1
|
Prusty A, Mehra P, Sharma S, Malik N, Agarwal P, Parida SK, Kapoor S, Tyagi AK. OsMED14_2, a tail module subunit of Mediator complex, controls rice development and involves jasmonic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112146. [PMID: 38848769 DOI: 10.1016/j.plantsci.2024.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size. Microscopic analysis revealed impact of overexpression on pollen maturation, reflected by reduced viability, irregular shapes, and aberrant intine development. OsMED14_2 was found to interact with proteins involved in pollen development, namely, OsMADS62, OsMADS63 and OsMADS68, and its overexpression negatively affected the expression of OsMADS68 and the expression of other genes involved in intine development, including OsCAP1, OsGCD1, OsRIP1, and OsCPK29. Additionally, we found that OsMED14_2 overexpression influences jasmonic acid (JA) homeostasis, affecting bioactive JA levels, and expression of OsJAZ genes. Our data suggest OsMED14_2 may act as a regulator of JA-responsive genes through its interactions with OsHDAC6 and OsJAZ repressors. These findings contribute to better understanding of the Mediator complex's role in plant traits regulation.
Collapse
Affiliation(s)
- Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Poonam Mehra
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India; Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research, New Delhi 110067, India; Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India.
| |
Collapse
|
2
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Park GT, Moon JK, Park S, Park SK, Baek J, Seo MS. Genome-wide analysis of KIX gene family for organ size regulation in soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252016. [PMID: 37828927 PMCID: PMC10565003 DOI: 10.3389/fpls.2023.1252016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The KIX domain, conserved among various nuclear and co-activator factors, acts as a binding site that interacts with other transcriptional activators and co-activators, playing a crucial role in gene expression regulation. In plants, the KIX domain is involved in plant hormone signaling, stress response regulation, cell cycle control, and differentiation, indicating its potential relevance to crop productivity. This study aims to identify and characterize KIX domains within the soybean (Glycine max L.) genome to predict their potential role in improving crop productivity. The conservation and evolutionary history of the KIX domains were explored in 59 plant species, confirming the presence of the KIX domains in diverse plants. Specifically, 13 KIX domains were identified within the soybean genome and classified into four main groups, namely GmKIX8/9, GmMED15, GmHAC, and GmRECQL, through sequence alignment, structural analysis, and phylogenetic tree construction. Association analysis was performed between KIX domain haplotypes and soybean seed-related agronomic traits using re-sequencing data from a core collection of 422 accessions. The results revealed correlations between SNP variations observed in GmKIX8-3 and GmMED15-4 and soybean seed phenotypic traits. Additionally, transcriptome analysis confirmed significant expression of the KIX domains during the early stages of soybean seed development. This study provides the first characterization of the structural, expression, genomic haplotype, and molecular features of the KIX domain in soybean, offering a foundation for functional analysis of the KIX domain in soybean and other plants.
Collapse
Affiliation(s)
- Gyu Tae Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Jung-Kyung Moon
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Sewon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Soo-Kwon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Mi-Suk Seo
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| |
Collapse
|
4
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
5
|
Thaler R, Yoshizaki K, Nguyen T, Fukumoto S, Den Besten P, Bikle DD, Oda Y. Mediator 1 ablation induces enamel-to-hair lineage conversion in mice through enhancer dynamics. Commun Biol 2023; 6:766. [PMID: 37479880 PMCID: PMC10362024 DOI: 10.1038/s42003-023-05105-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.
Collapse
Affiliation(s)
- Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Thai Nguyen
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Pamela Den Besten
- Department of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel D Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yuko Oda
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA.
| |
Collapse
|
6
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Gorbea Colón JJ, Palao L, Chen SF, Kim HJ, Snyder L, Chang YW, Tsai KL, Murakami K. Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 2023; 83:574-588.e11. [PMID: 36731470 PMCID: PMC10162435 DOI: 10.1016/j.molcel.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Collapse
Affiliation(s)
- Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Wang C, Xing Y, Zhang J, He M, Dong J, Chen S, Wu H, Huang HY, Chou CH, Bai L, He F, She J, Su A, Wang Y, Thistlethwaite PA, Huang HD, Yuan JXJ, Yuan ZY, Shyy JYJ. MED1 Regulates BMP/TGF-β in Endothelium: Implication for Pulmonary Hypertension. Circ Res 2022; 131:828-841. [PMID: 36252121 DOI: 10.1161/circresaha.122.321532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dysregulated BMP (bone morphogenetic protein) or TGF-β (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-β axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-β axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-β receptor 2) and their involvement in the PH. METHODS High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-β signaling is implicated in the disease progression of PAH in humans and PH in rodent models.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Yuanming Xing
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Ming He
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Jianjie Dong
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Haoyu Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (C.-H.C.)
| | - Liang Bai
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Fangzhou He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Ailing Su
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China (Y.W.)
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA (P.A.T.)
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA (J.X.-J.Y.)
