1
|
Wei H, Wu S, Mai L, Yang L, Zou W, Peng H. Cbl-b negatively regulates TLR/MyD88-mediated anti- Toxoplasma gondii immunity. Microbiol Spectr 2023; 11:e0007423. [PMID: 37909781 PMCID: PMC10714978 DOI: 10.1128/spectrum.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/30/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This is the first report that a human E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (Cbl-b), functions as a host dependency factor for the intracellular protozoan Toxoplasma gondii and the mechanism for how T. gondii infection inhibits the TLR/MyD88 innate immunity pathway through MyD88 degradation mediated by Cbl-b. This finding is an impactful contribution for understanding the host cell immunity against T. gondii infection.
Collapse
Affiliation(s)
- Haixia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathogen Biology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuizhen Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Liying Mai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Nath PR, Anto NP, Braiman A, Isakov N. Termination of TCR-mediated activation signals is regulated by CrkII-dependent Cbl-mediated ubiquitination and degradation of C3G. Immunobiology 2023; 228:152342. [PMID: 36720192 DOI: 10.1016/j.imbio.2023.152342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Crk adaptor proteins are key players in signal transduction from multiple cell surface receptors, including the T cell antigen receptor (TCR). The involvement of CrkII in the early stages of T cell activation is well documented, but little is known about its role during the termination of the activation response. We substantiated findings showing that CrkII utilizes its SH3N and SH2 domains to constitutively associate with C3G and transiently with Cbl in resting and TCR/CD3-stimulated T cells, respectively. Association of CrkII with Cbl peaks within 1 min post-TCR/CD3 stimulation, and involves the formation of multiple CrkII-containing complexes of different molecular mass. Ubiquitination of C3G commences at ∼5 min post TCR/CD3 stimulation concomitantly with its degradation. This entire process conversely correlates with the levels of expression of CrkII and is dependent on the presence of the CrkII-bound Cbl protein. The data suggest that CrkII functions as a scaffold that brings Cbl into close proximity with C3G in TCR/CD3-stimulated T cells and that tyrosine phosphorylation and activation of Cbl promotes C3G ubiquitination and degradation. We suggest that this mechanism contributes to the termination of the TCR/CD3-induced activation signal and helps tune the length and intensity of T cell-mediated immune responses.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; Lentigen Technology Inc, A Miltenyi Biotec Company, 910 Clopper Road, Gaithersburg, MD 20878, USA(1).
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
3
|
Liu S, Ren L, Gao X, Hao M, Wang G. Pathogenesis of central nervous system germ cell tumors. Front Oncol 2022; 12:991484. [PMID: 36158643 PMCID: PMC9500539 DOI: 10.3389/fonc.2022.991484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are clinically rare. They are more common in children and adolescents and the incidence in Asia is higher than in Western countries. Histologically, IGCTs are divided into germinoma and non-germinomatous germ cell tumor (NGGCT). Germinoma is sensitive to radiotherapy and chemotherapy and therefore, patients with germinoma have a good prognosis. However, NGGCTs, especially those with malignant components, are not sensitive to radiotherapy and chemoradiotherapy, leading to a poor prognosis. The pathogenesis of IGCTs is not fully understood. By summarizing previous literature, we found that the occurrence of IGCTs may be related to the following factors: chromosomal instability, MAPK and/or PI3K pathway changes, and DNA hypomethylation in pure germ cell tumors.
Collapse
|
4
|
Fan M, Xiong X, Han L, Zhang L, Gao S, Liu L, Wang X, Huang C, Tong D, Yang J, Zhao L, Shao Y. SERPINA5 promotes tumour cell proliferation by modulating the PI3K/AKT/mTOR signalling pathway in gastric cancer. J Cell Mol Med 2022; 26:4837-4846. [PMID: 36000536 PMCID: PMC9465189 DOI: 10.1111/jcmm.17514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
SERPINA5 belongs to the serine protease inhibitor superfamily and has been reported to be lowly expressed in a variety of malignancies. However, few report of SERPINA5 in gastric cancer has been found. The purpose of this study was to determine the role of SERPINA5 in GC and to investigate potential tumorigenic mechanisms. We performed qPCR to determine the level of SERPINA5 expression in GC. We used public databases to evaluate whether SERPINA5 could be utilized to predict overall survival and disease‐free survival in GC patients. We also knocked down the expression of SERPINA5 and evaluated its effect on cell proliferation and migration. Furthermore, we explored the signal pathways and regulatory mechanisms related to SERPINA5 functions. According to our findings, SERPINA5 was shown to exhibit high expression in GC. Notably, SERPINA5 was prognostic in GC with high expression being unfavourable. SERPINA5 was further observed to promote GC tumorigenesis by modulating GC cell proliferation ability. Mechanically, SERPINA5 could inhibit CBL to regulate the PI3K/AKT/mTOR signalling pathway, thereby promoting GC carcinogenesis progression. These results highlight the important role of SERPINA5 in GC cell proliferation and suggest that SERPINA5 could be a novel target for GC treatment and a predictor for GC prognosis.
Collapse
Affiliation(s)
- Meiyang Fan
- Department of Otolaryngology & Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in precision medicine institute, Western China Science and Technology Innovation Port, Xi'an, China
| | - Lin Han
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shanfeng Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Yuan Shao
- Department of Otolaryngology & Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
IFT80 negatively regulates osteoclast differentiation via association with Cbl-b to disrupt TRAF6 stabilization and activation. Proc Natl Acad Sci U S A 2022; 119:e2201490119. [PMID: 35733270 PMCID: PMC9245634 DOI: 10.1073/pnas.2201490119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteoclasts (OCs) are the sole bone resorbing cells indispensable for bone remodeling. Hence, understanding of novel signaling modulators regulating OC formation is clinically important. Intraflagellar transport (IFT) proteins are important for cilia, cell signaling, and organ development. It remains unclear whether IFT80 plays a role in OCs. This study uncovers an intriguing role of IFT80 in OCs where the ciliary protein regulates the stability of critical OC factor TRAF6 via Cbl-b and thereby contributes to the maintenance of OC numbers. These findings provide further basis for understanding and delineating the role of IFT proteins in OCs that may provide new strategies for treatment of osteolytic diseases. Excess bone loss due to increased osteoclastogenesis is a significant clinical problem. Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation. The role of IFT80, an IFT complex B protein, in osteoclasts (OCs) is completely unknown. Here, we demonstrate that deletion of IFT80 in the myeloid lineage led to increased OC formation and activity accompanied by severe bone loss in mice. IFT80 regulated OC formation by associating with Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) to promote protein stabilization and proteasomal degradation of tumor necrosis factor (TNF) receptor–associated factor 6 (TRAF6). IFT80 knockdown resulted in increased ubiquitination of Cbl-b and higher TRAF6 levels, thereby hyperactivating the receptor activator of nuclear factor-κβ (NF-κβ) ligand (RANKL) signaling axis and increased OC formation. Ectopic overexpression of IFT80 rescued osteolysis in a calvarial model of bone loss. We have thus identified a negative function of IFT80 in OCs.
