1
|
Yang X, Gao S. Competitive rDNA binding by dCas9 induces outside-in disassembly of the nucleolus. Biochem Biophys Res Commun 2025; 766:151883. [PMID: 40286769 DOI: 10.1016/j.bbrc.2025.151883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The inside-out assembly and outside-in disassembly of the nucleolus are well-accepted models, yet direct in-cell evidence remains elusive. Here, we employed a dCas9-based competitive binding system to specifically target the rDNA promoter within the nucleolus, effectively inhibiting rDNA transcription. This transcriptional blockade induced a stepwise, outside-in disassembly of the nucleolus. NPM1 was the first to disappear from the nucleolus, followed by a progressive reduction in the fluorescence intensities of FBL and UBF. Additionally, UBF relocated from the nucleolar core to the periphery. These findings provide the first direct evidence in cells supporting the outside-in disassembly of the nucleolus. Furthermore, our results suggest that the dynamic inside-out assembly and outside-in disassembly of the nucleolus.
Collapse
Affiliation(s)
- Xiaohui Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China; Chinese Academy of Sciences (CAS) Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Rodriguez‐Algarra F, Whittaker E, del Castillo del Rio S, Rakyan VK. Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes. Bioessays 2025; 47:e202400232. [PMID: 39834111 PMCID: PMC11931683 DOI: 10.1002/bies.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Although genome-scale analyses have provided insights into the connection between genetic variability and complex human phenotypes, much trait variation is still not fully understood. Genetic variation within repetitive elements, such as the multi-copy, multi-locus ribosomal DNA (rDNA), has emerged as a potential contributor to trait variation. Whereas rDNA was long believed to be largely uniform within a species, recent studies have revealed substantial variability in the locus, both within and across individuals. This variation, which takes the form of copy number, structural arrangement, and sequence differences, has been found to be associated with human phenotypes. This review summarizes what is currently known about human rDNA variation, its causes, and its association with phenotypic outcomes, highlighting the technical challenges the field faces and the solutions proposed to address them. Finally, we suggest experimental approaches that can help clarify the elusive mechanisms underlying the phenotypic consequences of rDNA variation.
Collapse
Affiliation(s)
| | - Elliott Whittaker
- The Blizard InstituteSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Vardhman K. Rakyan
- The Blizard InstituteSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
3
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Tran TTQ, Do TH, Pham TT, Luu PTT, Pham OM, Nguyen UQ, Vuong LD, Nguyen QN, Mai TV, Ho SV, Nguyen TT, Vo LTT. Hypermethylation at 45S rDNA promoter in cancers. PLoS One 2025; 20:e0311085. [PMID: 39775079 PMCID: PMC11706406 DOI: 10.1371/journal.pone.0311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription. However, an increase in the heterochromatin state through rDNA hypermethylation can be a protective mechanism teetering on the brink of a threshold where cancer cells rarely successfully proliferate. Hence, clarifying hypo- or hypermethylation of rDNA will unravel its additional cellular functions, including organization of genome architecture and regulation of gene expression, in response to growth signaling, cellular stressors, and carcinogenesis. Using the bisulfite-based quantitative real-time methylation-specific PCR (qMSP) method after ensuring unbiased amplification and complete bisulfite conversion of the minuscule DNA amount of 1 ng, we established that the rDNA promoter was significantly hypermethylated in 107 breast, 65 lung, and 135 colon tumour tissue samples (46.81%, 51.02% and 96.60%, respectively) as compared with their corresponding adjacent normal samples (26.84%, 38.26% and 77.52%, respectively; p < 0.0001). An excessive DNA input of 1 μg resulted in double-stranded rDNA remaining unconverted even after bisulfite conversion, hence the dramatic drop in the single-stranded DNA that strictly required for bisulfite conversion, and leading to an underestimation of rDNA promoter methylation, in other words, a faulty hypomethylation status of the rDNA promoter. Our results are in line with the hypothesis that an increase in rDNA methylation is a natural pathway protecting rDNA repeats that are extremely sensitive to DNA damage in cancer cells.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phương Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Oanh Minh Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Than Thi Nguyen
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| |
Collapse
|
5
|
Sarkar SS, Sharma M, Saproo S, Naidu S. LINC01116-dependent upregulation of RNA polymerase I transcription drives oncogenic phenotypes in lung adenocarcinoma. J Transl Med 2024; 22:904. [PMID: 39369230 PMCID: PMC11453068 DOI: 10.1186/s12967-024-05715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Hyperactive RNA Polymerase I (Pol I) transcription is canonical in cancer, associated with malignant proliferation, poor prognosis, epithelial-mesenchymal transition, and chemotherapy resistance. Despite its significance, the molecular mechanisms underlying Pol I hyperactivity remain unclear. This study aims to elucidate the role of long noncoding RNAs (lncRNAs) in regulating Pol I transcription in lung adenocarcinoma (LUAD). METHODS Bioinformatics analyses were applied to identify lncRNAs interacting with Pol I transcriptional machinery. Fluorescence in situ hybridization was employed to examine the nucleolar localization of candidate lncRNA in LUAD cells. RNA immunoprecipitation assay validated the interaction between candidate lncRNA and Pol I components. Chromatin isolation by RNA purification and Chromatin Immunoprecipitation (ChIP) were utilized to confirm the interactions of candidate lncRNA with Pol I transcriptional machinery and the rDNA core promoter. Functional analyses, including lncRNA knock-in and knockdown, inhibition of Pol I transcription, quantitative PCR, cell proliferation, clonogenicity, apoptosis, cell cycle, wound-healing, and invasion assays, were performed to determine the effect of candidate lncRNA on Pol I transcription and associated malignant phenotypes in LUAD cells. ChIP assays and luminometry were used to investigate the transcriptional regulation of the candidate lncRNA. RESULTS We demonstrate that oncogenic LINC01116 scaffolds essential Pol I transcription factors TAF1A and TAF1D, to the ribosomal DNA promoter, and upregulate Pol I transcription. Crucially, LINC01116-driven Pol I transcription activation is essential for its oncogenic activities. Inhibition of Pol I transcription abrogated LINC01116-induced oncogenic phenotypes, including increased proliferation, cell cycle progression, clonogenicity, reduced apoptosis, increased migration and invasion, and drug sensitivity. Conversely, LINC01116 knockdown reversed these effects. Additionally, we show that LINC01116 upregulation in LUAD is driven by the oncogene c-Myc, a known Pol I transcription activator, indicating a functional regulatory feedback loop within the c-Myc-LINC01116-Pol I transcription axis. CONCLUSION Collectively, our findings reveal, for the first time, that LINC01116 enhances Pol I transcription by scaffolding essential transcription factors to the ribosomal DNA promoter, thereby driving oncogenic activities in LUAD. We propose the c-Myc-LINC01116-Pol I axis as a critical oncogenic pathway and a potential therapeutic target for modulating Pol I transcription in LUAD.