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| |
Collapse
|
9
|
Dimitrova E, Feldmann A, van der Weide RH, Flach KD, Lastuvkova A, de Wit E, Klose RJ. Distinct roles for CKM-Mediator in controlling Polycomb-dependent chromosomal interactions and priming genes for induction. Nat Struct Mol Biol 2022; 29:1000-1010. [PMID: 36220895 PMCID: PMC9568430 DOI: 10.1038/s41594-022-00840-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Precise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the cyclin-dependent kinase module Mediator complex (CKM-Mediator) has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation. Here, we show that CKM-Mediator contributes little to three-dimensional genome organization in ESCs, but it has a specific and essential role in controlling interactions between inactive gene regulatory elements bound by Polycomb repressive complexes (PRCs). These interactions are established by the canonical PRC1 (cPRC1) complex but rely on CKM-Mediator, which facilitates binding of cPRC1 to its target sites. Importantly, through separation-of-function experiments, we reveal that this collaboration between CKM-Mediator and cPRC1 in creating long-range interactions does not function to prime genes for induction during differentiation. Instead, we discover that priming relies on an interaction-independent mechanism whereby the CKM supports core Mediator engagement with gene promoters during differentiation to enable gene activation.
Collapse
Affiliation(s)
| | - Angelika Feldmann
- Department of Biochemistry, University of Oxford, Oxford, UK
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robin H van der Weide
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Hubrecht Institute KNAW, Utrecht, The Netherlands
| | - Koen D Flach
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Li Y, Wu J, Tian Y, Zhu Q, Ge Y, Yu H, Huang J, Li H, Zhang J, Zhang L, Hu L. MED1 Downregulation Contributes to TGFβ-Induced Metastasis by Inhibiting SMAD2 Ubiquitination Degradation in Cutaneous Melanoma. J Invest Dermatol 2022; 142:2228-2237.e4. [PMID: 35131256 DOI: 10.1016/j.jid.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
Metastasis is the main reason for the high mortality of patients and indeed a difficult task in the treatment of cutaneous melanoma. Therefore, it is of great clinical value to explore the molecular mechanism of cutaneous metastatic melanoma and develop novel therapies. MED1, acting as a factor required for activator-dependent transcription, is reported to be involved in carcinogenesis and progression. In this study, we found that MED1 was highly expressed in patients with cutaneous melanoma. MED1 downregulation could induce cellular epithelial-to-mesenchymal transition and promote migration, invasion, and metastasis of cutaneous melanoma in vivo and in vitro. Further analysis showed that in Med1 knockdown cells, the TGFβ/SMAD2 signaling pathway mediated an increase in epithelial-to-mesenchymal transition phenotype and migration. The opposite results were observed after treatment with TGFβ inhibitors. To further explore the mechanism, we found that MED1 interacted with SMAD2, and MED1 downregulation could protect SMAD2 from degradation by inhibiting SMAD2 ubiquitination. Together, these results suggest that MED1 inhibited TGFβ signaling pathway to reduce cell epithelial-to-mesenchymal transition phenotype and migration through SMAD2 ubiquitination in the metastasis of cutaneous melanoma. Our findings elucidated the role of MED1 in the metastasis of cutaneous melanoma and provided a target for the therapeutic strategies of cutaneous melanoma.
Collapse
Affiliation(s)
- Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jiangmei Wu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yicheng Ge
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Dermatology, Tianjin Nankai Hospital, Tianjin, China
| | - Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Feoktistov AV, Georgieva SG, Soshnikova NV. Role of the SWI/SNF Chromatin Remodeling Complex in Regulation of Inflammation Gene Expression. Mol Biol 2022. [DOI: 10.1134/s0026893322020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q, Li C. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:871-883. [PMID: 35212455 DOI: 10.1111/jipb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Grain number is a flexible trait and contributes significantly to grain yield. In rice, the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) controls grain number by directly regulating cytokinin oxidase/dehydrogenase 2 (OsCKX2) expression. Although specific upstream regulators of the DST-OsCKX2 module have been identified, the mechanism employed by DST to regulate the expression of OsCKX2 remains unclear. Here, we demonstrate that DST-interacting protein 1 (DIP1), known as Mediator subunit OsMED25, acts as an interacting coactivator of DST. Phenotypic analyses revealed that OsMED25-RNAi and the osmed25 mutant plants exhibited enlarged panicles, with enhanced branching and spikelet number, similar to the dst mutant. Genetic analysis indicated that OsMED25 acts in the same pathway as the DST-OsCKX2 module to regulate spikelet number per panicle. Further biochemical analysis showed that OsMED25 physically interacts with DST at the promoter region of OsCKX2, and then recruits RNA polymerase II (Pol II) to activate OsCKX2 transcription. Thus, OsMED25 was involved in the communication between DST and Pol II general transcriptional machinery to regulate spikelet number. In general, our findings reveal a novel function of OsMED25 in DST-OsCKX2 modulated transcriptional regulation, thus enhancing our understanding of the regulatory mechanism underlying DST-OsCKX2-mediated spikelet number.
Collapse
Affiliation(s)
- Lihao Lin
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Xu M, Martinez E. A simple protocol to purify human TFIID free of the MED26 subunit of mediator complex. Protein Expr Purif 2021; 184:105887. [PMID: 33836240 DOI: 10.1016/j.pep.2021.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022]
Abstract
The general transcription factor TFIID is a multiprotein complex that is essential for specific transcription initiation by RNA polymerase II. It is composed of the TATA box-binding protein (TBP) and ~13 different TBP-associated factors (TAFs). Purification of TFIID free of other general transcription factors and coactivators is essential to analyze the transcription regulatory mechanisms in reconstituted systems in vitro. A breakthrough in TFIID purification was the generation of HeLa cell lines that express a FLAG epitope-tagged TBP subunit and immunopurification protocols with monoclonal anti-FLAG antibodies. Purification of TFIID from HeLa nuclear extracts generally required a two-step purification procedure involving phosphocellulose P11 chromatography followed by anti-flag M2 affinity purification (Chiang et al., 1993; Ge et al., 1996) [1,2]. Here we show first that the MED26 (CRSP70) coactivator subunit of Mediator co-purifies with TFIID in the above two-step protocol and interacts strongly with TFIID under high salt conditions. We further show that a MED26-free TFIID complex can be obtained by including a simple additional DE52 chromatography step following P11 fractionation. Thus, we demonstrate that MED26 strongly interacts with TFIID and recommend the use of a P11-DE52-M2 resin affinity three-step purification procedure to obtain MED26-free TFIID for analyzing Mediator-dependent transcription regulatory mechanisms in purified transcription systems in vitro.