Collapse
|
6
|
Jeong K, Murphy JM, Erin Ahn EY, Steve Lim ST. FAK in the nucleus prevents VSMC proliferation by promoting p27 and p21 expression via Skp2 degradation. Cardiovasc Res 2021; 118:1150-1163. [PMID: 33839758 DOI: 10.1093/cvr/cvab132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
AIM Vascular smooth muscle cells (VSMCs) normally exhibit a very low proliferative rate. Vessel injury triggers VSMC proliferation, in part, through focal adhesion kinase (FAK) activation, which increases transcription of cyclin D1, a key activator for cell cycle-dependent kinases (CDKs). At the same time, we also observe that FAK regulates the expression of the CDK inhibitors (CDKIs) p27 and p21. However, the mechanism of how FAK controls CDKIs in cell cycle progression is not fully understood. METHODS AND RESULTS We found that pharmacological and genetic FAK inhibition increased p27 and p21 by reducing stability of S-phase kinase-associated protein 2 (Skp2), which targets the CDKIs for degradation. FAK N-terminal domain interacts with Skp2 and an APC/C E3 ligase activator, fizzy-related 1 (Fzr1) in the nucleus, which promotes ubiquitination and degradation of both Skp2 and Fzr1. Notably, overexpression of cyclin D1 alone failed to promote proliferation of genetic FAK kinase-dead (KD) VSMCs, suggesting that the FAK-Skp2-CDKI signaling axis is distinct from the FAK-cyclin D1 pathway. However, overexpression of both cyclin D1 and Skp2 enables proliferation of FAK-KD VSMCs, implicating that FAK ought to control both activating and inhibitory switches for CDKs. In vivo, wire injury activates FAK in the cytosol and increased Skp2 and decreased p27 and p21 levels. CONCLUSIONS Both pharmacological FAK and genetic FAK inhibition reduced Skp2 expression in VSMCs upon injury, which significantly reduced intimal hyperplasia through elevated expression of p27 and p21. This study revealed that nuclear FAK-Skp2-CDKI signaling negatively regulates CDK activity in VSMC proliferation. TRANSLATIONAL PERSPECTIVE Increased VSMC proliferation contributes to pathological vessel narrowing in atherosclerosisand following vascular interventions. Blocking VSMC proliferation will reduce atherosclerosisprogression and increase patency of vascular interventions. We found that forced nuclear FAKlocalization by FAK inhibition reduced VSMC proliferation upon vessel injury. Nuclear FAKdecreased Skp2 protein expression by proteasomal degradation, thereby increasing theexpression of cell cycle inhibitors p27 and p21 and blocking cell cycle progression. This studyhas demonstrated the potential for FAK inhibitors in blocking VSMC proliferation to treat vessel narrowing diseases.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| | - James M Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
7
|
SILAC proteomics implicates SOCS1 in modulating cellular macromolecular complexes and the ubiquitin conjugating enzyme UBE2D involved in MET receptor tyrosine kinase downregulation. Biochimie 2021; 182:185-196. [PMID: 33493533 DOI: 10.1016/j.biochi.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Suppressor of Cytokine Signaling 1 (SOCS1) functions as a tumor suppressor in hepatocellular carcinoma and many other types of cancers. SOCS1 mediates its functions by inhibiting tyrosine kinases, promoting ubiquitination and proteasomal degradation of signal transducing proteins, and by modulating transcription factors. Here, we studied the impact of SOCS1 on the hepatocyte proteome using Stable Isotopic Labelling of Amino acids in Cell culture (SILAC)-based mass spectrometry on the Hepa1-6 murine HCC cell line stably expressing wildtype SOCS1 or a mutant SOCS1 with impaired SH2 domain. As SOCS1 regulates the hepatocyte growth factor (HGF) receptor, the MET receptor tyrosine kinase (RTK), the SILAC-labelled cells were stimulated or not with HGF. Following mass spectrometry analysis, differentially modulated proteins were identified, quantified and analyzed for pathway enrichment. Of the 3440 proteins identified in Hepa-SOCS1 cells at steady state, 181 proteins were significantly modulated compared to control cells. The SH2 domain mutation and HGF increased the number of differentially modulated proteins. Protein interaction network analysis revealed enrichment of SOCS1-modulated proteins within multiprotein complexes such as ubiquitin conjugating enzymes, proteasome, mRNA spliceosome, mRNA exosome and mitochondrial ribosome. Notably, the expression of UBE2D ubiquitin conjugating enzyme, which is implicated in the control of growth factor receptor tyrosine kinase signaling, was found to be regulated by SOCS1. These findings suggest that SOCS1, induced by cytokines, growth factors and diverse other stimuli, has the potential to dynamically modulate of large macromolecular regulatory complexes to help maintain cellular homeostasis.
Collapse
|
8
|
Märklin M, Tandler C, Kopp HG, Hoehn KL, Quintanilla-Martinez L, Borst O, Müller MR, Saur SJ. C-Cbl regulates c-MPL receptor trafficking and its internalization. J Cell Mol Med 2020; 24:12491-12503. [PMID: 32954656 PMCID: PMC7687000 DOI: 10.1111/jcmm.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
Thrombocyte formation from megakaryocyte and their progenitor cells is tightly regulated by thrombopoietin (TPO) and its receptor c‐MPL, thereby maintaining physiological functionality and numbers of circulating platelets. In patients, dysfunction of this regulation could cause thrombocytopenia or myeloproliferative syndromes. Since regulation of this pathway is still not completely understood, we investigated the role of the ubiquitin ligase c‐Cbl which was previously shown to negatively regulated c‐MPL signalling. We developed a new conditional mouse model using c‐Cblfl/flPf4Cre mice and demonstrated that platelet‐specific knockout of c‐Cbl led to severe microthrombocytosis and impaired uptake of TPO and c‐MPL receptor internalization. Furthermore, we characterized a constitutive STAT5 activation c‐Cbl KO platelets. This study identified c‐Cbl as a potential player in causing megakaryocytic and thrombocytic disorders.
Collapse
Affiliation(s)
- Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), University Hospital Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Oliver Borst
- Department of Kardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin R Müller
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.,Department of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hannover, Germany
| | - Sebastian J Saur
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Li Y, Liu Y, Chiang YJ, Huang F, Li Y, Li X, Ning Y, Zhang W, Deng H, Chen YG. DNA Damage Activates TGF-β Signaling via ATM-c-Cbl-Mediated Stabilization of the Type II Receptor TβRII. Cell Rep 2020; 28:735-745.e4. [PMID: 31315051 DOI: 10.1016/j.celrep.2019.06.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/10/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
Activation of both the DNA damage response (DDR) and transforming growth factor β (TGF-β) signaling induces growth arrest of most cell types. However, it is unclear whether the DDR activates TGF-β signaling that in turn contributes to cell growth arrest. Here, we show that in response to DNA damage, ataxia telangiectasia mutated (ATM) stabilizes the TGF-β type II receptor (TβRII) and thus enhancement of TGF-β signaling. Mechanistically, ATM phosphorylates and stabilizes c-Cbl, which promotes TβRII neddylation and prevents its ubiquitination-dependent degradation. Consistently, DNA damage enhances the interaction among ATM, c-Cbl, and TβRII. The ATM-c-Cbl-TβRII axis plays a pivotal role in intestinal regeneration after X-ray-induced DNA damage in mouse models. Therefore, ATM not only mediates the canonical DDR pathway but also activates TGF-β signaling by stabilizing TβRII. The double brake system ensures full cell-cycle arrest, allowing efficient DNA damage repair and avoiding passage of the damaged genome to the daughter cells.