Collapse
Affiliation(s)
- Shashanka Shekhar Sarkar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Sheetanshu Saproo
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
6
|
Wang L, Chen B, Ma B, Wang Y, Wang H, Sun X, Tan BC. Maize Dek51 encodes a DEAD-box RNA helicase essential for pre-rRNA processing and seed development. Cell Rep 2024; 43:114673. [PMID: 39196780 DOI: 10.1016/j.celrep.2024.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Pre-rRNA processing is essential to ribosome biosynthesis. However, the processing mechanism is not fully understood in plants. Here, we report a DEAD-box RNA helicase DEK51 that mediates the 3' end processing of 18S and 5.8S pre-rRNA in maize (Zea mays L.). DEK51 is localized in the nucleolus, and loss of DEK51 arrests maize seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA. DEK51 interacts with putative key factors in nuclear RNA exosome-mediated pre-rRNA processing, including ZmMTR4, ZmSMO4, ZmRRP44A, and ZmRRP6L2. This suggests that DEK51 facilitates pre-rRNA processing by interacting with the exosome. Loss of ZmMTR4 function arrests seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA, similar to dek51. DEK51 also interacts with endonucleases ZmUTP24 and ZmRCL1, suggesting that it may also be involved in the cleavage at site A2. These results show the critical role of DEK51 in promoting 3' end processing of pre-rRNA.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bing Ma
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaotong Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Lian K, Hammarström D, Hamarsland H, Mølmen KS, Moen SC, Ellefsen S. Glucose ingestion before and after resistance training sessions does not augment ribosome biogenesis in healthy moderately trained young adults. Eur J Appl Physiol 2024; 124:2329-2342. [PMID: 38459192 PMCID: PMC11322406 DOI: 10.1007/s00421-024-05446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE Resistance training-induced skeletal muscle hypertrophy seems to depend on ribosome biogenesis and content. High glucose treatment may augment ribosome biogenesis through potentiating resistance training-induced adaptations. This was investigated with total RNA and ribosomal RNA abundances as main outcomes, with relevant transcriptional/translational regulators (c-Myc/UBF/rpS6) as a secondary outcome. METHODS Sixteen healthy, moderately trained individuals [male/female, n = 9/7; age, 24.1 (3.3)] participated in a within-participant crossover trial with unilateral resistance training (leg press and knee extension, 3 sets of 10 repetitions maximum) and pre- and post-exercise ingestion of either glucose (3 × 30 g, 90 g total) or placebo supplements (Stevia rebaudiana, 3 × 0.3 g, 0.9 g total), together with protein (2 × 25 g, 50 g total), on alternating days for 12 days. Six morning resistance exercise sessions were conducted per condition, and the sessions were performed in an otherwise fasted state. Micro-biopsies were sampled from m. vastus lateralis before and after the intervention. RESULTS Glucose ingestion did not have beneficial effects on resistance training-induced increases of ribosomal content (mean difference 7.6% [- 7.2, 24.9], p = 0.34; ribosomal RNA, 47S/18S/28S/5.8S/5S, range 7.6-37.9%, p = 0.40-0.98) or levels of relevant transcriptional or translational regulators (c-MYK/UBF/rpS6, p = 0.094-0.292). Of note, both baseline and trained state data of total RNA showed a linear relationship with UBF; a ∼14% increase in total RNA corresponded to 1 SD unit increase in UBF (p = 0.003). CONCLUSION Glucose ingestion before and after resistance training sessions did not augment ribosomal RNA accumulation during twelve days of heavy-load resistance training in moderately trained young adults.