Collapse
Affiliation(s)
- Muyu Xu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
14
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
Davidson RK, Kanojia S, Spaeth JM. The Contribution of Transcriptional Coregulators in the Maintenance of β-cell Function and Identity. Endocrinology 2021; 162:5992209. [PMID: 33211800 PMCID: PMC7749714 DOI: 10.1210/endocr/bqaa213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/02/2023]
Abstract
Islet β-cell dysfunction that leads to impaired insulin secretion is a principal source of pathology of diabetes. In type 2 diabetes, this breakdown in β-cell health is associated with compromised islet-enriched transcription factor (TF) activity that disrupts gene expression programs essential for cell function and identity. TF activity is modulated by recruited coregulators that govern activation and/or repression of target gene expression, thereby providing a supporting layer of control. To date, more than 350 coregulators have been discovered that coordinate nucleosome rearrangements, modify histones, and physically bridge general transcriptional machinery to recruited TFs; however, relatively few have been attributed to β-cell function. Here, we will describe recent findings on those coregulators with direct roles in maintaining islet β-cell health and identity and discuss how disruption of coregulator activity is associated with diabetes pathogenesis.
Collapse
Affiliation(s)
- Rebecca K Davidson
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sukrati Kanojia
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason M Spaeth
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Correspondence: Jason M. Spaeth, PhD, Department of Pediatrics, Indiana University School of Medicine, MS 2047, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Zhou W, Cai H, Li J, Xu H, Wang X, Men H, Zheng Y, Cai L. Potential roles of mediator Complex Subunit 13 in Cardiac Diseases. Int J Biol Sci 2021; 17:328-338. [PMID: 33390853 PMCID: PMC7757031 DOI: 10.7150/ijbs.52290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Mediator complex subunit 13 (MED13, previously known as THRAP1 and TRAP240) is a subunit of the cyclin-dependent kinase 8 (CDK8) kinase module in the eukaryotic mediator complex. MED13 has been known to play critical roles in cell cycle, development, and growth. The purpose of this review is to comprehensively discuss its newly identified potential roles in myocardial energy metabolism and non-metabolic cardiovascular diseases. Evidence indicates that cardiac MED13 mainly participates in the regulation of nuclear receptor signaling, which drives the transcription of genes involved in modulating cardiac and systemic energy homeostasis. MED13 is also associated with several pathological conditions, such as metabolic syndrome and thyroid disease-associated heart failure. Therefore, MED13 constitutes a potential therapeutic target for the regulation of metabolic disorders and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wenqian Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - He Cai
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia Li
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China
| | - Xiang Wang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Hongbo Men
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Xu W, Xie XJ, Faust AK, Liu M, Li X, Chen F, Naquin AA, Walton AC, Kishbaugh PW, Ji JY. All-Atomic Molecular Dynamic Studies of Human and Drosophila CDK8: Insights into Their Kinase Domains, the LXXLL Motifs, and Drug Binding Site. Int J Mol Sci 2020; 21:E7511. [PMID: 33053834 PMCID: PMC7590003 DOI: 10.3390/ijms21207511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Ali K. Faust
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Ashlin A. Naquin
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Avery C. Walton
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Peter W. Kishbaugh
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| |
Collapse
|
18
|
Oda Y, Nguyen T, Hata A, Meyer MB, Pike JW, Bikle DD. Deletion of Mediator 1 suppresses TGFβ signaling leading to changes in epidermal lineages and regeneration. PLoS One 2020; 15:e0238076. [PMID: 32857768 PMCID: PMC7455038 DOI: 10.1371/journal.pone.0238076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/08/2020] [Indexed: 12/27/2022] Open
Abstract
Epidermal lineages and injury induced regeneration are controlled by transcriptional programs coordinating cellular signaling and epigenetic regulators, but the mechanism remains unclear. Previous studies showed that conditional deletion of the transcriptional coactivator Mediator 1 (Med1) changes epidermal lineages and accelerates wound re-epithelialization. Here, we studied a molecular mechanism by which Med1 facilitates these processes, in particular, by focusing on TGFβ signaling through genome wide transcriptome analysis. The expression of the TGF ligands (Tgfβ1/β2) and their downstream target genes is decreased in both normal and wounded Med1 null skin. Med1 silencing in cultured keratinocytes likewise reduces the expression of the ligands (TGFβ1/β2) and diminishes activity of TGFβ signaling as shown by decreased p-Smad2/3. Silencing Med1 increases keratinocyte proliferation and migration in vitro. Epigenetic studies using chromatin immuno-precipitation and next generation DNA sequencing reveals that Med1 regulates transcription of TGFβ components by forming large clusters of enhancers called super-enhancers at the regulatory regions of the TGFβ ligand and SMAD3 genes. These results demonstrate that Med1 is required for the maintenance of the TGFβ signaling pathway. Finally, we show that pharmacological inhibition of TGFβ signaling enhances epidermal lineages and accelerates wound re-epithelialization in skin similar to that seen in the Med1 null mice, providing new insights into epidermal regeneration.
