1
|
Pemberton JG, Roy K, Kim YJ, Fischer TD, Joshi V, Ferrer E, Youle RJ, Pucadyil TJ, Balla T. Acute diacylglycerol production activates critical membrane-shaping proteins leading to mitochondrial tubulation and fission. Nat Commun 2025; 16:2685. [PMID: 40102394 PMCID: PMC11920102 DOI: 10.1038/s41467-025-57439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial dynamics are orchestrated by protein assemblies that directly remodel membrane structure, however the influence of specific lipids on these processes remains poorly understood. Here, using an inducible heterodimerization system to selectively modulate the lipid composition of the outer mitochondrial membrane (OMM), we show that local production of diacylglycerol (DAG) directly leads to transient tubulation and rapid fragmentation of the mitochondrial network, which are mediated by isoforms of endophilin B (EndoB) and dynamin-related protein 1 (Drp1), respectively. Reconstitution experiments on cardiolipin-containing membrane templates mimicking the planar and constricted OMM topologies reveal that DAG facilitates the membrane binding and remodeling activities of both EndoB and Drp1, thereby independently potentiating membrane tubulation and fission events. EndoB and Drp1 do not directly interact with each other, suggesting that DAG production activates multiple pathways for membrane remodeling in parallel. Together, our data emphasizes the importance of OMM lipid composition in regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Biology, Western University, London, ON, Canada.
- Division of Development & Genetics, Children's Health Research Institute, London Health Sciences Centre Research Institute, London, ON, Canada.
| | - Krishnendu Roy
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vijay Joshi
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Ferrer
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Guo X, Zhang Z, Li C, Li X, Cao Y, Wang Y, Li J, Wang Y, Wang K, Liu Y, Xie C, Zhong Y. Lipidomics reveals potential biomarkers and pathophysiological insights in the progression of diabetic kidney disease. Metabol Open 2025; 25:100354. [PMID: 40125416 PMCID: PMC11930151 DOI: 10.1016/j.metop.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
Background Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, affecting over 30 % of diabetes mellitus (DM) patients. Early detection of DKD in DM patients can enable timely preventive therapies, and potentially delay disease progression. Since the kidney relies on fatty acid oxidation for energy, dysregulated lipid metabolism has been implicated in proximal tubular cell damage and DKD pathogenesis. This study aimed to identify lipid alterations during DKD development and potential biomarkers differentiating DKD from DM. Methods lipidomics analysis was performed on serum collected from 55 patients with DM, 21 with early DKD stage and 32 with advanced DKD, and 22 healthy subjects. Associations between lipids and DKD risk were evaluated by logistic regression. Results Lipid profiling revealed elevated levels of certain lysophosphatidylethanolamines (LPEs), phosphatidylethanolamines (PEs), ceramides (Cers), and diacylglycerols (DAGs) in the DM-DKD transition, while most LPEs, lysophosphatidylcholines (LPCs), along with several monoacylglycerol (MAG) and triacylglycerols (TAGs), increased further from DKD-E to DKD-A. Logistic regression indicated positive associations between LPCs, LPEs, PEs, and DAGs with DKD risk, with most LPEs correlating significantly with urinary albumin-to-creatinine ratio (UACR) and inversely with estimated glomerular filtration rate (eGFR). A machine-learning-derived biomarker panel, Lipid9, consisting of LPC(18:2), LPC(20:5), LPE (16:0), LPE (18:0), LPE (18:1), LPE (24:0), PE (34:1), PE (34:2), and PE (36:2), accurately distinguished DKD (AUC: 0.78, 95 % CI 0.68-0.86) from DM. Incorporating two clinical indexes, serum creatinine and blood urea nitrogen, the Lipid9-SCB model further improved DKD detection (AUC: 0.83, 95 % CI 0.75-0.90) from DM, and was notably more sensitive for identifying DKD-E (AUC: 0.79, 95 % CI 0.67-0.91). Conclusion This study deciphers the lipid signature in DKD progression, and suggests the Lipid9-SCB panel as a promising tool for early DKD detection in DM patients.
Collapse
Affiliation(s)
- Xiaozhen Guo
- Department of Nephrology A, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Zixuan Zhang
- Department of Nephrology A, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Xueling Li
- Department of Nephrology A, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yangyang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Jiaqi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yibin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
3
|
Kobayashi H, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Metabolic phenotypes and vitamin D response in the critically ill: A metabolomic cohort study. Clin Nutr 2024; 43:10-19. [PMID: 39307095 DOI: 10.1016/j.clnu.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND & AIMS Although vitamin D deficiency is common in critically ill patients, randomized controlled trials fail to demonstrate benefits of supplementation. We aimed to identify distinct vitamin D3 responsive metabolic phenotypes prior to trial intervention of high-dose vitamin D3 by applying machine learning clustering method to metabolomics data from the Correction of Vitamin D Deficiency in Critically Ill Patients (VITdAL-ICU) trial. METHODS In the randomized, placebo-controlled VITdAL-ICU trial, critically ill adults received placebo or high-dose vitamin D3. To distinguish vitamin D3 responsive metabolic phenotypes prior to intervention, we implemented consensus clustering with partitioning around medoids algorithm to the plasma metabolome data before randomization. Individual metabolite differences were determined utilizing linear mixed-effects regression models stratified for metabolomic phenotypes with false discovery rate adjustment. The association between vitamin D3 supplementation and 180-day mortality was evaluated in each metabolic phenotype, applying multivariable logistic regression analysis. RESULTS In 453 critically ill adults, the study identified 4 distinct metabolic phenotypes (clusters A. N = 134; B. N = 123; C. N = 92; D. N = 104). We found differential metabolic pathway patterns in the four clusters. Specifically, branched chain amino acid catabolic metabolites, long-chain acylcarnitines and diacylglycerol species are significantly increased in a specific metabolic phenotype (cluster D) following high-dose vitamin D3. Further, in cluster D high-dose vitamin D3 supplementation had a significantly lower adjusted odds of 180-day mortality after controlling age, sex, Simplified Acute Physiology Score II, admission diagnosis, and baseline 25-hydroxyvitamin D (OR 0.28 (95%CI, 0.09-0.89); P = 0.03). In metabotype A, B, and C, high-dose vitamin D3 supplementation was not significantly associated with lower 180-day mortality following multivariable adjustment. CONCLUSION In this post-hoc cohort study of the VITdAL-ICU trial, the clustering analysis of plasma metabolome data identified biologically distinct metabolic phenotypes. Among clusters, we found the different associations between high-dose vitamin D3 supplementation and specific metabolite pathways as well as 180-day mortality. Our findings facilitate further research to validate metabolic phenotype-targeted strategies for critical illness treatments.