Collapse
Affiliation(s)
- Kristian Lian
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Håvard Hamarsland
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Knut Sindre Mølmen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Sara Christine Moen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
9
|
LeDoux MS. Polymerase I as a Target for Treating Neurodegenerative Disorders. Biomedicines 2024; 12:1092. [PMID: 38791054 PMCID: PMC11118182 DOI: 10.3390/biomedicines12051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerase I (Pol I) is at the epicenter of ribosomal RNA (rRNA) synthesis. Pol I is a target for the treatment of cancer. Given the many cellular commonalities between cancer and neurodegeneration (i.e., different faces of the same coin), it seems rational to consider targeting Pol I or, more generally, rRNA synthesis for the treatment of disorders associated with the death of terminally differentiated neurons. Principally, ribosomes synthesize proteins, and, accordingly, Pol I can be considered the starting point for protein synthesis. Given that cellular accumulation of abnormal proteins such as α-synuclein and tau is an essential feature of neurodegenerative disorders such as Parkinson disease and fronto-temporal dementia, reduction of protein production is now considered a viable target for treatment of these and closely related neurodegenerative disorders. Abnormalities in polymerase I activity and rRNA production may also be associated with nuclear and nucleolar stress, DNA damage, and childhood-onset neuronal death, as is the case for the UBTF E210K neuroregression syndrome. Moreover, restraining the activity of Pol I may be a viable strategy to slow aging. Before starting down the road of Pol I inhibition for treating non-cancerous disorders of the nervous system, many questions must be answered. First, how much Pol I inhibition can neurons tolerate, and for how long? Should inhibition of Pol I be continuous or pulsed? Will cells compensate for Pol I inhibition by upregulating the number of active rDNAs? At present, we have no effective and safe disease modulatory treatments for Alzheimer disease, α-synucleinopathies, or tauopathies, and novel therapeutic targets and approaches must be explored.
Collapse
Affiliation(s)
- Mark S. LeDoux
- Department of Psychology and College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; or
- Veracity Neuroscience LLC, Memphis, TN 38157, USA
| |
Collapse
|
10
|
Oka Y, Nakazawa Y, Shimada M, Ogi T. Endogenous aldehyde-induced DNA-protein crosslinks are resolved by transcription-coupled repair. Nat Cell Biol 2024; 26:784-796. [PMID: 38600234 PMCID: PMC11098742 DOI: 10.1038/s41556-024-01401-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.
Collapse
Affiliation(s)
- Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan.
- Division of Molecular Physiology and Dynamics, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
11
|
Shanmugam T, Chaturvedi P, Streit D, Ghatak A, Bergelt T, Simm S, Weckwerth W, Schleiff E. Low dose ribosomal DNA P-loop mutation affects development and enforces autophagy in Arabidopsis. RNA Biol 2024; 21:1-15. [PMID: 38156797 PMCID: PMC10761087 DOI: 10.1080/15476286.2023.2298532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Arabidopsis contains hundreds of ribosomal DNA copies organized within the nucleolar organizing regions (NORs) in chromosomes 2 and 4. There are four major types of variants of rDNA, VAR1-4, based on the polymorphisms of 3' external transcribed sequences. The variants are known to be differentially expressed during plant development. We created a mutant by the CRISPR-Cas9-mediated excision of ~ 25 nt from predominantly NOR4 ribosomal DNA copies, obtaining mosaic mutational events on ~ 5% of all rDNA copies. The excised region consists of P-loop and Helix-82 segments of 25S rRNA. The mutation led to allelic, dosage-dependent defects marked by lateral root inhibition, reduced size, and pointy leaves, all previously observed for defective ribosomal function. The mutation in NOR4 led to dosage compensation from the NOR2 copies by elevated expression of VAR1 in mutants and further associated single-nucleotide variants, thus, resulting in altered rRNA sub-population. Furthermore, the mutants exhibited rRNA maturation defects specifically in the minor pathway typified by 32S pre-rRNA accumulation. Density-gradient fractionation and subsequent RT-PCR of rRNA analyses revealed that mutated copies were not incorporated into the translating ribosomes. The mutants in addition displayed an elevated autophagic flux as shown by the autophagic marker GFP-ATG8e, likely related to ribophagy.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Deniz Streit
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Bergelt
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Simm
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Talkhoncheh MS, Baudet A, Ek F, Subramaniam A, Kao YR, Miharada N, Karlsson C, Oburoglu L, Rydström A, Zemaitis K, Alattar AG, Rak J, Pietras K, Olsson R, Will B, Larsson J. Ciclopirox ethanolamine preserves the immature state of human HSCs by mediating intracellular iron content. Blood Adv 2023; 7:7407-7417. [PMID: 37487020 PMCID: PMC10758717 DOI: 10.1182/bloodadvances.2023009844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.
Collapse
Affiliation(s)
| | - Aurélie Baudet
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristijonas Zemaitis
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Justyna Rak
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Medicon Village, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Ma TS, Worth KR, Maher C, Ng N, Beghè C, Gromak N, Rose AM, Hammond EM. Hypoxia-induced transcriptional stress is mediated by ROS-induced R-loops. Nucleic Acids Res 2023; 51:11584-11599. [PMID: 37843099 PMCID: PMC10681727 DOI: 10.1093/nar/gkad858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with poor patient prognosis, therapy resistance and metastasis. Radiobiological hypoxia (<0.1% O2) is one of the few physiologically relevant stresses that activates both the replication stress/DNA damage response and the unfolded protein response. Recently, we found that hypoxia also leads to the robust accumulation of R-loops, which led us to question here both the mechanism and consequence of hypoxia-induced R-loops. Interestingly, we found that the mechanism of R-loop accumulation in hypoxia is dependent on non-DNA damaging levels of reactive oxygen species. We show that hypoxia-induced R-loops play a critical role in the transcriptional stress response, evidenced by the repression of ribosomal RNA synthesis and the translocation of nucleolin from the nucleolus into the nucleoplasm. Upon depletion of R-loops, we observed a rescue of both rRNA transcription and nucleolin translocation in hypoxia. Mechanistically, R-loops accumulate on the rDNA in hypoxia and promote the deposition of heterochromatic H3K9me2 which leads to the inhibition of Pol I-mediated transcription of rRNA. These data highlight a novel mechanistic insight into the hypoxia-induced transcriptional stress response through the ROS-R-loop-H3K9me2 axis. Overall, this study highlights the contribution of transcriptional stress to hypoxia-mediated tumorigenesis.