Collapse
Affiliation(s)
- Yuko Oda
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, CA, United States of America
- * E-mail:
| | - Thai Nguyen
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, CA, United States of America
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Mark B. Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - J. Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel D. Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
19
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
20
|
Selective Mediator dependence of cell-type-specifying transcription. Nat Genet 2020; 52:719-727. [PMID: 32483291 PMCID: PMC7610447 DOI: 10.1038/s41588-020-0635-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase (Pol) II. Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here, we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. Consistent with a model of condensate-driven transcription initiation, large clusters of hypo-phosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected, CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates genome-wide. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell type-specifying transcriptional networks.
Collapse
|
21
|
Li X, Liu M, Ren X, Loncle N, Wang Q, Hemba-Waduge RUS, Yu SH, Boube M, Bourbon HMG, Ni JQ, Ji JY. The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription. PLoS Genet 2020; 16:e1008832. [PMID: 32463833 PMCID: PMC7282676 DOI: 10.1371/journal.pgen.1008832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFβ, or Transforming Growth Factor-β) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFβ signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Xingjie Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Nicolas Loncle
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Qun Wang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Stephen H. Yu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Muriel Boube
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Henri-Marc G. Bourbon
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Jian-Quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
22
|
Al-Sanea MM. Synthesis and biological evaluation of small molecule modulators of CDK8/Cyclin C complex with phenylaminoquinoline scaffold. PeerJ 2020; 8:e8649. [PMID: 32206448 PMCID: PMC7075364 DOI: 10.7717/peerj.8649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 01/30/2023] Open
Abstract
Background CDK8/CycC complex has kinase activity towards the carboxyterminal domain of RNA polymerase II, and contributes to the regulation of transcription via association with the mediator complex. Different human malignancies, mainly colorectal and gastric cancers, were produced as a result of overexpression of CDK8/CycC in the mediator complex. Therefore, CDK8/CycC complex represents as a cancer oncogene and it has become a potential target for developing CDK8/CycC modulators. Methods A series of nine 4-phenylaminoquinoline scaffold-based compounds 5a-i was synthesized, and biologically evaluated as potential CDK8/CycC complex inhibitors. Results The scaffold substituent effects on the intrinsic inhibitory activity toward CDK8/CycC complex are addressed trying to present a novel outlook of CDK8/CycC Complex inhibitors with 4-phenylaminoquinoline scaffold in cancer therapy. The secondary benzenesulfonamide analogues proved to be the most potent compounds in suppressing CDK8/CycC enzyme, whereas, their primary benzenesulfonamide analogues showed inferior activity. Moreover, the benzene reversed sulfonamide analogues were totally inactive. Discussion The titled scaffold showed promising inhibitory activity data and there is a crucial role of un/substituted sulfonamido group for CDK8/CycC complex inhibitory activity. Compound 5d showed submicromolar potency against CDK8/CycC (IC50 = 0.639 µM) and it can be used for further investigations and to design another larger library of phenylaminoquinoline scaffold-based analogues in order to establish detailed SARs.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
23
|
A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proc Natl Acad Sci U S A 2020; 117:2894-2905. [PMID: 31988137 DOI: 10.1073/pnas.1917635117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mediator kinase module regulates eukaryotic transcription by phosphorylating transcription-related targets and by modulating the association of Mediator and RNA polymerase II. The activity of its catalytic core, cyclin-dependent kinase 8 (CDK8), is controlled by Cyclin C and regulatory subunit MED12, with its deregulation contributing to numerous malignancies. Here, we combine in vitro biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to describe the binding location of the N-terminal segment of MED12 on the CDK8/Cyclin C complex and to gain mechanistic insights into the activation of CDK8 by MED12. Our data demonstrate that the N-terminal portion of MED12 wraps around CDK8, whereby it positions an "activation helix" close to the T-loop of CDK8 for its activation. Intriguingly, mutations in the activation helix that are frequently found in cancers do not diminish the affinity of MED12 for CDK8, yet likely alter the exact positioning of the activation helix. Furthermore, we find the transcriptome-wide gene-expression changes in human cells that result from a mutation in the MED12 activation helix to correlate with deregulated genes in breast and colon cancer. Finally, functional assays in the presence of kinase inhibitors reveal that binding of MED12 remodels the active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type II kinase inhibitors. Taken together, our results not only allow us to propose a revised model of how CDK8 activity is regulated by MED12, but also offer a path forward in developing small molecules that target CDK8 in its MED12-bound form.