Collapse
Affiliation(s)
- Yuzhen Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Y Jeffrey Chiang
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xintong Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanheng Ning
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Kong T, Lin S, Gong Y, Tran NT, Zhang Y, Zheng H, Ma H, Li S. Sp-CBL inhibits white spot syndrome virus replication by enhancing apoptosis in mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103580. [PMID: 31901557 DOI: 10.1016/j.dci.2019.103580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
In mammals, casitas B-lineage lymphoma (CBL) family proteins, a RING-type E3 ubiquitin ligase, are involved in many signal transduction pathways. However, the functions of CBL in invertebrates are not well elucidated. In this study, Sp-CBL containing CBL-N, CBL-2, CBL-3 and RING domains was identified in mud crab Scylla paramamosain. Sp-CBL was widely expressed in all tissues tested and found to be significantly up-regulated in the hemocytes of mud crab challenged by white spot syndrome virus (WSSV). The RNA interference of Sp-CBL increased the copy number of WSSV and declined the apoptosis rate of hemocytes. In addition, Sp-CBL could affect the activities of caspase 3 and the mitochondrial membrane potential. Taken together, the results of this study revealed that Sp-CBL could restrict WSSV proliferation through enhancing the apoptosis of the hemocytes, which would provide a novel insight into the anti-viral response in the innate immunity system of mud crab.
Collapse
Affiliation(s)
- Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
11
|
Chen C, Hui Y, Chen Y, Qian C, Sun M. Loss of c-Cbl expression correlates with de-differentiation status and lymphatic metastasis in gastric cancer. INDIAN J PATHOL MICR 2019; 62:549-555. [PMID: 31611438 DOI: 10.4103/ijpm.ijpm_824_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context C-Cbl is an important negative regulator of the cell signaling that acts as an adaptor protein and E3 ubiquitin ligase. The role of c-Cbl in development and regulation of human cancer has aroused intensive attention. Aims In this study, we aimed to assess the correlation between the expression of c-Cbl and clinicopathological parameters and explored the role of c-Cbl in the development and progression of GC. Settings and Design This is a Pilot study. Methods and Materials In total, 84 tissue samples including 44 gastric cancers (GC) and 40 matched adjacent normal tissues were collected after surgery. Then tissue microarray (TMA) and immunohistochemistry (IHC) technology were combined to detect the protein expression of c-Cbl. Statistical Analysis Used Statistical analysis was performed using SPSS 22.0 (IBM Corporation, Armonk, NY, USA). Results We have studied the correlation between c-Cbl expression and clinicopathological parameters. Our study showed that c-Cbl has a low expression in 61.4% (27/44) of GC tissues, and the incidence of cases was significantly higher than that in adjacent normal tissues (P < 0.0001). In addition, the correlation between c-Cbl expression and gastric carcinoma subtype (P = 0.027), histological type (P = 0.033), Borrmann classification (P = 0.009), histological differentiation (P = 0.0005), lymph node metastasis (P = 0.007), and intravascular tumor thrombus (P = 0.036) has also been revealed. Conclusions Our results show that c-Cbl is down-regulated in GC tissues compared with normal gastric tissue, which may play an important role in the development and progression of GC.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi Hui
- Department of Pathology, The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Yunzhao Chen
- Department of Pathology, The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Chengjia Qian
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Minxuan Sun
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
12
|
Bi H, Liu Y, Tian T, Xia T, Pu R, Zhang Y, Hu F, Zhao Y. A Propensity Score-adjusted Analysis of the Effects of Ubiquitin E3 Ligase Copy Number Variation in Peripheral Blood Leukocytes on Colorectal Cancer Risk. J Cancer 2019; 10:3291-3302. [PMID: 31289601 PMCID: PMC6603381 DOI: 10.7150/jca.29872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The ubiquitin ligases E3 (E3s) plays a key role in the specific protein degradation in many carcinogenic biological processes. Colorectal cancer (CRC) development may be affected by the copy number variation (CNV) of E3s. Prior studies may have underestimated the impact of potential confounding factors' effects on the association between gene CNV and CRC risk, and CRC risk predictive model integrating gene CNV patterns is lacking. Our research sought to assess the genes CNVs of MDM2, SKP2, FBXW7, β-TRCP, and NEDD4-1 and CRC risk by using propensity score (PS) adjustment and developing models that integrate CNV patterns for CRC risk predictions. Methods: This study comprising 1036 participants used traditional regression and different PS techniques to adjust the confounding factors to evaluate the relationships between five gene CNVs and CRC risk, and to establish a CRC risk predictive model. The AUC was applied to evaluate the effect of the model. The categorical net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) were analyzed to evaluate the discriminatory accuracy improvement among the models. Results: Compared to variable adjustment, the odds ratios (ORs) tended to be conservative and accurate with narrow confidence intervals (CIs) after PS adjustment. After PS adjustment, MDM2 amplification was related to increased CRC risk (Amp-pattern: OR = 8.684, 95% CI: 1.213-62.155, P = 0.031), whereas SKP2 deletion and the (del+amp) genotype were associated with reduced CRC risk (Del-pattern: OR = 0.323, 95% CI: 0.106-0.979, P = 0.046; Var-pattern: OR = 0.339, 95% CI: 0.135-0.854, P = 0.024). The predictive model integrating the gene CNV pattern could correctly reclassify 1.7% of the subjects. Conclusions: MDM2 amplification and SKP2 CNVs are associated with increased and decreased CRC risk, respectively; abnormal CNV-integrated model is more precise for predicting CRC risk. Further studies are needed to verify these encouraging outcomes.
Collapse
Affiliation(s)
- Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Tingting Xia
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Rui Pu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Yiwei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Fulan Hu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
13
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Martini V, Frezzato F, Severin F, Raggi F, Trimarco V, Martinello L, Molfetta R, Visentin A, Facco M, Semenzato G, Paolini R, Trentin L. Abnormal regulation of BCR signalling by c-Cbl in chronic lymphocytic leukaemia. Oncotarget 2018; 9:32219-32231. [PMID: 30181811 PMCID: PMC6114956 DOI: 10.18632/oncotarget.25951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/21/2018] [Indexed: 11/25/2022] Open
Abstract
Abnormalities of molecules involved in signal transduction pathways are connected to Chronic Lymphocytic Leukemia (CLL) pathogenesis and a critical role has been already ascribed to B-Cell Receptor (BCR)-Lyn axis. E3 ubiquitin ligase c-Cbl, working together with adapter protein CIN85, controls the degradation of protein kinases involved in BCR signaling. To investigate cell homeostasis in CLL, we studied c-Cbl since in normal B cells it is involved in the ubiquitin-dependent Lyn degradation and in the down-regulation of BCR signaling. We found that c-Cbl is overexpressed and not ubiquitinated after BCR engagement. We observed that c-Cbl did not associate to CIN85 in CLL with respect to normal B cells at steady state, nor following BCR engagement. c-Cbl association to Lyn was not detectable in CLL after BCR stimulation, as it happens in normal B cells. In some CLL patients, c-Cbl is constitutively phosphorylated at Y731 and in the same subjects, it associated to regulatory subunit p85 of PI3K. Moreover, c-Cbl is constitutive associated to Cortactin in those CLL patients presenting Cortactin overexpression and bad prognosis. These results support the hypothesis that c-Cbl, rather than E3 ligase activity, could have an adaptor function in turn influencing cell homeostasis in CLL.