Collapse
Affiliation(s)
- Hirotada Kobayashi
- Department of Critical Care Medicine, Sunnybrook Health Sciences Center, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, 204 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Sherif H Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA; Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, USA.
| |
Collapse
|
4
|
Rodriguez-Rodriguez C, González-Mancha N, Ochoa-Echeverría A, Mérida I. Sorting nexin 27-dependent regulation of Lck and CD4 tunes the initial stages of T-cell activation. J Leukoc Biol 2024; 116:793-806. [PMID: 38648515 DOI: 10.1093/jleuko/qiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Sorting nexin 27 is a unique member of the sorting nexin family of proteins that mediates the endosome-to-plasma membrane trafficking of cargos bearing a PSD95/Dlg1/ZO-1 (PDZ)-binding motif. In brain, sorting nexin 27 regulates synaptic plasticity, and its dysregulation contributes to cognitive impairment and neuronal degeneration. In T lymphocytes, sorting nexin 27 partners with diacylglycerol kinase ζ to facilitate polarized traffic and signaling at the immune synapse. By silencing sorting nexin 27 expression in a human T-cell line, we demonstrate that sorting nexin 27 is a key regulator of the early T-cell tyrosine-based signaling cascade. Sorting nexin 27 transcriptionally controls CD4 abundance in resting conditions and that of its associated molecule, Lck. This guarantees the adequate recruitment of Lck at the immune synapse, which is indispensable for subsequent activation of tyrosine phosphorylation-regulated events. In contrast, reduced sorting nexin 27 expression enhances NF-κB-dependent induction of CXCR4 and triggers production of lytic enzymes and proinflammatory cytokines. These results provide mechanistic explanation to previously described sorting nexin 27 function in the control of immune synapse organization and indicate that impaired sorting nexin 27 expression contributes to CD4 T-cell dysfunction.
Collapse
Affiliation(s)
- Cristina Rodriguez-Rodriguez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Natalia González-Mancha
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
5
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
6
|
Mondal S, Pal B, Sankaranarayanan R. Diacylglycerol metabolism and homeostasis in fungal physiology. FEMS Yeast Res 2024; 24:foae036. [PMID: 39611318 PMCID: PMC11631473 DOI: 10.1093/femsyr/foae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Diacylglycerol (DAG) is a relatively simple and primitive form of lipid, which does not possess a phospholipid headgroup. Being a central metabolite of the lipid metabolism network, DAGs are omnipresent in all life forms. While the role of DAG has been established in membrane and storage lipid biogenesis, it can impart crucial physiological functions including membrane shapeshifting, regulation of membrane protein activity, and transduction of cellular signalling as a lipid-based secondary messenger. Besides, the chemical diversity of DAGs, due to fatty acyl chain composition, has been proposed to be the basis of its functional diversity. Therefore, cells must regulate DAG level at a spatio-temporal scale for homeostasis and adaptation. The vast network of eukaryotic lipid metabolism has been unravelled majorly by studying yeast models. Here, we review the current understanding and the emerging concepts in metabolic and functional aspects of DAG regulation in yeast. The implications can be extended to understand pathogenic fungi and mammalian counterparts as well as disease aetiology.
Collapse
Affiliation(s)
- Sudipta Mondal
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
| | - Biswajit Pal
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
| | - Rajan Sankaranarayanan
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
8
|
Obis E, Sol J, Andres-Benito P, Martín-Gari M, Mota-Martorell N, Galo-Licona JD, Piñol-Ripoll G, Portero-Otin M, Ferrer I, Jové M, Pamplona R. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer's Disease. Aging Dis 2023; 14:1887-1916. [PMID: 37196109 PMCID: PMC10529741 DOI: 10.14336/ad.2023.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 05/19/2023] Open
Abstract
Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.
Collapse
Affiliation(s)
- Elia Obis
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
- Catalan Institute of Health (ICS), Lleida, Spain, Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
| | - Pol Andres-Benito
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain.