Collapse
|
24
|
Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L, Liu G. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 2019; 45:543-555. [PMID: 31894315 PMCID: PMC6984781 DOI: 10.3892/ijmm.2019.4443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Increasing evidence has shown that microRNAs (miRNAs) play a vital role in the progression of NAFLD. The aim of the present study was to examine the expression level and roles of miR-146a in fatty liver of high-fat diet (HFD) and ob/ob mice and fatty acid-treated hepatic cells using RT-qPCR and western blot analysis. The results showed that the expression of miR-146a was significantly decreased in the livers of high-fat diet (HFD) and ob/ob mice and free fatty acid-stimulated cells by RT-qPCR. Overexpression of hepatic miR-146a improved glucose and insulin tolerance as well as lipid accumulation in the liver by promoting the oxidative metabolism of fatty acids. In addition, the overexpression of miR-146a increased the amount of mitochondria and promoted mitochondrial respiration in hepatocytes. Similarly, inhibition of miR-146a expression levels significantly reduced mitochondrial numbers in AML12 cells as well as the expression of mitochondrial respiration related genes. Additionally, MED1 was a direct target of miR-146a and restoring MED1 abolished the metabolic effects of miR-146a on lipid metabolism and mitochondrial function. Therefore, results of the present study identified a novel function of miR-146a in glucose and lipid metabolism in targeting MED1, suggesting that miR-146a serves as a potential therapeutic target for metabolic syndrome disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Bao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Diandian Wei
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Wenrui Wang
- Department of Biotechnology, School of Life Science and Technology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yixuan Cui
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lisheng Qian
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Guodong Liu
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| |
Collapse
|
25
|
Leonard M, Zhang X. Estrogen receptor coactivator Mediator Subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer. J Zhejiang Univ Sci B 2019; 20:381-390. [PMID: 31090264 DOI: 10.1631/jzus.b1900163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Breast cancer, one of the most frequent cancer types, is a leading cause of death in women worldwide. Estrogen receptor (ER) α is a nuclear hormone receptor that plays key roles in mammary gland development and breast cancer. About 75% of breast cancer cases are diagnosed as ER-positive; however, nearly half of these cancers are either intrinsically or inherently resistant to the current anti-estrogen therapies. Recent studies have identified an ER coactivator, Mediator Subunit 1 (MED1), as a unique, tissue-specific cofactor that mediates breast cancer metastasis and treatment resistance. MED1 is overexpressed in over 50% of human breast cancer cases and co-amplifies with another important breast cancer gene, receptor tyrosine kinase HER2. Clinically, MED1 expression highly correlates with poor disease-free survival of breast cancer patients, and recent studies have reported an increased frequency of MED1 mutations in the circulating tumor cells of patients after treatment. In this review, we discuss the biochemical characterization of MED1 and its associated MED1/Mediator complex, its crosstalk with HER2 in anti-estrogen resistance, breast cancer stem cell formation, and metastasis both in vitro and in vivo. Furthermore, we elaborate on the current advancements in targeting MED1 using state-of-the-art RNA nanotechnology and discuss the future perspectives as well.
Collapse
Affiliation(s)
- Marissa Leonard
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| |
Collapse
|
26
|
Legrand N, Bretscher CL, Zielke S, Wilke B, Daude M, Fritz B, Diederich WE, Adhikary T. PPARβ/δ recruits NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic Acids Res 2019; 47:9573-9591. [PMID: 31428774 PMCID: PMC6765110 DOI: 10.1093/nar/gkz685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
In the absence of ligands, the nuclear receptor PPARβ/δ recruits the NCOR and SMRT corepressors, which form complexes with HDAC3, to canonical target genes. Agonistic ligands cause dissociation of corepressors and enable enhanced transcription. Vice versa, synthetic inverse agonists augment corepressor recruitment and repression. Both basal repression of the target gene ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question how PPARβ/δ represses transcription mechanistically. We show that the PPARβ/δ inverse agonist PT-S264 impairs transcription initiation by decreasing recruitment of activating Mediator subunits, RNA polymerase II, and TFIIB, but not of TFIIA, to the ANGPTL4 promoter. Mass spectrometry identifies NCOR as the main PT-S264-dependent interactor of PPARβ/δ. Reconstitution of knockout cells with PPARβ/δ mutants deficient in basal repression results in diminished recruitment of NCOR, SMRT, and HDAC3 to PPAR target genes, while occupancy by RNA polymerase II is increased. PT-S264 restores binding of NCOR, SMRT, and HDAC3 to the mutants, resulting in reduced polymerase II occupancy. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes, which act in parallel to downregulate transcription.
Collapse
Affiliation(s)
- Nathalie Legrand
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Clemens L Bretscher
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Svenja Zielke
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Bernhard Wilke
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Medicine, Institute for Medical Bioinformatics and Biostatistics, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Michael Daude
- Core Facility Medicinal Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Barbara Fritz
- Centre for Human Genetics, Universitätsklinikum Giessen und Marburg GmbH, Baldingerstrasse, 35043 Marburg, Germany
| | - Wibke E Diederich
- Core Facility Medicinal Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Pharmacy, Institute for Pharmaceutical Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Till Adhikary
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Medicine, Institute for Medical Bioinformatics and Biostatistics, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| |
Collapse
|
27
|
Liu H, Kotova TI, Timko MP. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco ( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E930. [PMID: 31739571 PMCID: PMC6896058 DOI: 10.3390/genes10110930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.
Collapse
Affiliation(s)
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (H.L.); (T.I.K.)
| |
Collapse
|
28
|
Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A, Garrity AJ, Zhang F, Blainey PC. Optical Pooled Screens in Human Cells. Cell 2019; 179:787-799.e17. [PMID: 31626775 PMCID: PMC6886477 DOI: 10.1016/j.cell.2019.09.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023]
Abstract
Genetic screens are critical for the systematic identification of genes underlying cellular phenotypes. Pooling gene perturbations greatly improves scalability but is not compatible with imaging of complex and dynamic cellular phenotypes. Here, we introduce a pooled approach for optical genetic screens in mammalian cells. We use targeted in situ sequencing to demultiplex a library of genetic perturbations following image-based phenotyping. We screened a set of 952 genes across millions of cells for involvement in nuclear factor κB (NF-κB) signaling by imaging the translocation of RelA (p65) to the nucleus. Screening at a single time point across 3 cell lines recovered 15 known pathway components, while repeating the screen with live-cell imaging revealed a role for Mediator complex subunits in regulating the duration of p65 nuclear retention. These results establish a highly multiplexed approach to image-based screens of spatially and temporally defined phenotypes with pooled libraries.