Collapse
Affiliation(s)
- Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Flavia Raggi
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Leonardo Martinello
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, University of La Sapienza, Rome, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, University of La Sapienza, Rome, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| |
Collapse
|
15
|
Schmid FM, Schou KB, Vilhelm MJ, Holm MS, Breslin L, Farinelli P, Larsen LA, Andersen JS, Pedersen LB, Christensen ST. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J Cell Biol 2017; 217:151-161. [PMID: 29237719 PMCID: PMC5748969 DOI: 10.1083/jcb.201611050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
PDGFRα signals from cilia to control development and tumorigenesis. Schmid et al. now show that intraflagellar transport protein 20 (IFT20) interacts with and stabilizes the E3 ubiquitin ligases c-Cbl and Cbl-b to promote feedback inhibition of PDGFRα signaling at the primary cilium. Primary cilia have pivotal roles as organizers of many different signaling pathways, including platelet-derived growth factor receptor α (PDGFRα) signaling, which, when aberrantly regulated, is associated with developmental disorders, tumorigenesis, and cancer. PDGFRα is up-regulated during ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor is subsequently ubiquitinated and internalized. In contrast, in IFT20-depleted cells, PDGFRα localizes aberrantly to the plasma membrane and is overactivated after ligand stimulation because of destabilization and degradation of c-Cbl and Cbl-b.
Collapse
Affiliation(s)
- Fabian Marc Schmid
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Bødtker Schou
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Juel Vilhelm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Schrøder Holm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lotte Bang Pedersen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Da Silva L, Fonseca‐Alves CE, Thompson JJ, Foster RA, Wood GA, Amorim RL, Coomber BL. Pilot assessment of vascular endothelial growth factor receptors and trafficking pathways in recurrent and metastatic canine subcutaneous mast cell tumours. Vet Med Sci 2017; 3:146-155. [PMID: 29067211 PMCID: PMC5645839 DOI: 10.1002/vms3.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Canine subcutaneous mast cell tumour (scMCT) shows less aggressive biological behaviour than cutaneous MCT. Vascular endothelial growth factor receptor 2 (VEGFR2) is expressed by neoplastic cells in canine scMCT, but the relevance of this signalling pathway for disease pathobiology is not clear. The objective of this study was to quantify VEGF-A, VEGFR2, pVEGFR2, the VEGF co-receptor Neuropilin 1 (NRP-1) and the E3 ubiquitin protein ligase c-Cbl in canine scMCT, and to evaluate their association with disease outcome. Immunohistochemical staining for biomarkers was quantified from 14 cases of canine scMCT using manual and computer-assisted methods. Kaplan-Meier curves were generated for disease-free survival (DFS) and compared using Mantel-Cox log-rank analysis. Cases with high levels of neoplastic cell VEGFR2, pVEGFR2 or c-CBL immunoreactivity had significantly reduced DFS. All cases displayed neoplastic cells positive for VEGF-A, which was significantly associated with pVEGFR2 immunoreactivity. There were also significant positive correlations between VEGFR2 and pVEGFR2, and between c-CBL and pVEGFR2 levels. This pilot study demonstrates the potential utility of these markers in a subset of scMCT in dogs.
Collapse
Affiliation(s)
- Lucas Da Silva
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| | | | - Jennifer J. Thompson
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Robert A. Foster
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A. Wood
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Renee L. Amorim
- Department of Veterinary ClinicUniversity of São Paulo State ‐UNESPBotucatuSão PauloBrazil
| | - Brenda L. Coomber
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
17
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
18
|
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K, Hoehenwarter W, Lee J, Trujillo M. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. THE PLANT CELL 2017; 29:726-745. [PMID: 28280093 PMCID: PMC5435422 DOI: 10.1105/tpc.16.00654] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 05/11/2023]
Abstract
Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Collapse
Affiliation(s)
- Giulia Furlan
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Plant Proteomics Research Unit, Yokohama 230-0045, Japan
- Max-Planck-Institute for Plant Breeding Research, Protein Mass Spectrometry Service, Cologne 50829, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Xiyuan Jiang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Kathrin Kowarschik
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Zhang Y, Wang W, Cai S, Chen Y, Wang Q, Pan Q, Sun F, Wang J. Reciprocal regulation between βTrCP and Smurf1 suppresses proliferative capacity of liver cancer cells. J Cell Physiol 2017; 232:3347-3359. [PMID: 28063214 DOI: 10.1002/jcp.25780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
We previously reported that both the ubiquitin E3 ligases βTrCP (beta-transducin repeat-containing E3 ubiquitin protein ligase) and Smurf1 (SMAD-specific E3 ubiquitin protein ligase 1) play similar antitumorigenic roles in liver cancer cells. However, whether and how they are reciprocally regulated remains elusive. Here, we show that βTrCP interacts with Smurf1 through the 7 × tryptophan (W) aspartic acid (D)(WD) 40 and the region homologous to the E6-AP carboxyl terminus (HECT) domains, which are the E3 ligase domains of βTrCP and Smurf1, respectively. The E3 ligase domains of βTrCP and Smurf1 are also critical for maintaining the protein expressions of Smurf1 and βTrCP. Moreover, a positive correlation between βTrCP and Smurf1 was also revealed by tissue microarray analysis, indicating that this relationship might be important in liver cancer. Further, we found that Smurf1 increases the protein stability of βTrCP, possibly by reducing autoubiquitination of βTrCP, and vice versa. Interestingly, such effects depended on the presence of E3 ligase domains. Importantly, depletion of Smurf1- or βTrCP-enhanced proliferative capacity of liver cancer cells could be partially reversed by overexpression of wild-type βTrCP or Smurf1 but not their E3 ligase-dead mutants. Collectively, a reciprocal post-translational regulation between βTrCP and Smurf1 has been uncovered in this study. Simultaneous enhancement of βTrCP and Smurf1 functions might be helpful in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wenhua Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Si Cai
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qinwan Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qiuhui Pan
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
He S, Wang X, Chen A. Myocardial ischemia/reperfusion injury: the role of adaptor proteins Crk. Perfusion 2017; 32:345-349. [PMID: 28553779 DOI: 10.1177/0267659117691813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have reported that the ischemia/reperfusion (I/R) myocardium may act as an immune system where an exaggerated inflammatory reaction initiates. With activation of the immune system, damage-associated molecular patterns migrate and adhere into the I/R region and, consequently, induce myocardial injury. Emerging data have indicated that the adaptor proteins Crk are thought to play essential roles in signaling during apoptosis and cell adhesion and migration. Accumulated data highlight that Crk proteins are potential immunotherapeutic targets in immune diseases. However, very few studies have determined the roles of Crk on myocardial I/R injury. This mini review will focus on the emerging roles of Crk adaptors during myocardial I/R injury.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Xianbao Wang
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Aihua Chen
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| |
Collapse
|
21
|
Byun MY, Cui LH, Oh TK, Jung YJ, Lee A, Park KY, Kang BG, Kim WT. Homologous U-box E3 Ubiquitin Ligases OsPUB2 and OsPUB3 Are Involved in the Positive Regulation of Low Temperature Stress Response in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:16. [PMID: 28163713 PMCID: PMC5247461 DOI: 10.3389/fpls.2017.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