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| |
Collapse
|
9
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
10
|
Rodrigo S, Senasinghe K, Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med Oncol 2023; 40:81. [PMID: 36650384 PMCID: PMC9845174 DOI: 10.1007/s12032-022-01930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
Cancer has become one of the common causes of mortality around the globe due to mutations in the genome which allows rapid growth of cells uncontrollably without repairing DNA errors. Cancers could arise due alterations in DNA repair mechanisms (errors in mismatch repair genes), activation of oncogenes and inactivation of tumor suppressor genes. Each cancer type is different and each individual has a unique genetic change which leads them to cancer. Studying genetic and epigenetic alterations in the genome leads to understanding the underlying features. CAR T therapy over other immunotherapies such as monoclonal antibodies, immune checkpoint inhibitors, cancer vaccines and adoptive cell therapies has been widely used to treat cancer in recent days and gene editing has now become one of the promising treatments for many genetic diseases. This tool allows scientists to change the genome by adding, removing or altering genetic material of an organism. Due to advance in genetics and novel molecular techniques such as CRISPR, TALEN these genes can be edited in such a way that their original function could be replaced which in turn improved the treatment possibilities and can be used against malignancies and even cure cancer in future along with CAR T cell therapy due to the specific recognition and attacking of tumor.
Collapse
Affiliation(s)
- Sawani Rodrigo
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Kaveesha Senasinghe
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bengaluru, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
- School of Health Sciences, The University of Manchester, Manchester, UK.
- SCAMT Institute, ITMO University, St. Petersburg, Russia.
| |
Collapse
|
11
|
Deb S, Sun J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers (Basel) 2022; 15:cancers15010070. [PMID: 36612066 PMCID: PMC9818000 DOI: 10.3390/cancers15010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
SNX27 belongs to the sorting nexin (SNX) family of proteins that play a critical role in protein sorting and trafficking in the endocytosis pathway. This protein family is characterized by the presence of a Phox (PX) domain; however, SNX27 is unique in containing an additional PDZ domain. Recently, SNX27 has gained popularity as an important sorting protein that is associated with the retromer complex and mediates the recycling of internalized proteins from endosomes to the plasma membrane in a PDZ domain-dependent manner. Over 100 cell surface proteins have been identified as binding partners of the SNX27-retromer complex. However, the roles and underlying mechanisms governed by SNX27 in tumorigenesis remains to be poorly understood. Many of its known binding partners include several G-protein coupled receptors, such as β2-andrenergic receptor and parathyroid hormone receptor, are associated with multiple pathways implicated in oncogenic signaling and tumorigenesis. Additionally, SNX27 mediates the recycling of GLUT1 and the activation of mTORC1, both of which can regulate intracellular energy balance and promote cell survival and proliferation under conditions of nutrient deprivation. In this review, we summarize the structure and fundamental roles of SNX proteins, with a focus on SNX27, and provide the current evidence indicating towards the role of SNX27 in human cancers. We also discuss the gap in the field and future direction of SNX27 research. Insights into the emerging roles and mechanism of SNX27 in cancers will provide better development strategies to prevent and treat tumorigenesis.
Collapse
Affiliation(s)
- Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago (UIC) Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-996-5020
| |
Collapse
|
12
|
Takahashi D, Yonezawa K, Okizaki Y, Caaveiro JMM, Ueda T, Shimada A, Sakane F, Shimizu N. Ca 2+ -induced structural changes and intramolecular interactions in N-terminal region of diacylglycerol kinase alpha. Protein Sci 2022; 31:e4365. [PMID: 35762720 PMCID: PMC9202544 DOI: 10.1002/pro.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐Innovation (CDG)Nara Institute of Science and Technology (NAIST)IkomaJapan
| | - Yuki Okizaki
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Tadashi Ueda
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| |
Collapse
|
13
|
Gatius S, Jove M, Megino-Luque C, Albertí-Valls M, Yeramian A, Bonifaci N, Piñol M, Santacana M, Pradas I, Llobet-Navas D, Pamplona R, Matías-Guiu X, Eritja N. Metabolomic Analysis Points to Bioactive Lipid Species and Acireductone Dioxygenase 1 (ADI1) as Potential Therapeutic Targets in Poor Prognosis Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14122842. [PMID: 35740505 PMCID: PMC9220847 DOI: 10.3390/cancers14122842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Uterine serous carcinoma is considered a rare and aggressive variant of endometrial cancer that accounts for 10% of all endometrial cancers diagnosed but is responsible for 40% of endometrial cancer-related deaths. Unfortunately, current treatments for serous endometrial carcinoma are ineffective. Therefore, there is a need to find new therapeutic targets. The aim of this study was to analyse the metabolic profile of serous cancer in order to identify new molecules and thereby define potential therapeutic targets. We observed that most of the differential metabolites are lipid species (suggesting the important role of the lipid metabolism). In addition, we found an increase in 2-Oxo-4-methylthiobutanoic acid (synthesised by the ADI1 enzyme) in serous carcinomas. Using public database analysis and immunohistochemistry, we established a correlation between elevated ADI1 levels and serous carcinoma. Furthermore, the ectopic modification of ADI1 expression in vitro revealed the ability of ADI1 to induce pathological cell migration and invasion capabilities. Abstract Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.