Collapse
Affiliation(s)
- David Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Physics, MIT, Cambridge, MA 02142, USA
| | - Avtar Singh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Health Sciences and Technology, MIT, Cambridge, MA 02142, USA
| | - Anja Mezger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, MIT, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02142, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02142, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, MIT, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 2019; 21:71-87. [DOI: 10.1038/s41576-019-0173-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
|
30
|
Smad7:β-catenin complex regulates myogenic gene transcription. Cell Death Dis 2019; 10:387. [PMID: 31097718 PMCID: PMC6522533 DOI: 10.1038/s41419-019-1615-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Recent reports indicate that Smad7 promotes skeletal muscle differentiation and growth. We previously documented a non-canonical role of nuclear Smad7 during myogenesis, independent of its role in TGF-β signaling. Here further characterization of the myogenic function of Smad7 revealed β-catenin as a Smad7 interacting protein. Biochemical analysis identified a Smad7 interaction domain (SID) between aa575 and aa683 of β-catenin. Reporter gene analysis and chromatin immunoprecipitation demonstrated that Smad7 and β-catenin are cooperatively recruited to the extensively characterized ckm promoter proximal region to facilitate its muscle restricted transcriptional activation in myogenic cells. Depletion of endogenous Smad7 and β-catenin in muscle cells reduced ckm promoter activity indicating their role during myogenesis. Deletion of the β-catenin SID substantially reduced the effect of Smad7 on the ckm promoter and exogenous expression of SID abolished β-catenin function, indicating that SID functions as a trans dominant-negative regulator of β-catenin activity. β-catenin interaction with the Mediator kinase complex through its Med12 subunit led us to identify MED13 as an additional Smad7-binding partner. Collectively, these studies document a novel function of a Smad7-MED12/13-β-catenin complex at the ckm locus, indicating a key role of this complex in the program of myogenic gene expression underlying skeletal muscle development and regeneration.
Collapse
|
31
|
Abstract
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Collapse
|
32
|
Wang Y, Ni T, Wang W, Liu F. Gene transcription in bursting: a unified mode for realizing accuracy and stochasticity. Biol Rev Camb Philos Soc 2019; 94:248-258. [PMID: 30024089 PMCID: PMC7379551 DOI: 10.1111/brv.12452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
There is accumulating evidence that, from bacteria to mammalian cells, messenger RNAs (mRNAs) are produced in intermittent bursts - a much 'noisier' process than traditionally thought. Based on quantitative measurements at individual promoters, diverse phenomenological models have been proposed for transcriptional bursting. Nevertheless, the underlying molecular mechanisms and significance for cellular signalling remain elusive. Here, we review recent progress, address the above issues and illuminate our viewpoints with simulation results. Despite being widely used in modelling and in interpreting experimental data, the traditional two-state model is far from adequate to describe or infer the molecular basis and stochastic principles of transcription. In bacteria, DNA supercoiling contributes to the bursting of those genes that express at high levels and are topologically constrained in short loops; moreover, low-affinity cis-regulatory elements and unstable protein complexes can play a key role in transcriptional regulation. Integrating data on the architecture, kinetics, and transcriptional input-output function is a promising approach to uncovering the underlying dynamic mechanism. For eukaryotes, distinct bursting features described by the multi-scale and continuum models coincide with those predicted by four theoretically derived principles that govern how the transcription apparatus operates dynamically. This consistency suggests a unified framework for comprehending bursting dynamics at the level of the structural and kinetic basis of transcription. Moreover, the existing models can be unified by a generic model. Remarkably, transcriptional bursting enables regulatory information to be transmitted in a digital manner, with the burst frequency representing the strength of regulatory signals. Such a mode guarantees high fidelity for precise transcriptional regulation and also provides sufficient randomness for realizing cellular heterogeneity.
Collapse
Affiliation(s)
- Yaolai Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of ScienceJiangnan UniversityWuxi214122China
| | - Tengfei Ni
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
33
|
Carullo NVN, Day JJ. Genomic Enhancers in Brain Health and Disease. Genes (Basel) 2019; 10:E43. [PMID: 30646598 PMCID: PMC6357130 DOI: 10.3390/genes10010043] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RUS, Xu W, Ji JY. CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 2018; 444:62-70. [PMID: 30352217 PMCID: PMC6263851 DOI: 10.1016/j.ydbio.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/08/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023]
Abstract
The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.