Rice U-box E3 Ub ligases (OsPUBs) are implicated in biotic stress responses. However, their cellular roles in response to abiotic stress are poorly understood. In this study, we performed functional analyses of two homologous OsPUB2 and OsPUB3 in response to cold stress (4°C). OsPUB2 was up-regulated by high salinity, drought, and cold, whereas OsPUB3 was constitutively expressed. A subcellular localization assay revealed that OsPUB2 and OsPUB3 were localized to the exocyst positive organelle (EXPO)-like punctate structures. OsPUB2 was also localized to the nuclei. OsPUB2 and OsPUB3 formed a hetero-dimeric complex as well as homo-dimers in yeast cells and in vitro. OsPUB2/OsPUB3 exhibited self-ubiquitination activities in vitro and were rapidly degraded in the cell-free extracts with apparent half-lives of 150-160 min. This rapid degradation of OsPUB2/OsPUB3 was delayed in the presence of the crude extracts of cold-treated seedlings (apparent half-lives of 200-280 min). Moreover, a hetero-dimeric form of OsPUB2/OsPUB3 was more stable than the homo-dimers. These results suggested that OsPUB2 and OsPUB3 function coordinately in response to cold stress. OsPUB2- and OsPUB3-overexpressing transgenic rice plants showed markedly better tolerance to cold stress than did the wild-type plants in terms of survival rates, chlorophyll content, ion leakage, and expression levels of cold stress-inducible marker genes. Taken together, these results suggested that the two homologous rice U-box E3 Ub ligases OsPUB2 and OsPUB3 are positive regulators of the response to cold stress.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Tae Kyung Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ye-Jin Jung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Andosung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Bin Goo Kang
- ReSEAT Program, Korea Institute of Science and Technology Information Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| |
Collapse
|
22
|
Park CH, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL. The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice. PLoS Pathog 2016; 12:e1005529. [PMID: 27031246 PMCID: PMC4816579 DOI: 10.1371/journal.ppat.1005529] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/05/2016] [Indexed: 11/19/2022] Open
Abstract
Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gautam Shirsekar
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Maria Bellizzi
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Songbiao Chen
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Pattavipha Songkumarn
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Xin Xie
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Shi
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuese Ning
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhou
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Pavinee Suttiviriya
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Mo Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Kenji Umemura
- Meiji Seika Kaisha Ltd, Health & Bioscience Laboratories, Tokyo, Japan
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Katzav S, Schmitz ML. Mutations of c-Cbl in myeloid malignancies. Oncotarget 2016; 6:10689-96. [PMID: 26028666 PMCID: PMC4484412 DOI: 10.18632/oncotarget.3986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing has shown the frequent occurrence of point mutations in the ubiquitin E3 ligase c-Cbl in myeloid malignancies. Mouse models revealed a causal contribution of c-Cbl for the onset of such neoplasms. The point mutations typically cluster in the linker region and RING finger domain and affect both alleles by acquired uniparental disomy. The fast progress in the detection of c-Cbl mutations is contrasted by our scarce knowledge on their functional consequences. The c-Cbl protein displays several enzymatic functions by promoting the attachment of differentially composed ubiquitin chains and of the ubiquitin-like protein NEDD8 to its target proteins. In addition, c-Cbl functions as an adapter protein and undergoes phosphorylation-dependent inducible conformation changes. Studies on the impact of c-Cbl mutations on its functions as a dynamic and versatile adapter protein, its interactomes and on its various enzymatic activities are now important to allow the identification of druggable targets within the c-Cbl signaling network.
Collapse
Affiliation(s)
- Shulamit Katzav
- Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - M Lienhard Schmitz
- Institute of Biochemistry, University of Giessen, Friedrichstrasse, Giessen, Germany
| |
Collapse
|
24
|
Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA, Chen J, Whitman SP, Bloomfield CD, Nicolet D, Assi SA, Ptasinska A, Heidenreich O, Bonifer C, Kitamura T, Nassar NN, Mulloy JC. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia 2015; 30:728-39. [PMID: 26449661 DOI: 10.1038/leu.2015.275] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/24/2022]
Abstract
The t(8;21) rearrangement, which creates the AML1-ETO fusion protein, represents the most common chromosomal translocation in acute myeloid leukemia (AML). Clinical data suggest that CBL mutations are a frequent event in t(8;21) AML, but the role of CBL in AML1-ETO-induced leukemia has not been investigated. In this study, we demonstrate that CBL mutations collaborate with AML1-ETO to expand human CD34+ cells both in vitro and in a xenograft model. CBL depletion by shRNA also promotes the growth of AML1-ETO cells, demonstrating the inhibitory function of endogenous CBL in t(8;21) AML. Mechanistically, loss of CBL function confers hyper-responsiveness to thrombopoietin and enhances STAT5/AKT/ERK/Src signaling in AML1-ETO cells. Interestingly, we found the protein tyrosine phosphatase UBASH3B/Sts-1, which is known to inhibit CBL function, is upregulated by AML1-ETO through transcriptional and miR-9-mediated regulation. UBASH3B/Sts-1 depletion induces an aberrant pattern of CBL phosphorylation and impairs proliferation in AML1-ETO cells. The growth inhibition caused by UBASH3B/Sts-1 depletion can be rescued by ectopic expression of CBL mutants, suggesting that UBASH3B/Sts-1 supports the growth of AML1-ETO cells partly through modulation of CBL function. Our study reveals a role of CBL in restricting myeloid proliferation of human AML1-ETO-induced leukemia, and identifies UBASH3B/Sts-1 as a potential target for pharmaceutical intervention.
Collapse
Affiliation(s)
- S Goyama
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - J Schibler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - A Gasilina
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - K A Link
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - S P Whitman
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - C D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - D Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - S A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - A Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - C Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - T Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - N N Nassar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Zhang J, Vakhrusheva O, Bandi SR, Demirel Ö, Kazi JU, Fernandes RG, Jakobi K, Eichler A, Rönnstrand L, Rieger MA, Carpino N, Serve H, Brandts CH. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness. Stem Cell Reports 2015; 5:633-46. [PMID: 26365512 PMCID: PMC4624938 DOI: 10.1016/j.stemcr.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023] Open
Abstract
FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Olesya Vakhrusheva
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Srinivasa Rao Bandi
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Özlem Demirel
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Julhash U Kazi
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Medicon Village, 22363 Lund, Sweden
| | - Ramona Gomes Fernandes
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Katja Jakobi
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Astrid Eichler
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Medicon Village, 22363 Lund, Sweden
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; German Cancer Consortium, 69120 Heidelberg, Germany; German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Shintani T, Ohara-Waki F, Kitanaka A, Tanaka T, Kubota Y. Cbl negatively regulates erythropoietin-induced growth and survival signaling through the proteasomal degradation of Src kinase. Blood Cells Mol Dis 2014; 53:211-8. [PMID: 25084697 DOI: 10.1016/j.bcmd.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
We examined the biological functions of the gene Cbl in erythropoietin (EPO) signaling using Cbl-deficient F-36P human erythroleukemia cells by the introduction of the Cbl siRNA expression vector. Knockdown of Cbl promoted EPO-dependent proliferation and survival of F-36P cells, especially at a low concentration of EPO (0.01U/mL), similar to serum concentrations of EPO in healthy volunteers (0.005-0.04U/mL). We found that Src was degraded mainly by the proteasomal pathway because the proteasome inhibitor MG-132 but not the lysosome inhibitor NH4Cl suppressed the EPO-induced degradation of Src in F-36P cells and that knockdown of Cbl inhibited EPO-induced ubiquitination and degradation of Src in F-36P cells. The experiments using the Src inhibitor PP1 and co-expression experiments further confirmed that Cbl and the kinase activity of Src are required for the EPO-induced ubiquitination of Src. In addition, the co-expression experiments and in vitro kinase assay demonstrated that the EPO-induced tyrosine phosphorylation and ubiquitination of Cbl were dependent on the kinase activity of Src but not Jak2. Thus, Cbl negatively regulates EPO signaling mainly through the proteasome-dependent degradation of Src, and the E3 ligase activity of Cbl and its tyrosine phosphorylation are regulated by Src but not Jak2.