Collapse
Affiliation(s)
- Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| | - Mariona Jove
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Andree Yeramian
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Nuria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Miquel Piñol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Xavier Matías-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| |
Collapse
|
14
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
15
|
Harmati M, Bukva M, Böröczky T, Buzás K, Gyukity-Sebestyén E. The role of the metabolite cargo of extracellular vesicles in tumor progression. Cancer Metastasis Rev 2021; 40:1203-1221. [PMID: 34957539 PMCID: PMC8825386 DOI: 10.1007/s10555-021-10014-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Metabolomic reprogramming in tumor and stroma cells is a hallmark of cancer but understanding its effects on the metabolite composition and function of tumor-derived extracellular vesicles (EVs) is still in its infancy. EVs are membrane-bound sacs with a complex molecular composition secreted by all living cells. They are key mediators of intercellular communication both in normal and pathological conditions and play a crucial role in tumor development. Although lipids are major components of EVs, most of the EV cargo studies have targeted proteins and nucleic acids. The potential of the EV metabolome as a source for biomarker discovery has gained recognition recently, but knowledge on the biological activity of tumor EV metabolites still remains limited. Therefore, we aimed (i) to compile the list of metabolites identified in tumor EVs isolated from either clinical specimens or in vitro samples and (ii) describe their role in tumor progression through literature search and pathway analysis.
Collapse
Affiliation(s)
- Mária Harmati
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre - Eötvös Loránd Research Network, 6726, Szeged, Hungary
| | - Mátyás Bukva
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre - Eötvös Loránd Research Network, 6726, Szeged, Hungary.,Department of Immunology, University of Szeged, 6720, Szeged, Hungary.,Doctoral School of Interdisciplinary Medicine, University of Szeged, 6720, Szeged, Hungary
| | - Tímea Böröczky
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre - Eötvös Loránd Research Network, 6726, Szeged, Hungary.,Department of Immunology, University of Szeged, 6720, Szeged, Hungary.,Doctoral School of Interdisciplinary Medicine, University of Szeged, 6720, Szeged, Hungary
| | - Krisztina Buzás
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre - Eötvös Loránd Research Network, 6726, Szeged, Hungary.,Department of Immunology, University of Szeged, 6720, Szeged, Hungary
| | - Edina Gyukity-Sebestyén
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre - Eötvös Loránd Research Network, 6726, Szeged, Hungary.
| |
Collapse
|
16
|
Ward AV, Anderson SM, Sartorius CA. Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. J Mammary Gland Biol Neoplasia 2021; 26:399-417. [PMID: 34914014 PMCID: PMC8883833 DOI: 10.1007/s10911-021-09505-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss current lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow informed development of diagnostics and novel targeted therapies.
Collapse
Affiliation(s)
- Ashley V Ward
- Cancer Biology Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
17
|
Age-Related Changes in Lipidome of Rat Frontal Cortex and Cerebellum Are Partially Reversed by Methionine Restriction Applied in Old Age. Int J Mol Sci 2021; 22:ijms222212517. [PMID: 34830402 PMCID: PMC8623997 DOI: 10.3390/ijms222212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids are closely associated with brain structure and function. However, the potential changes in the lipidome induced by aging remain to be elucidated. In this study, we used chromatographic techniques and a mass spectrometry-based approach to evaluate age-associated changes in the lipidome of the frontal cortex and cerebellum obtained from adult male Wistar rats (8 months), aged male Wistar rats (26 months), and aged male Wistar rats submitted to a methionine restriction diet (MetR)—as an anti-aging intervention—for 8 weeks. The outcomes revealed that only small changes (about 10%) were observed in the lipidome profile in the cerebellum and frontal cortex during aging, and these changes differed, in some cases, between regions. Furthermore, a MetR diet partially reversed the effects of the aging process. Remarkably, the most affected lipid classes were ether-triacylglycerols, diacylglycerols, phosphatidylethanolamine N-methylated, plasmalogens, ceramides, and cholesterol esters. When the fatty acid profile was analyzed, we observed that the frontal cortex is highly preserved during aging and maintained under MetR, whereas in the cerebellum minor changes (increased monounsaturated and decreased polyunsaturated contents) were observed and not reversed by MetR. We conclude that the rat cerebellum and frontal cortex have efficient mechanisms to preserve the lipid profile of their cell membranes throughout their adult lifespan in order to maintain brain structure and function. A part of the small changes that take place during aging can be reversed with a MetR diet applied in old age.
Collapse
|
18
|
Mehta N, Shaik S, Prasad A, Chaichi A, Sahu SP, Liu Q, Hasan SMA, Sheikh E, Donnarumma F, Murray KK, Fu X, Devireddy R, Gartia MR. Multimodal Label-Free Monitoring of Adipogenic Stem Cell Differentiation Using Endogenous Optical Biomarkers. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103955. [PMID: 34924914 PMCID: PMC8680429 DOI: 10.1002/adfm.202103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 05/13/2023]
Abstract
Stem cell-based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non-destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping-based machine learning analysis is reported to distinguish differentiating human adipose-derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single-cell resolution. The label-free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton-based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix-assisted laser desorption/ionization-mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label-free identification of stem cell differentiation with high spatial and chemical resolution.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shahensha Shaik
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y, Hata A, Zhang Y, Wakizaka H, Wakabayashi T, Fujinaga M, Yamashita R, Zhang MR, Koike T. Design, Synthesis, and Evaluation of 11C-Labeled 3-Acetyl-Indole Derivatives as a Novel Positron Emission Tomography Imaging Agent for Diacylglycerol Kinase Gamma (DGKγ) in Brain. J Med Chem 2021; 64:11990-12002. [PMID: 34347478 DOI: 10.1021/acs.jmedchem.1c00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.