Collapse
Affiliation(s)
- Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Katja R Worth
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Conor Maher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Natalie Ng
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anna M Rose
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
14
|
Wang C, Ma H, Baserga SJ, Pederson T, Huang S. Nucleolar structure connects with global nuclear organization. Mol Biol Cell 2023; 34:ar114. [PMID: 37610836 PMCID: PMC10846622 DOI: 10.1091/mbc.e23-02-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
The nucleolus is a multifunctional nuclear body. To tease out the roles of nucleolar structure without resorting to the use of multi-action drugs, we knocked down the RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar-structural segregation and effects on both nucleolus-proximal and distal-nuclear components. The perinucleolar compartment was disrupted, centromere clustering around nucleoli was significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and some compositional changes. In comparison, when the preribosomal RNA-processing factor, UTP4, was knocked down, neither nucleolar segregation nor the intranuclear effects were observed, demonstrating that the changes of nucleolar proximal and distal nuclear domains in RPA194 knockdown cells unlikely arise from a cessation of ribosome synthesis, rather from the consequence of nucleolar-structure alteration. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear domains and genomic loci.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Hanhui Ma
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Susan J. Baserga
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Thoru Pederson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
15
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
16
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Wang C, Ma H, Baserga SJ, Pederson T, Huang S. Nucleolar structure connects with global nuclear organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534966. [PMID: 37034708 PMCID: PMC10081344 DOI: 10.1101/2023.03.30.534966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nucleolus is a multi-functional nuclear body. To tease out the roles of nucleolar structure without resorting to multi-action drugs, we knocked down RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar structural segregation and effects on both nucleolus-proximal and distal nuclear components. The perinucleolar compartment was disrupted, centromere-nucleolus interactions were significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and compositional changes. To distinguish whether these global reorganizations are the results of nucleolar structural disruption or inhibition of ribosome synthesis, the pre-ribosomal RNA processing factor, UTP4, was also knocked down, which did not lead to nucleolar segregation, nor the intranuclear effects seen with RPA195A knockdown, demonstrating that they do not arise from a cessation of ribosome synthesis. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear bodies and genomic loci.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hanhui Ma
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Susan J Baserga
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
| | - Thoru Pederson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
18
|
He X, Zhao J, Adilijiang A, Hong P, Chen P, Lin X, Xie J, Du Y, Liu Y, Lin L, Jin HY, Hong Y, Liu WH, Xiao C. Dhx33 promotes B-cell growth and proliferation by controlling activation-induced rRNA upregulation. Cell Mol Immunol 2023; 20:277-291. [PMID: 36631557 PMCID: PMC9970960 DOI: 10.1038/s41423-022-00972-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Upon recognition of foreign antigens, naïve B cells undergo rapid activation, growth, and proliferation. How B-cell growth and proliferation are coupled with activation remains poorly understood. Combining CRISPR/Cas9-mediated functional analysis and mouse genetics approaches, we found that Dhx33, an activation-induced RNA helicase, plays a critical role in coupling B-cell activation with growth and proliferation. Mutant mice with B-cell-specific deletion of Dhx33 exhibited impaired B-cell development, germinal center reactions, plasma cell differentiation, and antibody production. Dhx33-deficient B cells appeared normal in the steady state and early stage of activation but were retarded in growth and proliferation. Mechanistically, Dhx33 played an indispensable role in activation-induced upregulation of ribosomal DNA (rDNA) transcription. In the absence of Dhx33, activated B cells were compromised in their ability to ramp up 47S ribosomal RNA (rRNA) production and ribosome biogenesis, resulting in nucleolar stress, p53 accumulation, and cellular death. Our findings demonstrate an essential role for Dhx33 in coupling B-cell activation with growth and proliferation and suggest that Dhx33 inhibition is a potential therapy for lymphoma and antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abidan Adilijiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hyun Yong Jin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
19
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
20
|
Gardner ST, Bertucci EM, Sutton R, Horcher A, Aubrey D, Parrott BB. Development of DNA methylation-based epigenetic age predictors in loblolly pine (Pinus taeda). Mol Ecol Resour 2023; 23:131-144. [PMID: 35957540 PMCID: PMC10087248 DOI: 10.1111/1755-0998.13698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.