Collapse
Affiliation(s)
- Takamichi Shintani
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fusako Ohara-Waki
- Department of Internal Medicine, Takamatsu Red Cross Hospital, Kagawa 760-0017, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Terukazu Tanaka
- Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yoshitsugu Kubota
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
28
|
Dieudonne FX, Sévère N, Biosse-Duplan M, Weng JJ, Su Y, Marie PJ. Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells 2014; 31:1340-9. [PMID: 23533197 DOI: 10.1002/stem.1380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
The identification of the molecular mechanisms controlling the degradation of regulatory proteins in mesenchymal stromal cells (MSC) may provide clues to promote MSC osteogenic differentiation and bone regeneration. Ubiquitin ligase-dependent degradation of proteins is an important process governing cell fate. In this study, we investigated the role of the E3 ubiquitin ligase c-Cbl in MSC osteoblast differentiation and identified the mechanisms involved in this effect. Using distinct shRNA targeting c-Cbl, we showed that c-Cbl silencing promotes osteoblast differentiation in murine and human MSC, as demonstrated by increased alkaline phosphatase activity, expression of phenotypic osteoblast marker genes (RUNX2, ALP, type 1 collagen), and matrix mineralization in vitro. Coimmunoprecipitation analyses showed that c-Cbl interacts with the transcription factor STAT5, and that STAT5 forms a complex with RUNX2, a master transcription factor controlling osteoblastogenesis. Silencing c-Cbl decreased c-Cbl-mediated STAT5 ubiquitination, increased STAT5 protein level and phosphorylation, and enhanced STAT5 and RUNX2 transcriptional activity. The expression of insulin like growth factor-1 (IGF-1), a target gene of STAT5, was increased by c-Cbl silencing in MSC and in bone marrow stromal cells isolated from c-Cbl deficient mice, suggesting that IGF-1 contributes to osteoblast differentiation induced by c-Cbl silencing in MSC. Consistent with these findings, pharmacological inhibition of STAT5 activity, or neutralization of IGF-1 activity, abrogated the positive effect of c-Cbl knockdown on MSC osteogenic differentiation. Taken together, the data provide a novel functional mechanism by which the ubiquitin ligase c-Cbl regulates the osteoblastic differentiation program in mesenchymal cells by controlling Cbl-mediated STAT5 degradation and activity.
Collapse
|
29
|
The adaptor protein Crk in immune response. Immunol Cell Biol 2013; 92:80-9. [PMID: 24165979 DOI: 10.1038/icb.2013.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
The adaptor proteins Crk (CT10 (chicken tumor virus number 10) regulator of kinase), including CrkI, CrkII and Crk-like, are important signal molecules that regulate a variety of cellular processes. Considerable progress has been made in understanding the roles of the Crk family proteins in signal transduction, with a focus on cellular transformation and differentiation. However, since Crk was identified in 1988, very few studies have addressed how Crk regulates the immune response. Recent work demonstrates that Crk proteins function as critical signal molecules in regulating immune cell functions. Emerging data on the roles of Crk in activation and inhibitory immunoreceptor signaling suggest that Crk proteins are potential immunotherapeutic targets in cancer and infectious diseases. The aim of this review is to summarize recent key findings regarding the role of Crk in immune responses mediated by T, B and natural killer (NK) cells. In particular, the roles of Crk in NK cell functions are discussed.
Collapse
|
30
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
31
|
Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci 2013; 38:453-60. [PMID: 23870665 DOI: 10.1016/j.tibs.2013.06.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular catabolic process that delivers cytoplasmic components to lysosomes for degradation and recycling. Although originally considered to be a non-selective pathway, it is now recognized that autophagy is involved in selective processes, including the turnover of organelles, removal of protein aggregates, and elimination of intracellular pathogens. This specificity implies that cargo recognition and processing by the autophagy machinery are tightly regulated processes. In support of this, various forms of post-translational modification have been implicated in the regulation of autophagy, one of which is the ubiquitin-proteasome system. Here we review current understanding of the role of ubiquitylation in the control of autophagy.
Collapse
|
32
|
Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J 2013; 32:2140-57. [PMID: 23799367 PMCID: PMC3730230 DOI: 10.1038/emboj.2013.149] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022] Open
Abstract
How the cell converts graded signals into threshold-activated responses is a question of great biological relevance. Here, we uncover a nonlinear modality of epidermal growth factor receptor (EGFR)-activated signal transduction, by demonstrating that the ubiquitination of the EGFR at the PM is threshold controlled. The ubiquitination threshold is mechanistically determined by the cooperative recruitment of the E3 ligase Cbl, in complex with Grb2, to the EGFR. This, in turn, is dependent on the simultaneous presence of two phosphotyrosines, pY1045 and either one of pY1068 or pY1086, on the same EGFR moiety. The dose–response curve of EGFR ubiquitination correlate precisely with the non-clathrin endocytosis (NCE) mode of EGFR internalization. Finally, EGFR-NCE mechanistically depends on EGFR ubiquitination, as the two events can be simultaneously re-engineered on a phosphorylation/ubiquitination-incompetent EGFR backbone. Since NCE controls the degradation of the EGFR, our findings have implications for how the cell responds to increasing levels of EGFR signalling, by varying the balance of receptor signalling and degradation/attenuation. The amount of EGF present for binding to its receptor governs an on–off switch of EGFR ubiquitination and hence ligand-controlled non-clathrin-mediated endocytosis and EGFR degradation.
Collapse
|
33
|
Lorenz S, Cantor AJ, Rape M, Kuriyan J. Macromolecular juggling by ubiquitylation enzymes. BMC Biol 2013; 11:65. [PMID: 23800009 PMCID: PMC3748819 DOI: 10.1186/1741-7007-11-65] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/18/2013] [Indexed: 01/28/2023] Open
Abstract
The posttranslational modification of target proteins with ubiquitin and
ubiquitin-like proteins is accomplished by the sequential action of E1, E2, and
E3 enzymes. Members of the E1 and E3 enzyme families can undergo particularly
large conformational changes during their catalytic cycles, involving the
remodeling of domain interfaces. This enables the efficient, directed and
regulated handover of ubiquitin from one carrier to the next one. We review some
of these conformational transformations, as revealed by crystallographic
studies.
Collapse
Affiliation(s)
- Sonja Lorenz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
34
|
RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:47-60. [PMID: 23747565 DOI: 10.1016/j.bbamcr.2013.05.026] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023]
Abstract
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
35
|
Polzer H, Janke H, Schmid D, Hiddemann W, Spiekermann K. Casitas B-lineage lymphoma mutants activate AKT to induce transformation in cooperation with class III receptor tyrosine kinases. Exp Hematol 2012; 41:271-80.e4. [PMID: 23127761 DOI: 10.1016/j.exphem.2012.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 10/26/2012] [Indexed: 02/04/2023]
Abstract
In addition to overexpression and the occurrence of activating mutations, receptors can be aberrantly activated by impaired downregulation. In this study, we show that an oncogenic mutant of the ubiquitin ligase casitas B-lineage lymphoma (CBL; CBLΔexon8), which is found in acute myeloid leukemia patients, predominantly cooperates with receptor tyrosine kinase (RTK) class III receptors (PDGFRA, PDGFRB, KIT, and FLT3), but not with non-class III RTKs or cytokine receptors, to induce IL-3-independent growth of Ba/F3 cells. In cells coexpressing RTK class III/CBLΔexon8, receptor internalization was delayed, and cells were protected from apoptosis after cytokine withdrawal. Ligand-stimulated Ba/F3 cells and acute myeloid leukemia cell lines coexpressing the CBL deletion mutant and FLT3 showed enhanced AKT phosphorylation. Combined pharmacologic inhibition of the PI3K/AKT pathway and FLT3 had an additive effect on cell proliferation. The transforming potential of the CBL mutant was completely abolished by the mutation of the CBL PTB domain and was decreased by the mutation of tyrosines 589 and 591 in the juxtamembrane domain of FLT3. A constitutively active AKT1 mutant (E17K) recapitulated the phenotype induced by the CBL deletion mutant in Ba/F3 cells. This study reveals FLT3-CBL interaction sites and the AKT pathway as critical mediators of transformation by oncogenic CBL mutants.