Collapse
Affiliation(s)
- Yasushi Hattori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomohiro Ohashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Maeda
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyuki Debori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Wakabayashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryo Yamashita
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
20
|
Bozelli JC, Yune J, Takahashi D, Sakane F, Epand RM. Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB J 2021; 35:e21602. [PMID: 33977628 DOI: 10.1096/fj.202100264r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
21
|
Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease. Brain Pathol 2021; 31:e12996. [PMID: 34218486 PMCID: PMC8549032 DOI: 10.1111/bpa.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Tau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I-II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I-II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III-IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for "benign" cognitive deterioration in "normal" brain aging.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida, Lleida, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| |
Collapse
|
22
|
Up-Regulation of Specific Bioactive Lipids in Celiac Disease. Nutrients 2021; 13:nu13072271. [PMID: 34209150 PMCID: PMC8308317 DOI: 10.3390/nu13072271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy linked to alterations of metabolism. Currently, limited untargeted metabolomic studies evaluating differences in the plasma metabolome of CD subjects have been documented. We engage in a metabolomic study that analyzes plasma metabolome in 17 children with CD treated with a gluten-free diet and 17 healthy control siblings in order to recognize potential changes in metabolic networks. Our data demonstrates the persistence of metabolic defects in CD subjects in spite of the dietary treatment, affecting a minor but significant fraction (around 4%, 209 out of 4893 molecular features) of the analyzed plasma metabolome. The affected molecular species are mainly, but not exclusively, lipid species with a particular affectation of steroids and derivatives (indicating an adrenal gland affectation), glycerophospholipids (to highlight phosphatidic acid), glycerolipids (with a special affectation of diacylglycerols), and fatty acyls (eicosanoids). Our findings are suggestive of an activation of the diacylglycerol-phosphatidic acid signaling pathway in CD that may potentially have detrimental effects via activation of several targets including protein kinases such as mTOR, which could be the basis of the morbidity and mortality connected with untreated CD. However, more studies are necessary to validate this idea regarding CD.
Collapse
|
23
|
Buwaneka P, Ralko A, Liu SL, Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J Lipid Res 2021; 62:100084. [PMID: 33964305 PMCID: PMC8178126 DOI: 10.1016/j.jlr.2021.100084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cholesterol is an essential component of the mammalian plasma membrane involved in diverse cellular processes. Our recent quantitative imaging analysis using ratiometric cholesterol sensors showed that the available cholesterol concentration in the inner leaflet of the plasma membrane (IPM) is low in unstimulated cells and increased in a stimulus-specific manner to trigger cell signaling events. However, the transbilayer distribution of cholesterol in the plasma membrane of mammalian cells remains controversial. Here we report a systematic and rigorous evaluation of basal IPM cholesterol levels in a wide range of mammalian cells with different properties employing cholesterol sensors derived from the D4 domain of the Perfringolysin O toxin and a sterol-transfer protein, Osh4. Results consistently showed that, although basal IPM cholesterol levels vary significantly among cells, they remain significantly lower than cholesterol levels in the outer leaflets. We found that IPM cholesterol levels were particularly low in all tested primary cells. These results support the universality of the low basal IPM cholesterol concentration under physiological conditions. We also report here the presence of sequestered IPM cholesterol pools, which may become available to cytosolic proteins under certain physiological conditions. We hypothesize that these pools may partly account for the low basal level of available IPM cholesterol. In conclusion, we provide new experimental data that confirm the asymmetric transbilayer distribution of the plasma membrane cholesterol, which may contribute to regulation of various cellular signaling processes at the plasma membrane.
Collapse
Affiliation(s)
- Pawanthi Buwaneka
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shu-Lin Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
25
|
Bozelli JC, Aulakh SS, Epand RM. Membrane shape as determinant of protein properties. Biophys Chem 2021; 273:106587. [PMID: 33865153 DOI: 10.1016/j.bpc.2021.106587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Membrane lipids play a role in the modulation of a variety of biological processes. This is often achieved through fine-tuned changes in membrane physical and chemical properties. While some membrane physical properties (e.g., curvature, lipid domains, fluidity) have received increased scientific attention over the years, only recently has membrane shape emerged as an active modulator of protein properties. Biological membranes are mostly found organized into a lipid bilayer arrangement, in which the spontaneous shape is an intrinsically flat, planar morphology (in relation to the size of proteins). However, it is known that many cells and organelles have non-planar morphologies. In addition, perturbations in membrane morphology occur in a variety of biological processes. Recent studies have shown that membrane shape can modulate a variety of biological processes by determining protein properties. While membrane shape generation modulates proteins via changes in membrane mechanical properties, membrane shape recognition regulates proteins by providing the optimal surface for interaction. Hence, membranes have evolved an elegant mechanism to couple mesoscopic perturbations to molecular properties and vice-versa. In this review, the regulation of the enzymatic properties of two isoforms of mammalian diacylglycerol kinase, which play important roles in cellular signal transductions, will be used to exemplify the recent advancements in the field of membrane shape recognition, as well as future challenges and perspectives.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| | - Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
26
|
Tsumagari R, Maruo K, Nakao T, Ueda S, Yamanoue M, Shirai Y. Motor Dyscoordination and Alteration of Functional Correlation Between DGKγ and PKCγ in Senescence-Accelerated Mouse Prone 8 (SAMP8). Front Aging Neurosci 2021; 13:573966. [PMID: 33584249 PMCID: PMC7876064 DOI: 10.3389/fnagi.2021.573966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) is an animal model of age-related central nervous system (CNS) disorders. Although SAMP8 shows deficits in learning, memory, and emotion, its motor coordination has not been clarified. We have recently reported that DGKγ-regulated PKCγ activity is important for cerebellar motor coordination. However, involvement of the functional correlation between the kinases in age-related motor dyscoordination still remains unknown. Therefore, we have investigated the motor coordination in SAMP8 and involvement of the functional correlation between DGKγ and PKCγ in the age-related motor dyscoordination. Although 6 weeks old SAMP8 showed equivalent motor coordination with control mice (SAMR1) in the rotarod test, 24 weeks old SAMP8 exhibited significantly less latency in the rotarod test and more frequent slips in the beam test compared to the age-matched SAMR1. Furthermore, 24 weeks old SAMP8 showed the higher locomotor activity in open field test and Y-maze test. Western blotting revealed that DGKγ expression decreased in the cerebellum of 24 weeks old SAMP8, while PKCγ was upregulated. These results suggest that SAMP8 is a useful model of age-related motor dysfunction and that the DGKγ-regulated PKCγ activity is involved in the age-related motor dyscoordination.