Collapse
Affiliation(s)
- Steven T. Gardner
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Emily M. Bertucci
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Randall Sutton
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Andy Horcher
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Doug Aubrey
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Warnell School of ForestryUniversity of GeorgiaAthensGeorgiaUSA
| | - Benjamin B. Parrott
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
21
|
Wang J, Chen Q, Wang X, Zhao S, Deng H, Guo B, Zhang C, Song X, Deng W, Zhang T, Ni H. TFIIB-related factor 1 is a nucleolar protein that promotes RNA polymerase I-directed transcription and tumour cell growth. Hum Mol Genet 2023; 32:104-121. [PMID: 35925837 DOI: 10.1093/hmg/ddac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.,School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tongcun Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
22
|
Xu Y, Wan W. Autophagy regulates rRNA synthesis. Nucleus 2022; 13:203-207. [PMID: 35993412 PMCID: PMC9415535 DOI: 10.1080/19491034.2022.2114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autophagy has emerged as a key regulator of cell metabolism. Recently, we have demonstrated that autophagy is involved in RNA metabolism by regulating ribosomal RNA (rRNA) synthesis. We found that autophagy-deficient cells display much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling, which facilitates the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoter regions and leads to the activation of rDNA transcription. Finally, we showed that SQSTM1 accumulation is responsible for the increase in protein synthesis, cell growth and cell proliferation in autophagy-deficient cells. Taken together, our findings reveal a regulatory role of autophagy and autophagy receptor SQSTM1 in rRNA synthesis and may provide novel mechanisms for the hyperactivated rDNA transcription in autophagy-related human diseases.Abbreviations: 5-FUrd: 5-fluorouridine; LAP: MAP1LC3/LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A: RNA polymerase I subunit A; rDNA: ribosomal DNA; RRN3: RRN3 homolog, RNA polymerase I transcription factor; rRNA: ribosomal RNA; SQSTM1/p62: sequestosome 1; TP53INP2: tumor protein p53 inducible nuclear protein 2; UBTF: upstream binding transcription factor.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, Hunan, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,CONTACT Wei Wan Research Building B, Room 716, Zhejiang University School of Medicine, 866 Yu-Hang-Tang Road, Hangzhou, Zhejiang310058, China
| |
Collapse
|
23
|
Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection. Front Cell Infect Microbiol 2022; 12:1003214. [PMID: 36506024 PMCID: PMC9732239 DOI: 10.3389/fcimb.2022.1003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Differentiation of asexually replicating parasites into gametocytes is critical for successful completion of the sexual phase of the malaria parasite life cycle. Gametes generated from gametocytes fuse to form a zygote which differentiates into ookinetes and oocysts. The sporozoites are formed inside oocysts which migrate to the salivary glands for next cycle of human infection. These morphologically and functionally distinct stages require stage-specific gene expression via specific transcriptional regulators. The capacity of high mobility group box (HMGB) proteins to interact with DNA in a sequence independent manner enables them to regulate higher order chromosome organization and regulation of gene expression. Plasmodium falciparum HMGB2 (PfHMGB2) shows a typical L- shaped predicted structure which is similar to mammalian HMG box proteins and shows very high protein sequence similarity to PyHMGB2 and PbHMGB2. Functional characterization of PfHMGB2 by gene deletion (Pfhmgb2¯) showed that knockout parasites develop normally as asexual stages and undergo gametocytogenesis. Transmission experiments revealed that Pfhmgb2¯ can infect mosquitoes and develop as oocyst stages. However, transmission was reduced compared to wild type (WT) parasites and as a consequence, the salivary gland sporozoites were reduced in number. In summary, we demonstrate that PfHMGB2 has no role in asexual growth and a modest role in sexual phase development and parasite transmission to the mosquito.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics , University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
25
|
Jacobs RQ, Fuller KB, Cooper SL, Carter ZI, Laiho M, Lucius AL, Schneider DA. RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21. Cancers (Basel) 2022; 14:5544. [PMID: 36428638 PMCID: PMC9688676 DOI: 10.3390/cancers14225544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells require robust ribosome biogenesis to maintain rapid cell growth during tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and represses cancer cell growth. Several recent studies have uncovered key mechanisms by which BMH-21 inhibits ribosome biosynthesis but the selectivity of BMH-21 for Pol I has not been directly measured. Here, we quantify the effects of BMH-21 on Pol I, RNA polymerase II (Pol II), and RNA polymerase III (Pol III) in vitro using purified components. We found that BMH-21 directly impairs nucleotide addition by Pol I, with no or modest effect on Pols II and III, respectively. Additionally, we found that BMH-21 does not affect the stability of any of the Pols' elongation complexes. These data demonstrate that BMH-21 directly exploits unique vulnerabilities of Pol I.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaila B. Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie L. Cooper
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Karyka E, Berrueta Ramirez N, Webster CP, Marchi PM, Graves EJ, Godena VK, Marrone L, Bhargava A, Ray S, Ning K, Crane H, Hautbergue GM, El-Khamisy SF, Azzouz M. SMN-deficient cells exhibit increased ribosomal DNA damage. Life Sci Alliance 2022; 5:e202101145. [PMID: 35440492 PMCID: PMC9018017 DOI: 10.26508/lsa.202101145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.
Collapse
Affiliation(s)
- Evangelia Karyka
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Nelly Berrueta Ramirez
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily J Graves
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Vinay K Godena
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Swagat Ray
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Ke Ning
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Hannah Crane
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Mimoun Azzouz
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
28
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
29
|
Synergy of Venetoclax and 8-Chloro-Adenosine in AML: The Interplay of rRNA Inhibition and Fatty Acid Metabolism. Cancers (Basel) 2022; 14:cancers14061446. [PMID: 35326597 PMCID: PMC8946614 DOI: 10.3390/cancers14061446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.
Collapse
|
30
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Tremblay MG, Sibai DS, Valère M, Mars JC, Lessard F, Hori RT, Khan MM, Stefanovsky VY, LeDoux MS, Moss T. Ribosomal DNA promoter recognition is determined in vivo by cooperation between UBTF1 and SL1 and is compromised in the UBTF-E210K neuroregression syndrome. PLoS Genet 2022; 18:e1009644. [PMID: 35139074 PMCID: PMC8863233 DOI: 10.1371/journal.pgen.1009644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/22/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.
Collapse
Affiliation(s)
- Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Dany S. Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Melissa Valère
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | | | - Mohammad Moshahid Khan
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis TN and Veracity Neuroscience LLC, Memphis, Tennessee, United States of America
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
- * E-mail:
| |
Collapse
|
32
|
Fefelova EA, Pleshakova IM, Mikhaleva EA, Pirogov SA, Poltorachenko V, Abramov Y, Romashin D, Shatskikh A, Blokh R, Gvozdev V, Klenov M. Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res 2022; 50:867-884. [PMID: 35037046 PMCID: PMC8789037 DOI: 10.1093/nar/gkab1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.
