that determines HPT axis activity is nutrition. Both food availability and substrate diversity affect thyroid hormone economy. The present paper aims to summarize literature data concerning the influence of the amount and the type of protein on thyroid axis activity. This review sheds light on the contribution of a low-protein diet or insufficient intake of essential amino acids to TH abnormalities. We believe that the knowledge of these dependencies could improve the results of nutritional interventions in thyroid axis disorders and enhance the efficiency of animal breeding.
Collapse
Affiliation(s)
- Ewelina Pałkowska-Goździk
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences WULS-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| | - Katarzyna Lachowicz
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences WULS-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| | - Danuta Rosołowska-Huszcz
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences WULS-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| |
Collapse
|
22
|
Increased dietary protein in the second trimester of gestation increases live weight gain and carcass composition in weaner calves to 6 months of age. Animal 2016; 11:991-999. [PMID: 27821224 PMCID: PMC5441368 DOI: 10.1017/s1751731116002330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Genetically similar nulliparous Polled Hereford heifers from a closed pedigree herd were used to evaluate the effects of dietary protein during the first and second trimester of gestation upon foetal, placental and postnatal growth. Heifers were randomly allocated into two groups at 35 days after artificial insemination (35 days post conception (dpc)) to a single bull and fed high (15.7% CP) or low (5.9% CP) protein in the first trimester (T1). At 90 dpc, half of each nutritional treatment group changed to a high- or low-protein diet for the second trimester until 180 dpc (T2). High protein intake in the second trimester increased birth weight in females (P=0.05), but there was no effect of treatment upon birth weight when taken over both sexes. Biparietal diameter was significantly increased by high protein in the second trimester with the effect being greater in the female (P=0.02), but also significant overall (P=0.05). Placental weight was positively correlated with birth weight, fibroblast volume and relative blood vessel volume (P<0.05). Placental fibroblast density was increased and trophoblast volume decreased in the high-protein first trimester treatment group (P<0.05). There was a trend for placental weight to be increased by high protein in the second trimester (P=0.06). Calves from heifers fed the high-protein treatment in the second trimester weighed significantly more on all occasions preweaning (at 1 month (P=0.0004), 2 months (P=0.006), 3 months (P=0.002), 4 months (P=0.01), 5 months (P=0.03), 6 months (P=0.001)), and grew at a faster rate over the 6-month period. By 6 months of age, the calves from heifers fed high nutrition in the second trimester weighed 33 kg heavier than those fed the low diet in the second trimester. These results suggest that dietary protein in early pregnancy alters the development of the bovine placenta and calf growth to weaning.
Collapse
|
23
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
24
|
Ahmed R, Abdel-Latif M, Mahdi EA, El-Nesr KA. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int Immunopharmacol 2015; 29:714-721. [DOI: 10.1016/j.intimp.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
25
|
Hernandez-Medrano JH, Copping KJ, Hoare A, Wapanaar W, Grivell R, Kuchel T, Miguel-Pacheco G, McMillen IC, Rodgers RJ, Perry VEA. Gestational dietary protein is associated with sex specific decrease in blood flow, fetal heart growth and post-natal blood pressure of progeny. PLoS One 2015; 10:e0125694. [PMID: 25915506 PMCID: PMC4411147 DOI: 10.1371/journal.pone.0125694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
STUDY OVERVIEW The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14 mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60 d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98 dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36 dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60 d up to 23 dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. CONCLUSION AND SIGNIFICANCE Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system.
Collapse
Affiliation(s)
- Juan H. Hernandez-Medrano
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Katrina J. Copping
- School of Paediatrics and Reproductive Health Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Andrew Hoare
- South East Vets, Mt Gambier, South Australia, Australia
| | - Wendela Wapanaar
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rosalie Grivell
- School of Paediatrics and Reproductive Health Robinson Institute, University of Adelaide, Adelaide, Australia
- Department of Perinatal Medicine, The Womens and Childrens Hospital, North Adelaide, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Giuliana Miguel-Pacheco
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, United Kingdom
| | | | - Raymond J. Rodgers
- School of Paediatrics and Reproductive Health Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Viv E. A. Perry
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail:
| |
Collapse
|