Collapse
Affiliation(s)
- Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Takaaki Nakao
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| |
Collapse
|
27
|
Tsumagari R, Maruo K, Kakizawa S, Ueda S, Yamanoue M, Saito H, Suzuki N, Shirai Y. Precise Regulation of the Basal PKCγ Activity by DGKγ Is Crucial for Motor Coordination. Int J Mol Sci 2020; 21:ijms21217866. [PMID: 33114041 PMCID: PMC7660329 DOI: 10.3390/ijms21217866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.
Collapse
Affiliation(s)
- Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
- Correspondence: ; Tel.: +81-078-803-5887
| |
Collapse
|
28
|
Luo P, Mao K, Xu J, Wu F, Wang X, Wang S, Zhou M, Duan L, Tan Q, Ma G, Yang G, Du R, Huang H, Huang Q, Li Y, Guo M, Jin Y. Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Extracell Vesicles 2020; 9:1790158. [PMID: 32944177 PMCID: PMC7480510 DOI: 10.1080/20013078.2020.1790158] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangzhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ronghui Du
- Department of Respiratory and Critical Care Medicine, Wuhan Lung Hospital, Wuhan, Hubei, China
| | - Hai Huang
- Department of Respiratory and Critical Care Medicine, Wuhan Lung Hospital, Wuhan, Hubei, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
30
|
Liu CS, Schmezer P, Popanda O. Diacylglycerol Kinase Alpha in Radiation-Induced Fibrosis: Potential as a Predictive Marker or Therapeutic Target. Front Oncol 2020; 10:737. [PMID: 32477950 PMCID: PMC7235333 DOI: 10.3389/fonc.2020.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an efficient tool in cancer treatment, but it brings along the risk of side effects such as fibrosis in the irradiated healthy tissue thus limiting tumor control and impairing quality of life of cancer survivors. Knowledge on radiation-related fibrosis risk and therapeutic options is still limited and requires further research. Recent studies demonstrated that epigenetic regulation of diacylglycerol kinase alpha (DGKA) is associated with radiation-induced fibrosis. However, the specific mechanisms are still unknown. In this review, we scrutinized the role of DGKA in the radiation response and in further cellular functions to show the potential of DGKA as a predictive marker or a novel target in fibrosis treatment. DGKA was reported to participate in immune response, lipid signaling, exosome production, and migration as well as cell proliferation, all processes which are suggested to be critical steps in fibrogenesis. Most of these functions are based on the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) at plasma membranes, but DGKA might have also other, yet not well-known functions in the nucleus. Current evidence summarized here underlines that DGKA activation may play a central role in fibrosis formation post-irradiation and shows a potential of direct DGKA inhibitors or epigenetic modulators to attenuate pro-fibrotic reactions, thus providing novel therapeutic choices.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
DGKγ Knock-Out Mice Show Impairments in Cerebellar Motor Coordination, LTD, and the Dendritic Development of Purkinje Cells through the Activation of PKCγ. eNeuro 2020; 7:ENEURO.0319-19.2020. [PMID: 32033984 PMCID: PMC7057140 DOI: 10.1523/eneuro.0319-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.
Collapse
|
32
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020; 10:metabo10020067. [PMID: 32069969 PMCID: PMC7073695 DOI: 10.3390/metabo10020067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted from almost all cells including cancer. Cancer-derived EVs contribute to cancer progression and malignancy via educating the surrounding normal cells. In breast cancer, epidemiological and experimental observations indicated that lipids are associated with cancer malignancy. However, lipid compositions of breast cancer EVs and their contributions to cancer progression are unexplored. In this study, we performed a widely targeted quantitative lipidomic analysis in cells and EVs derived from high- and low-metastatic triple-negative breast cancer cell lines, using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry. We demonstrated the differential lipid compositions between EVs and cells of their origin, and between high- and low-metastatic cell lines. Further, we demonstrated EVs from highly metastatic breast cancer accumulated unsaturated diacylglycerols (DGs) compared with EVs from lower-metastatic cells, without increasing the amount in cells. The EVs enriched with DGs could activate the protein kinase D signaling pathway in endothelial cells, which can lead to stimulated angiogenesis. Our results indicate that lipids are selectively loaded into breast cancer EVs to support tumor progression.