Collapse
Affiliation(s)
- Elena A Fefelova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena 91125, USA
| | - Irina M Pleshakova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Sergei A Pirogov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Valentin A Poltorachenko
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Daniil D Romashin
- Laboratory of Precision Biosystems, V. N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Aleksei S Shatskikh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Roman S Blokh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Department of Functional Genomics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| |
Collapse
|
33
|
Denisenko O. Epigenetics of Ribosomal RNA Genes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S103-S131. [PMID: 35501990 DOI: 10.1134/s0006297922140097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
This review is focused on biology of genes encoding ribosomal RNA (rRNA) in mammals. rRNA is a structural component of the most abundant cellular molecule, the ribosome. There are many copies of rRNA genes per genome that are under tight transcriptional control by epigenetic mechanisms serving to meet cellular needs in protein synthesis. Curiously, only a fraction of rRNA genes is used even in the fast-growing cells, raising a question why unused copies of these genes have not been lost during evolution. Two plausible explanations are discussed. First, there is evidence that besides their direct function in production of rRNA, ribosomal RNA genes are involved in regulation of many other genes in the nucleus by forming either temporary or persistent complexes with these genes. Second, it seems that rRNA genes also play a role in the maintenance of genome stability, where lower copy number of rRNA genes destabilizes the genome. These "additional" functions of rRNA genes make them recurrent candidate drivers of chronic human diseases and aging. Experimental support for the involvement of these genes in human diseases and potential mechanisms are also discussed.
Collapse
Affiliation(s)
- Oleg Denisenko
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Guo B, Bennet D, Belcher DJ, Kim HG, Nader GA. Chemotherapy agents reduce protein synthesis and ribosomal capacity in myotubes independent of oxidative stress. Am J Physiol Cell Physiol 2021; 321:C1000-C1009. [PMID: 34705587 DOI: 10.1152/ajpcell.00116.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotherapeutic agents (CAs) are first-line antineoplastic treatments against a wide variety of cancers. Despite their effectiveness in halting tumor progression, side effects associated with CAs promote muscle loss by incompletely understood mechanisms. To address this problem, we first identified how oxidative stress impairs protein synthesis in C2C12 myotubes. Transient elevations in reactive oxygen species (ROS) resulted in protein synthesis deficits and reduced ribosomal (r)RNA levels. Oxidative stress did not reduce rRNA gene (rDNA) transcription, but it caused an increase in rRNA and protein oxidation. To determine whether CAs affect protein synthesis independent of oxidative stress, we exposed myotubes to Paclitaxel (PTX), Doxorubicin (DXR), or Marizomib (Mzb) at doses that did result in elevated ROS levels (sub-ROS). Exposure to CAs reduced protein synthesis and rRNA levels, but unlike oxidative stress, sub-ROS exposures impaired rDNA transcription. These results indicate that although oxidative stress disrupts protein synthesis by compromising ribosomal quantity and quality, CAs at sub-ROS doses compromise protein synthesis and ribosomal capacity, at least in part, by reducing rDNA transcription. Therefore, CAs negatively impact protein synthesis by causing oxidative stress in addition to directly reducing the ribosomal capacity of myotubes in a ROS-independent manner.
Collapse
Affiliation(s)
- Bin Guo
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Devasier Bennet
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Daniel J Belcher
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Hyo-Gun Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gustavo A Nader
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania.,Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
35
|
Jacobs RQ, Huffines AK, Laiho M, Schneider DA. The small-molecule BMH-21 directly inhibits transcription elongation and DNA occupancy of RNA polymerase I in vivo and in vitro. J Biol Chem 2021; 298:101450. [PMID: 34838819 PMCID: PMC8683726 DOI: 10.1016/j.jbc.2021.101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are dependent upon an abundance of ribosomes to maintain rapid cell growth and proliferation. The rate-limiting step of ribosome biogenesis is ribosomal RNA (rRNA) synthesis by RNA polymerase I (Pol I). Therefore, a goal of the cancer therapeutic field is to develop and characterize Pol I inhibitors. Here, we elucidate the mechanism of Pol I inhibition by a first-in-class small-molecule BMH-21. To characterize the effects of BMH-21 on Pol I transcription, we leveraged high-resolution in vitro transcription assays and in vivo native elongating transcript sequencing (NET-seq). We find that Pol I transcription initiation, promoter escape, and elongation are all inhibited by BMH-21 in vitro. In particular, the transcription elongation phase is highly sensitive to BMH-21 treatment, as it causes a decrease in transcription elongation rate and an increase in paused Pols on the ribosomal DNA (rDNA) template. In vivo NET-seq experiments complement these findings by revealing a reduction in Pol I occupancy on the template and an increase in sequence-specific pausing upstream of G-rich rDNA sequences after BMH-21 treatment. Collectively, these data reveal the mechanism of action of BMH-21, which is a critical step forward in the development of this compound and its derivatives for clinical use.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Abigail K Huffines
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| |
Collapse
|
36
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
37
|
Xu Y, Wu Y, Wang L, Ren Z, Song L, Zhang H, Qian C, Wang Q, He Z, Wan W. Autophagy deficiency activates rDNA transcription. Autophagy 2021; 18:1338-1349. [PMID: 34612149 DOI: 10.1080/15548627.2021.1974178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy, a highly conserved lysosome-dependent degradation pathway, has been intensively studied in regulating cell metabolism by degradation of intracellular components. In this study, we link autophagy to RNA metabolism by uncovering a regulatory role of autophagy in ribosomal RNA (rRNA) synthesis. Autophagy-deficient cells exhibit much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling and promotes the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoters, which leads to an increase of 47S rRNA transcribed from rDNA. Functionally, autophagy deficiency promotes protein synthesis, cell growth and cell proliferation, both of which are dependent on SQSTM1 accumulation. Taken together, our findings suggest that autophagy deficiency is involved in RNA metabolism by activating rDNA transcription and provide novel mechanisms for the reprogramming of cell metabolism in autophagy-related diseases including multiple types of cancers.Abbreviations: 5-FUrd: 5-fluorouridine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A/RPA194: RNA polymerase I subunit A; POLR2A: RNA polymerase II subunit A; rDNA: ribosomal DNA; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; rRNA: ribosomal RNA; RUBCN/Rubicon: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; SUnSET: surface sensing of translation; TAX1BP1: Tax1 binding protein 1; UBTF/UBF1: upstream binding transcription factor; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Yaosen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo Ren
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhang
- Department of Stomatology, the Second Affilliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuying Qian
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
DNA Intercalators Inhibit Eukaryotic Ribosomal RNA Synthesis by Impairing the Initiation of Transcription. Genes (Basel) 2021; 12:genes12091412. [PMID: 34573394 PMCID: PMC8466728 DOI: 10.3390/genes12091412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.