Collapse
Affiliation(s)
- Harald Polzer
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
36
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sévère N, Dieudonné FX, Marty C, Modrowski D, Patiño-García A, Lecanda F, Fromigué O, Marie PJ. Targeting the E3 ubiquitin casitas B-lineage lymphoma decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 2012; 27:2108-17. [PMID: 22623369 DOI: 10.1002/jbmr.1667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Targeting receptor tyrosine kinase (RTK) degradation may be an interesting approach to reduce RTK cell signaling in cancer cells. Here we show that increasing E3 ubiquitin ligase casitas B-lineage lymphoma (c-Cbl) expression using lentiviral infection decreased osteosarcoma cell replication and survival and reduced cell migration and invasion in murine and human osteosarcoma cells. Conversely, c-Cbl inhibition using short hairpin RNA (shRNA) increased osteosarcoma cell growth and survival, as well as invasion and migration, indicating that c-Cbl plays a critical role as a bone tumor suppressor. Importantly, the anticancer effect of increasing c-Cbl expression in osteosarcoma cells was related mainly to the downregulation of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor alpha (PDGFRα). In a murine bone tumor model, increasing c-Cbl expression also reduced RTK expression, resulting in decreased tumor cell proliferation and survival and reduced tumor growth. Interestingly, increasing c-Cbl also markedly reduced lung metastasis in mice. Tissue microarray analysis revealed that low c-Cbl protein expression is associated with elevated EGFR and PDGFRα protein levels in human osteosarcoma with poor outcome. This study shows that increasing c-Cbl expression reduces osteosarcoma cell growth, survival, and metastasis in part through downregulation of RTKs, which supports the potential therapeutic interest of targeting c-Cbl in malignant bone diseases involving increased RTK.
Collapse
Affiliation(s)
- Nicolas Sévère
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et al., 2012; Tron et al., 2012). These findings and their significance are discussed.
Collapse
Affiliation(s)
- Ventzislava A. Hristova
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Daniel K. Stringer
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
40
|
Yoon YK, Kim HP, Song SH, Han SW, Oh DY, Im SA, Bang YJ, Kim TY. Down-regulation of mitogen-inducible gene 6, a negative regulator of EGFR, enhances resistance to MEK inhibition in KRAS mutant cancer cells. Cancer Lett 2012; 316:77-84. [PMID: 22082529 DOI: 10.1016/j.canlet.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/15/2022]
Abstract
Previously, we found that KRAS mutant cancer cells showed variable response to AZD6244, a MEK inhibitor through differential activation of EGFR/AKT. To investigate its mechanism, we performed cDNA microarray using four KRAS mutant cancer cells. We found that treatment with AZD6244 reduced the expression of mitogen-inducible gene 6 (MIG6), a negative feedback regulator for EGFR, in AZD6244-resistant cells, while activity of EGFR and AKT was increased in these cells. Reconstitution or knockdown of MIG6 expression affected cancer cell responses to AZD6244. Treatment with a combination of EGFR inhibitor and AZD6244 inhibited cell proliferation synergistically without activation of AKT in AZD6244-resistant cells. Our study provides a mechanism of differential response to MEK inhibition in KRAS mutant cancer.
Collapse
Affiliation(s)
- Young-Kwang Yoon
- Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Aranaz P, Hurtado C, Erquiaga I, Miguéliz I, Ormazábal C, Cristobal I, García-Delgado M, Novo FJ, Vizmanos JL. CBL mutations in myeloproliferative neoplasms are also found in the gene's proline-rich domain and in patients with the V617FJAK2. Haematologica 2012; 97:1234-41. [PMID: 22315494 DOI: 10.3324/haematol.2011.052605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite the discovery of the p.V617F in JAK2, the molecular pathogenesis of some chronic myeloproliferative neoplasms remains unclear. Although very rare, different studies have identified CBL (Cas-Br-Murine ecotropic retroviral transforming sequence) mutations in V617FJAK2-negative patients, mainly located in the RING finger domain. In order to determine the frequency of CBL mutations in these diseases, we studied different regions of all CBL family genes (CBL, CBLB and CBLC) in a selected group of patients with myeloproliferative neoplasms. We also included V617FJAK2-positive patients to check whether mutations in CBL and JAK2 are mutually exclusive events. DESIGN AND METHODS Using denaturing high performance liquid chromatography, we screened for mutations in CBL, CBLB and CBLC in a group of 172 V617FJAK2-negative and 232 V617FJAK2-positive patients with myeloproliferative neoplasms not selected for loss of heterozygosity. The effect on cell proliferation of the mutations detected was analyzed on a 32D(FLT3) cell model. RESULTS An initial screening of all coding exons of CBL, CBLB and CBLC in 44 V617FJAK2-negative samples revealed two new CBL mutations (p.C416W in the RING finger domain and p.A678V in the proline-rich domain). Analyses performed on 128 additional V617FJAK2-negative and 232 V617FJAK2-positive samples detected three CBL changes (p.T402HfsX29, p.P417R and p.S675C in two cases) in four V617FJAK2-positive patients. None of these mutations was found in 200 control samples. Cell proliferation assays showed that all of the mutations promoted hypersensitivity to interleukin-3 in 32D(FLT3) cells. CONCLUSIONS Although mutations described to date have been found in the RING finger domain and in the linker region of CBL, we found a similar frequency of mutations in the proline-rich domain. In addition, we found CBL mutations in both V617FJAK2-positive (4/232; 1.7%) and negative (2/172; 1.2%) patients and all of them promoted hypersensitivity to interleukin-3.
Collapse
Affiliation(s)
- Paula Aranaz
- Department of Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol 2012; 19:184-92. [PMID: 22266821 PMCID: PMC3880865 DOI: 10.1038/nsmb.2231] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022]
Abstract
Cbls are RING ubiquitin ligases that attenuate receptor tyrosine kinase (RTK) signal transduction. Cbl ubiquitination activity is stimulated by phosphorylation of a linker helix region (LHR) tyrosine residue. To elucidate the mechanism of activation, we determined the structures of human CBL, a CBL-substrate peptide complex and a phosphorylated-Tyr371-CBL-E2-substrate peptide complex, and we compared them with the known structure of a CBL-E2-substrate peptide complex. Structural and biochemical analyses show that CBL adopts an autoinhibited RING conformation, where the RING's E2-binding surface associates with CBL to reduce E2 affinity. Tyr371 phosphorylation activates CBL by inducing LHR conformational changes that eliminate autoinhibition, flip the RING domain and E2 into proximity of the substrate-binding site and transform the RING domain into an enhanced E2-binding module. This activation is required for RTK ubiquitination. Our results present a mechanism for regulation of c-Cbl's activity by autoinhibition and phosphorylation-induced activation.