Collapse
Affiliation(s)
- Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
35
|
Au-Yeung N, Horvath CM. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev 2018; 44:11-17. [PMID: 30509403 DOI: 10.1016/j.cytogfr.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
In response to virus infections, a cell-autonomous, transcription-based antiviral program is engaged to create resistance, impair pathogen replication, and alert professional cells in innate and adaptive immunity. This dual phase antiviral program consists of type I interferon (IFN) production followed by the response to IFN signaling. Pathogen recognition leads to activation of IRF and NFκB factors that function independently and together to recruit cellular coactivators that remodel chromatin, modify histones and activate RNA polymerase II (Pol II) at target gene loci, including the well-characterized IFNβ enhanceosome. In the subsequent response to IFN, a receptor-mediated JAK-STAT signaling cascade directs the assembly of the IRF9-STAT1-STAT2 transcription factor complex called ISGF3, which recruits its own cohort of remodelers, coactivators, and Pol II machinery to activate transcription of a wide range of IFN-stimulated genes. Regulation of the IFN and antiviral gene regulatory networks is not only important for driving innate immune responses to infections, but also may inform treatment of a growing list of chronic diseases that are characterized by hyperactive and constitutive IFN and IFN-stimulated gene (ISG) expression. Here, gene-specific and genome-wide investigations of the chromatin landscape at IFN and ISGs is discussed in parallel with IRF- and STAT- dependent regulation of Pol II transcription.
Collapse
Affiliation(s)
- Nancy Au-Yeung
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
36
|
Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun 2018; 9:3875. [PMID: 30250136 PMCID: PMC6155209 DOI: 10.1038/s41467-018-06372-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are a specific subset of T cells that recognize glycolipid antigens and upon activation rapidly exert effector functions. This unique function is established during iNKT cell development; the detailed mechanisms of this process, however, remain to be elucidated. Here the authors show that deletion of the mediator subunit Med23 in CD4+CD8+ double positive (DP) thymocytes completely blocks iNKT cell development at stage 2. This dysregulation is accompanied by a bias in the expression of genes related to the regulation of transcription and metabolism, and functional impairment of the cells including the loss of NK cell characteristics, reduced ability to secrete cytokines and attenuated recruitment capacity upon activation. Moreover, Med23-deficient iNKT cells exhibit impaired anti-tumor activity. Our study identifies Med23 as an essential transcriptional regulator that controls iNKT cell differentiation and terminal maturation. Invariant Natural Killer T cells (iNKT) rapidly exert effector functions upon activation, but the mechanisms of their functional maturation remain to be determined. Here, Xu and colleagues show that the mediator subunit Med23 is a transcriptional regulator controlling iNKT cell terminal maturation.
Collapse
|
37
|
Med23 serves as a gatekeeper of the myeloid potential of hematopoietic stem cells. Nat Commun 2018; 9:3746. [PMID: 30218073 PMCID: PMC6138688 DOI: 10.1038/s41467-018-06282-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
In response to myeloablative stresses, HSCs are rapidly activated to replenish myeloid progenitors, while maintaining full potential of self-renewal to ensure life-long hematopoiesis. However, the key factors that orchestrate HSC activities during physiological stresses remain largely unknown. Here we report that Med23 controls the myeloid potential of activated HSCs. Ablation of Med23 in hematopoietic system leads to lymphocytopenia. Med23-deficient HSCs undergo myeloid-biased differentiation and lose the self-renewal capacity. Interestingly, Med23-deficient HSCs are much easier to be activated in response to physiological stresses. Mechanistically, Med23 plays essential roles in maintaining stemness genes expression and suppressing myeloid lineage genes expression. Med23 is downregulated in HSCs and Med23 deletion results in better survival under myeloablative stress. Altogether, our findings identify Med23 as a gatekeeper of myeloid potential of HSCs, thus providing unique insights into the relationship among Med23-mediated transcriptional regulations, the myeloid potential of HSCs and HSC activation upon stresses. Hematopoietic stem cells (HSCs) in the bone marrow are quiescent, but are activated in response to stress. Here, the authors show that loss of Med23 leads to greater activation and enhanced myeloid potential of HSCs in response to stress, also Med23 maintains stemness gene expression and suppresses myeloid genes.
Collapse
|
38
|
Abstract
Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning.
Collapse
|
39
|
Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VYF, Amaro RE, Huxford T, Ghosh G. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 2018; 57:2943-2957. [PMID: 29708732 DOI: 10.1021/acs.biochem.8b00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Jamie M Schiffer
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - De-Bin Huang
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau SAR , China
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
40
|
Snijders Blok L, Hiatt SM, Bowling KM, Prokop JW, Engel KL, Cochran JN, Bebin EM, Bijlsma EK, Ruivenkamp CAL, Terhal P, Simon MEH, Smith R, Hurst JA, McLaughlin H, Person R, Crunk A, Wangler MF, Streff H, Symonds JD, Zuberi SM, Elliott KS, Sanders VR, Masunga A, Hopkin RJ, Dubbs HA, Ortiz-Gonzalez XR, Pfundt R, Brunner HG, Fisher SE, Kleefstra T, Cooper GM. De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Hum Genet 2018; 137:375-388. [PMID: 29740699 PMCID: PMC5973976 DOI: 10.1007/s00439-018-1887-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/21/2018] [Indexed: 01/15/2023]
Abstract
Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.