Collapse
|
39
|
Kim HG, Huot JR, Pin F, Guo B, Bonetto A, Nader GA. Reduced rDNA transcription diminishes skeletal muscle ribosomal capacity and protein synthesis in cancer cachexia. FASEB J 2021; 35:e21335. [PMID: 33527503 PMCID: PMC7863588 DOI: 10.1096/fj.202002257r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Muscle wasting in cancer is associated with deficits in protein synthesis, yet, the mechanisms underlying this anabolic impairment remain poorly understood. The capacity for protein synthesis is mainly determined by the abundance of muscle ribosomes, which is in turn regulated by transcription of the ribosomal (r)RNA genes (rDNA). In this study, we investigated whether muscle loss in a preclinical model of ovarian cancer is associated with a reduction in ribosomal capacity and was a consequence of impaired rDNA transcription. Tumor bearing resulted in a significant loss in gastrocnemius muscle weight and protein synthesis capacity, and was consistent with a significant reduction in rDNA transcription and ribosomal capacity. Despite the induction of the ribophagy receptor NUFIP1 mRNA and the loss of NUFIP1 protein, in vitro studies revealed that while inhibition of autophagy rescued NUFIP1, it did not prevent the loss of rRNA. Electrophoretic analysis of rRNA fragmentation from both in vivo and in vitro models showed no evidence of endonucleolytic cleavage, suggesting that rRNA degradation may not play a major role in modulating muscle ribosome abundance. Our results indicate that in this model of ovarian cancer-induced cachexia, the ability of skeletal muscle to synthesize protein is compromised by a reduction in rDNA transcription and consequently a lower ribosomal capacity. Thus, impaired ribosomal production appears to play a key role in the anabolic deficits associated with muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Hyo-Gun Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bin Guo
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gustavo A Nader
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.,Penn State Cancer Institute, The Pennsylvania State University, University Park, PA, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
|
41
|
Zhu Y, Wang Q, Lin H, Chen K, Zheng C, Chen L, Ma S, Liao W, Bin J, Liao Y. Characterizing a long-term chronic heart failure model by transcriptomic alterations and monitoring of cardiac remodeling. Aging (Albany NY) 2021; 13:13585-13614. [PMID: 33891565 PMCID: PMC8202904 DOI: 10.18632/aging.202879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
The long-term characteristics of transcriptomic alterations and cardiac remodeling in chronic heart failure (CHF) induced by myocardial infarction (MI) in mice are not well elucidated. This study aimed to reveal the dynamic changes in the transcriptome and cardiac remodeling in post-MI mice over a long time period. Monitoring C57BL/6 mice with MI for 8 months showed that approximately 44% of mice died of cardiac rupture in the first 2 weeks and others survived to 8 months with left ventricular (LV) aneurysm. The transcriptomic profiling analysis of cardiac tissues showed that the Integrin and WNT pathways were activated at 8 months after MI while the metabolism-related pathways were inversely inhibited. Subsequent differential analysis at 1 and 8 months post-MI revealed significant enrichments in biological processes, including consistent regulation of metabolism-related pathways. Moreover, echocardiographic monitoring showed a progressive increase in LV dimensions and a decrease in the LV fractional shortening during the first 4 weeks, and these parameters progressed at a lower rate till 8 months. A similar trend was found in the invasive LV hemodynamics, cardiac morphological and histological analyses. These results suggested that mouse MI model is ideal for long-term studies, and transcriptomic findings may provide new CHF therapeutic targets.