Collapse
|
34
|
Ware TB, Franks CE, Granade ME, Zhang M, Kim KB, Park KS, Gahlmann A, Harris TE, Hsu KL. Reprogramming fatty acyl specificity of lipid kinases via C1 domain engineering. Nat Chem Biol 2020; 16:170-178. [PMID: 31932721 PMCID: PMC7117826 DOI: 10.1038/s41589-019-0445-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
C1 domains are lipid-binding modules that regulate membrane activation of kinases, nucleotide exchange factors and other C1-containing proteins to trigger signal transduction. Despite annotation of typical C1 domains as diacylglycerol (DAG) and phorbol ester sensors, the function of atypical counterparts remains ill-defined. Here, we assign a key role for atypical C1 domains in mediating DAG fatty acyl specificity of diacylglycerol kinases (DGKs) in live cells. Activity-based proteomics mapped C1 probe binding as a principal differentiator of type 1 DGK active sites that combined with global metabolomics revealed a role for C1s in lipid substrate recognition. Protein engineering by C1 domain swapping demonstrated that exchange of typical and atypical C1s is functionally tolerated and can directly program DAG fatty acyl specificity of type 1 DGKs. Collectively, we describe a protein engineering strategy for studying metabolic specificity of lipid kinases to assign a role for atypical C1 domains in cell metabolism.
Collapse
Affiliation(s)
- Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Caroline E Franks
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mingxing Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Nakai H, Tsumagari R, Maruo K, Nakashima A, Kikkawa U, Ueda S, Yamanoue M, Saito N, Takei N, Shirai Y. mTORC1 is involved in DGKβ-induced neurite outgrowth and spinogenesis. Neurochem Int 2019; 134:104645. [PMID: 31891737 DOI: 10.1016/j.neuint.2019.104645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Diacylglycerol kinase β (DGKβ) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKβ induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKβ via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKβ, we investigated whether DGKβ activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKβ induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKβ induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKβ induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.
Collapse
Affiliation(s)
- Hiroko Nakai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Akio Nakashima
- Laboratory of Cell Signaling, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Ushio Kikkawa
- Laboratory of Cell Signaling, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
36
|
Sengupta A, Weljie AM. Metabolism of sleep and aging: Bridging the gap using metabolomics. NUTRITION AND HEALTHY AGING 2019; 5:167-184. [PMID: 31984245 PMCID: PMC6971829 DOI: 10.3233/nha-180043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep is a conserved behavior across the evolutionary timescale. Almost all known animal species demonstrate sleep or sleep like states. Despite extensive study, the mechanistic aspects of sleep need are not very well characterized. Sleep appears to be needed to generate resources that are utilized during the active stage/wakefulness as well as clearance of waste products that accumulate during wakefulness. From a metabolic perspective, this means sleep is crucial for anabolic activities. Decrease in anabolism and build-up of harmful catabolic waste products is also a hallmark of aging processes. Through this lens, sleep and aging processes are remarkably parallel- for example behavioral studies demonstrate an interaction between sleep and aging. Changes in sleep behavior affect neurocognitive phenotypes important in aging such as learning and memory, although the underlying connections are largely unknown. Here we draw inspiration from the similar metabolic effects of sleep and aging and posit that large scale metabolic phenotyping, commonly known as metabolomics, can shed light to interleaving effects of sleep, aging and progression of diseases related to aging. In this review, data from recent sleep and aging literature using metabolomics as principal molecular phenotyping methods is collated and compared. The present data suggests that metabolic effects of aging and sleep also demonstrate similarities, particularly in lipid metabolism and amino acid metabolism. Some of these changes also overlap with metabolomic data available from clinical studies of Alzheimer's disease. Together, metabolomic technologies show promise in elucidating interleaving effects of sleep, aging and progression of aging disorders at a molecular level.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Castro V, Calvo G, Ávila-Pérez G, Dreux M, Gastaminza P. Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle. Cells 2019; 8:cells8111456. [PMID: 31752156 PMCID: PMC6912735 DOI: 10.3390/cells8111456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidic acid into diacylglycerol, has been implicated in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family on HCV infection, by determining the impact of the lipin2 silencing on viral replication. Our data reveal that lipin2 silencing interferes with HCV virion secretion at late stages of the infection, without significantly affecting viral replication or assembly. Moreover, uninfected lipin2-, but not lipin1-deficient cells display alterations in mitochondrial and Golgi apparatus morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Finally, our data suggest a broader function of lipin2 for replication of HCV and other RNA viruses, in contrast with the specific impact of lipin1 silencing on HCV replication. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Gema Calvo
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France;
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
- Correspondence: ; Tel.: +34-91-585-4678; Fax: +34-91-585-4506
| |
Collapse
|
38
|
Deisl C, Fine M, Moe OW, Hilgemann DW. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca 2+ and diacylglycerol signals. Pflugers Arch 2019; 471:1143-1157. [PMID: 31250095 PMCID: PMC6614165 DOI: 10.1007/s00424-019-02293-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca2+ and diacylglycerol, quantified with the Ca2+ sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca2+ and diacylglycerol. These results together suggest that basal Ca2+ and diacylglycerol form a positive feedback signaling loop that promotes execution of cardiac growth programs in these human myocytes. Given that basal Ca2+ in myocytes depends strongly on the Na+ gradient, we also tested whether nanomolar ouabain concentrations might stimulate Na+/K+ pumps, as described by others, and thereby prevent hypertrophy. However, stimulatory effects of nanomolar ouabain (1.5 nM) were not verified on Na+/K+ pump currents in stem cell-derived myocytes, nor did nanomolar ouabain block hypertrophy induced by endothelin-1. Thus, low-dose ouabain is not a "protective" intervention under the conditions of these experiments in this human myocyte model. To summarize, the major aim of this study has been to characterize the progression of hypertrophy in human embryonic stem cell-derived cardiac myocytes in dependence on diacylglycerol and Na+ gradient changes, developing a case that positive feedback coupling between these mechanisms plays an important role in the initiation of hypertrophy programs.