Collapse
Affiliation(s)
- Hao Dou
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Lori Buetow
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Andreas Hock
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Gary J Sibbet
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Danny T Huang
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
43
|
Lai AZ, Durrant M, Zuo D, Ratcliffe CDH, Park M. Met kinase-dependent loss of the E3 ligase Cbl in gastric cancer. J Biol Chem 2012; 287:8048-59. [PMID: 22262855 DOI: 10.1074/jbc.m112.339820] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strict regulation of signaling by receptor tyrosine kinases (RTKs) is essential for normal biological processes, and disruption of this regulation can lead to tumor initiation and progression. Signal duration by the Met RTK is mediated in part by the E3 ligase Cbl. Cbl is recruited to Met upon kinase activation and promotes ubiquitination, trafficking, and degradation of the receptor. The Met RTK has been demonstrated to play a role in various types of cancer. Here, we show that Met-dependent loss of Cbl protein in MET-amplified gastric cancer cell lines represents another mechanism contributing to signal dysregulation. Loss of Cbl protein is dependent on Met kinase activity and is partially rescued with a proteasome inhibitor, lactacystin. Moreover, Cbl loss not only uncouples Met from Cbl-mediated negative regulation but also releases other Cbl targets, such as the EGF receptor, from Cbl-mediated signal attenuation. Thus, Met-dependent Cbl loss may also promote cross-talk through indirect enhancement of EGF receptor signaling.
Collapse
Affiliation(s)
- Andrea Z Lai
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
44
|
Makishima H, Sugimoto Y, Szpurka H, Clemente MJ, Ng KP, Muramatsu H, O'Keefe C, Saunthararajah Y, Maciejewski JP. CBL mutation-related patterns of phosphorylation and sensitivity to tyrosine kinase inhibitors. Leukemia 2012; 26:1547-54. [PMID: 22246246 DOI: 10.1038/leu.2012.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recurrent homozygous CBL-inactivating mutations in myeloid malignancies decrease ubiquitin ligase activity that inactivates SRC family kinases (SFK) and receptor tyrosine kinases (RTK). However, the most important SFK and RTK affected by these mutations, and hence, the most important therapeutic targets, have not been clearly characterized. We compared SFK and RTK pathway activity and inhibitors in acute myeloid leukemia cell lines containing homozygous R420Q mutation (GDM-1), heterozygous deletion (MOLM13) and wild-type (WT) CBL (THP1, U937). As expected with CBL loss, GDM-1 displayed high KIT expression and granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity. Ectopic expression of WT CBL decreased GDM-1 proliferation but not cell lines with WT CBL. GDM-1, but not the other cell lines, was highly sensitive to growth inhibition by dasatinib (dual SFK and RTK inhibitor, LD50 50 nM); there was less or no selective inhibition of GDM-1 growth by sunitinib (RTK inhibitor), imatinib (ABL, KIT inhibitor), or PP2 (SFK inhibitor). Phosphoprotein analysis identified phosphorylation targets uniquely inhibited by dasatinib treatment of GDM-1, including a number of proteins in the KIT and GM-CSF receptor pathways (for example, KIT Tyr721, STAT3 Tyr705). In conclusion, the promiscuous effects of CBL loss on SFK and RTK signaling appear to be best targeted by dual SFK and RTK inhibition.
Collapse
Affiliation(s)
- H Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci U S A 2011; 108:20579-84. [PMID: 22158902 DOI: 10.1073/pnas.1110712108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cbl-b is a RING-type E3 ubiquitin ligase that functions as a negative regulator of T-cell activation and growth factor receptor and nonreceptor-type tyrosine kinase signaling. Cbl-b dysfunction is related to autoimmune diseases and cancers in humans. However, the molecular mechanism regulating its E3 activity is largely unknown. NMR and small-angle X-ray scattering analyses revealed that the unphosphorylated N-terminal region of Cbl-b forms a compact structure by an intramolecular interaction, which masks the interaction surface of the RING domain with an E2 ubiquitin-conjugating enzyme. Phosphorylation of Y363, located in the helix-linker region between the tyrosine kinase binding and the RING domains, disrupts the interdomain interaction to expose the E2 binding surface of the RING domain. Structural analysis revealed that the phosphorylated helix-RING region forms a compact structure in solution. Moreover, the phosphate group of pY363 is located in the vicinity of the interaction surface with UbcH5B to increase affinity by reducing their electrostatic repulsion. Thus, the phosphorylation of Y363 regulates the E3 activity of Cbl-b by two mechanisms: one is to remove the masking of the RING domain from the tyrosine kinase binding domain and the other is to form a surface to enhance binding affinity to E2.
Collapse
|
46
|
Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011; 11:629-43. [PMID: 21863050 PMCID: PMC3542975 DOI: 10.1038/nrc3120] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system has numerous crucial roles in physiology and pathophysiology. Fundamental to the specificity of this system are ubiquitin-protein ligases (E3s). Of these, the majority are RING finger and RING finger-related E3s. Many RING finger E3s have roles in processes that are central to the maintenance of genomic integrity and cellular homeostasis, such as the anaphase promoting complex/cyclosome (APC/C), the SKP1-cullin 1-F-box protein (SCF) E3s, MDM2, BRCA1, Fanconi anaemia proteins, CBL proteins, von Hippel-Lindau tumour suppressor (VHL) and SIAH proteins. As a result, many RING finger E3s are implicated in either the suppression or the progression of cancer. This Review summarizes current knowledge in this area.
Collapse
Affiliation(s)
- Stanley Lipkowitz
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Weissman AM, Shabek N, Ciechanover A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 2011; 12:605-20. [PMID: 21860393 PMCID: PMC3545438 DOI: 10.1038/nrm3173] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitylation (also known as ubiquitination) regulates essentially all of the intracellular processes in eukaryotes through highly specific modification of numerous cellular proteins, which is often tightly regulated in a spatial and temporal manner. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology.
Collapse
Affiliation(s)
- Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Nitzan Shabek
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
48
|
Sévère N, Miraoui H, Marie PJ. The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 2011; 286:24443-50. [PMID: 21596750 DOI: 10.1074/jbc.m110.197525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs.
Collapse
Affiliation(s)
- Nicolas Sévère
- Laboratory of Osteoblast Biology and Pathology, INSERM, U606, Paris F-75475, France
| | | | | |
Collapse
|
49
|
de Bie P, Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 2011; 18:1393-402. [PMID: 21372847 DOI: 10.1038/cdd.2011.16] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin modification of many cellular proteins targets them for proteasomal degradation, but in addition can also serve non-proteolytic functions. Over the last years, a significant progress has been made in our understanding of how modification of the substrates of the ubiquitin system is regulated. However, little is known on how the ubiquitin system that is comprised of ∼1500 components is regulated. Here, we discuss how the biggest subfamily within the system, that of the E3 ubiquitin ligases that endow the system with its high specificity towards the numerous substrates, is regulated and in particular via self-regulation mediated by ubiquitin modification. Ligases can be targeted for degradation in a self-catalyzed manner, or through modification mediated by an external ligase(s). In addition, non-proteolytic functions of self-ubiquitination, for example activation of the ligase, of E3s are discussed.
Collapse
Affiliation(s)
- P de Bie
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
50
|
Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking. Nat Cell Biol 2011; 13:153-8. [DOI: 10.1038/ncb2155] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 11/17/2010] [Indexed: 12/25/2022]
|