Collapse
Affiliation(s)
- Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
42
|
Xu L, Li Z, Wang S. Development of a Virus-Based Reporter System for Functional Analysis of Plant rRNA Gene Promoter. Front Microbiol 2021; 12:637347. [PMID: 33679673 PMCID: PMC7928365 DOI: 10.3389/fmicb.2021.637347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 11/27/2022] Open
Abstract
Reporter gene-based expression systems have been intensively used in plants for monitoring the activity of gene promoters. However, rRNA transcripts are unable to efficiently express a reporter gene due to a lack of a 5' cap. Because of this obstacle, plant rRNA gene promoters are less well characterized to this day. We developed a virus-based reporter system to characterize the Nicotiana benthamiana rRNA (NbrRNA) gene promoter. The system utilizes the cap-independent translation strategy of viral genomic mRNA and uses the virus-expressed green fluorescent protein (GFP) as an indicator of the rRNA gene promoter activity in virus-infected plants. Based on the reporter system, some characteristics of the N. benthamiana rRNA gene promoter were revealed. The results showed that the strength of the NbrRNA gene promoter was lower than that of the cauliflower mosaic virus (CaMV) 35S promoter, a well-characterized polymerase II promoter. The sequences between −77 and +42 are sufficient for the NbrRNA gene promoter-mediated transcription and the NbrRNA gene promoter may lack the functional upstream control element (UCE). Interestingly, NbrRNA gene promoter activity was increased when the 35S enhancer was introduced. An intron-excision mediated assay revealed that the NbrRNA gene promoter can be inefficiently used by RNA polymerase II in N. benthamiana cells. This virus-based reporter system is easier to operate and more convenient when compared with the previously Pol I promoter assays. And it offers a promising solution to analyzing the functional architecture of plant rRNA gene promoter.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China
| | - Zhiying Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China.,Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia University, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China.,Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
43
|
Gilloteaux J, Bouchat J, Brion JP, Nicaise C. The osmotic demyelination syndrome: the resilience of thalamic neurons is verified with transmission electron microscopy. Ultrastruct Pathol 2021; 44:450-480. [PMID: 33393428 DOI: 10.1080/01913123.2020.1853865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym- NARILIS), Department of Medicine, Université de Namur, Namur, Belgium
- Department of Anatomical Sciences, St George’s University School of Medicine, KB Taylor Global Scholar’s Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym- NARILIS), Department of Medicine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym- NARILIS), Department of Medicine, Université de Namur, Namur, Belgium
| |
Collapse
|
44
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
45
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Xu Y, Wu Y, Wang L, Qian C, Wang Q, Wan W. Identification of curcumin as a novel natural inhibitor of rDNA transcription. Cell Cycle 2020; 19:3362-3374. [PMID: 33171062 DOI: 10.1080/15384101.2020.1843817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosomal DNA (rDNA) transcription drives cell growth and cell proliferation via the product ribosomal RNA (rRNA), the essential component of ribosome. Given the fundamental role of rRNA in ribosome biogenesis, rDNA transcription has emerged as one of the effective targets for a number of human diseases including various types of cancers. In this study, we identify curcumin, an ancient drug, as a novel natural inhibitor of rDNA transcription. Curcumin treatment impairs the assembly of the RNA polymerase I preinitiation complex at rDNA promoters and represses rDNA promoter activity, which leads to the decrease of rRNA synthesis. In addition, curcumin treatment stimulates autophagosome formation and promotes autophagic degradation in cells. Mechanistically, curcumin inactivates the mechanistic target of rapamycin complex 1 (mTORC1), the upstream regulator of rDNA transcription and autophagy induction, by inhibiting mTOR lysosomal localization. Functionally, curcumin treatment inhibits protein synthesis, cell growth and cell proliferation. Taken together, these findings identify curcumin as an effective inhibitor of rDNA transcription and provide novel mechanisms for the anticancer properties of curcumin. Abbreviations: Atg: autophagy-related; GFP: green fluorescent protein; LAMP2: lysosomal associated membrane protein 2; LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; mTORC1: mechanistic target of rapamycin complex 1; rDNA: ribosomal DNA; rRNA: ribosomal RNA; TP53INP2: tumor protein p53 inducible nuclear protein 2.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University , Changsha, China
| | - Yaosen Wu
- Department of Orthopaedic Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Lei Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Chuying Qian
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Qian Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| |
Collapse
|
47
|
Ide S, Imai R, Ochi H, Maeshima K. Transcriptional suppression of ribosomal DNA with phase separation. SCIENCE ADVANCES 2020; 6:6/42/eabb5953. [PMID: 33055158 PMCID: PMC7556839 DOI: 10.1126/sciadv.abb5953] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
The nucleolus is a nuclear body with multiphase liquid droplets for ribosomal RNA (rRNA) transcription. How rRNA transcription is regulated in the droplets remains unclear. Here, using single-molecule tracking of RNA polymerase I (Pol I) and chromatin-bound upstream binding factor (UBF), we reveal suppression of transcription with phase separation. For transcription, active Pol I formed small clusters/condensates that constrained rDNA chromatin in the nucleolus fibrillar center (FC). Treatment with a transcription inhibitor induced Pol I to dissociate from rDNA chromatin and to move like a liquid within the nucleolar cap that transformed from the FC. Expression of a Pol I mutant associated with a craniofacial disorder inhibited transcription by competing with wild-type Pol I clusters and transforming the FC into the nucleolar cap. The cap droplet excluded an initiation factor, ensuring robust silencing. Our findings suggest a mechanism of rRNA transcription suppression via phase separation of intranucleolar molecules governed by Pol I.
Collapse
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Ryosuke Imai
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Hiroko Ochi
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| |
Collapse
|
48
|
Robbertse L, Richards SA, Stutzer C, Olivier NA, Leisewitz AL, Crafford JE, Maritz-Olivier C. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine 2020; 38:6889-6898. [PMID: 32900540 DOI: 10.1016/j.vaccine.2020.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
Abstract
Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine A Richards
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Nicholas A Olivier
- Department of Plant and Soil Sciences, University of Pretoria, South Africa; ACGT Microarray Facility, University of Pretoria, South Africa
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan E Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
49
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
50
|
Vydzhak O, Luke B, Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J Mol Biol 2020; 432:4287-4304. [PMID: 32446803 DOI: 10.1016/j.jmb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Natalie Schindler
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|