Collapse
Affiliation(s)
- Lot Snijders Blok
- Human Genetics Department, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Krysta L Engel
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paulien Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rosemarie Smith
- Division of Genetics, Department of Pediatrics, Maine Medical Center, Portland, ME, USA
| | - Jane A Hurst
- Great Ormond Street Hospital for Children, London, UK
| | | | | | - Amy Crunk
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, 20877, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, University of Glasgow and Royal Hospital for Children, Glasgow, G51 4TF, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, University of Glasgow and Royal Hospital for Children, Glasgow, G51 4TF, UK
| | | | - Victoria R Sanders
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Abigail Masunga
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Rolph Pfundt
- Human Genetics Department, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Han G Brunner
- Human Genetics Department, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Clinical Genetics, GROW School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Human Genetics Department, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
41
|
Bhagwat AS, Lu B, Vakoc CR. Enhancer dysfunction in leukemia. Blood 2018; 131:1795-1804. [PMID: 29439951 PMCID: PMC5909760 DOI: 10.1182/blood-2017-11-737379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic cancers are often initiated by deregulation of the transcriptional machinery. Prominent among such regulators are the sequence-specific DNA-binding transcription factors (TFs), which bind to enhancer and promoter elements in the genome to control gene expression through the recruitment of cofactors. Remarkably, perturbing the function of even a single TF or cofactor can modulate the active enhancer landscape of a cell; conversely, knowledge of the enhancer configuration can be used to discover functionally important TFs in a given cellular process. Our expanding insight into enhancer function can be attributed to the emergence of genome-scale measurements of enhancer activity, which can be applied to virtually any cell type to expose regulatory mechanisms. Such approaches are beginning to reveal the abnormal enhancer configurations present in cancer cells, thereby providing a framework for understanding how transcriptional dysregulation can lead to malignancy. Here, we review the evidence for alterations in enhancer landscapes contributing to the pathogenesis of leukemia, a malignancy in which enhancer-binding proteins and enhancer DNA itself are altered via genetic mutation. We will also highlight examples of small molecules that reprogram the enhancer landscape of leukemia cells in association with therapeutic benefit.
Collapse
Affiliation(s)
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
42
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
43
|
Wang D, Wu D, Yang X, Hong J. Transcriptomic analysis of thermotolerant yeastKluyveromyces marxianusin multiple inhibitors tolerance. RSC Adv 2018; 8:14177-14192. [PMID: 35540752 PMCID: PMC9079866 DOI: 10.1039/c8ra00335a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
Global transcriptional response ofK. marxianusto multiple inhibitors including acetic acid, phenols, furfural and HMF at 42 °C.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Dan Wu
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaoxue Yang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiong Hong
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
44
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
45
|
An C, Li L, Zhai Q, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, Li C. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci U S A 2017; 114:E8930-E8939. [PMID: 28973940 PMCID: PMC5651773 DOI: 10.1073/pnas.1710885114] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.
Collapse
Affiliation(s)
- Chunpeng An
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanrong You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
46
|
Eychenne T, Werner M, Soutourina J. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly. Transcription 2017; 8:328-342. [PMID: 28841352 DOI: 10.1080/21541264.2017.1329000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.
Collapse
Affiliation(s)
- Thomas Eychenne
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France.,b Institut Pasteur, (Epi)genomics of Animal Development Unit , Development and Stem Cell Biology Department, CNRS UMR3778 , Paris , France
| | - Michel Werner
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| | - Julie Soutourina
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| |
Collapse
|
47
|
Borikar S, Trowbridge JJ. The Mediator of Hematopoietic Stem Cell Homeostasis. Cell Stem Cell 2017; 19:677-678. [PMID: 27912086 DOI: 10.1016/j.stem.2016.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanisms establishing and maintaining promoter-enhancer interactions in hematopoietic stem cells (HSCs) to maintain stem cell identity are not fully understood. In this issue of Cell Stem Cell, Aranda-Orgilles et al. (2016) describe a role for a member of the Mediator complex in maintaining HSC-specific enhancers and hematopoietic homeostasis.
Collapse
Affiliation(s)
- Sneha Borikar
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
48
|
Yoshizaki K, Hu L, Nguyen T, Sakai K, Ishikawa M, Takahashi I, Fukumoto S, DenBesten PK, Bikle DD, Oda Y, Yamada Y. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene. J Biol Chem 2017; 292:13531-13540. [PMID: 28673966 DOI: 10.1074/jbc.m117.780866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1-deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.
Collapse
Affiliation(s)
- Keigo Yoshizaki
- From the Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,the Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Lizhi Hu
- the Departments of Medicine and Dermatology, the University of California San Francisco and the Veterans Affairs Medical Center, San Francisco, California 94158
| | - Thai Nguyen
- the Departments of Medicine and Dermatology, the University of California San Francisco and the Veterans Affairs Medical Center, San Francisco, California 94158
| | - Kiyoshi Sakai
- From the Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Masaki Ishikawa
- From the Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Ichiro Takahashi
- the Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Satoshi Fukumoto
- the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan, and
| | - Pamela K DenBesten
- the University of California San Francisco School of Dentistry, San Francisco, California 94143
| | - Daniel D Bikle
- the Departments of Medicine and Dermatology, the University of California San Francisco and the Veterans Affairs Medical Center, San Francisco, California 94158
| | - Yuko Oda
- the Departments of Medicine and Dermatology, the University of California San Francisco and the Veterans Affairs Medical Center, San Francisco, California 94158,
| | - Yoshihiko Yamada
- From the Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
49
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
50
|
Spitler KM, Ponce JM, Oudit GY, Hall DD, Grueter CE. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming. Am J Physiol Heart Circ Physiol 2017; 312:H768-H780. [PMID: 28159809 PMCID: PMC5407164 DOI: 10.1152/ajpheart.00728.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function.NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Gavin Y Oudit
- Mazankowski Alberta Heart Institute Canada Research Chair in Heart Failure, Division of Cardiology, Walter Mackenzie Health Sciences Centre, Edmonton, Alberta, Canada
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| |
Collapse
|