Collapse
Affiliation(s)
- Christine Deisl
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Michael Fine
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Orson W Moe
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Donald W Hilgemann
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| |
Collapse
|
39
|
Rosique C, Lebsir D, Lestaevel P, Benatia S, Guigon P, Caire-Maurisier F, Benderitter M, Bennouna D, Souidi M, Martin JC. Assessment of the effects of repeated doses of potassium iodide intake during pregnancy on male and female rat offspring using metabolomics and lipidomics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:603-615. [PMID: 31179882 DOI: 10.1080/15287394.2019.1625474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preparedness for nuclear accident responsiveness includes interventions to protect pregnancies against prolonged exposure to radioactive iodine. The aim of this study was to investigate a new design consisting of repeated administration of potassium iodide (KI, 1 mg/kg) for 8 days in late pregnancy gestational day 9-16 (GD9-GD16) in rats. The later-life effects of this early-life iodine thyroid blocking (ITB) strategy were assessed in offspring two months afterbirth. Functional behavioral tests including forced swimming test (FST) and rotarod test (RRT) in rats of both genders showed lower FST performance in KI-treated females and lower RRT performance in KI-treated male pups. This performance decline was associated with metabolic disruptions in cortex involving amino acid metabolism, tyrosine metabolism, as well as docosahexaenoic acid (DHA) lipids and signaling lipids in males and females. Beyond these behavior-associated metabolic changes, a portion of the captured metabolome (17-25%) and lipidome (3.7-7.35%) remained sensitive to in utero KI prophylactic treatment in both cortex and plasma of post-weaning rats, with some gender-related variance. Only part of these disruptions was attributed to lower levels of TSH and T4 (males only). The KI-induced metabolic shifts involved a broad spectrum of functions encompassing metabolic and cell homeostasis and cell signaling functions. Irrespective Regardless of gender and tissues, the predominant effects of KI affected neurotransmitters, amino acid metabolism, and omega-3 DHA metabolism. Taken together, data demonstrated that repeated daily KI administration at 1 mg/kg/day for 8 days during late pregnancy failed to protect the mother-fetus against nuclear accident radiation. Abbreviations: CV-ANOVA: Cross-validation analysis of variance; DHA: Docosahexaenoic acid; FST: Forced swimming test; FT3: plasma free triiodothyronine; FT4: plasma free thyroxine; GD: Gestational day; ITB: Iodine thyroid blocking; KI: potassium iodide; LC/MS: Liquid chromatography coupled with mass spectrometry; MTBE: Methyl tert-butyl ether; m/z: mass-to-charge ratio; PLS-DA: Partial least squares-discriminant analysis; PRIODAC: Repeated stable iodide prophylaxis in accidental radioactive releases; RRT: Rotarod test; TSH: Thyroid-stimulating hormone; VIP: Variable importance in projection.
Collapse
Affiliation(s)
- Clément Rosique
- a Aix Marseille University, INSERM, INRA, C2VN, BioMeT Department , Marseille , France
| | - Dalila Lebsir
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE LRPAT Department , Fontenay-aux-Roses , France
| | - Philippe Lestaevel
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE LRPAT Department , Fontenay-aux-Roses , France
| | - Sheherazade Benatia
- a Aix Marseille University, INSERM, INRA, C2VN, BioMeT Department , Marseille , France
| | - Pierre Guigon
- c Pharmacie Centrale des Armées, Analytical Control Department , Fleury-les-Aubrais Cedex , France
| | - François Caire-Maurisier
- c Pharmacie Centrale des Armées, Analytical Control Department , Fleury-les-Aubrais Cedex , France
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE LRPAT Department , Fontenay-aux-Roses , France
| | - Djawed Bennouna
- a Aix Marseille University, INSERM, INRA, C2VN, BioMeT Department , Marseille , France
| | - Maâmar Souidi
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE LRPAT Department , Fontenay-aux-Roses , France
| | - Jean-Charles Martin
- a Aix Marseille University, INSERM, INRA, C2VN, BioMeT Department , Marseille , France
| |
Collapse
|
40
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
41
|
Takahashi D, Suzuki K, Sakamoto T, Iwamoto T, Murata T, Sakane F. Crystal structure and calcium-induced conformational changes of diacylglycerol kinase α EF-hand domains. Protein Sci 2019; 28:694-706. [PMID: 30653270 DOI: 10.1002/pro.3572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that phosphorylate diacylglycerol into phosphatidic acid, modulating the levels of these key signaling lipids. Recently, increasing attention has been paid to DGKα isozyme as a potential target for cancer immunotherapy. We have previously shown that DGKα is positively regulated by Ca2+ binding to its N-terminal EF-hand domains (DGKα-EF). However, little progress has been made for the structural biology of mammalian DGKs and the molecular mechanism underlying the Ca2+ -triggered activation remains unclear. Here we report the first crystal structure of Ca2+ -bound DGKα-EF and analyze the structural changes upon binding to Ca2+ . DGKα-EF adopts a canonical EF-hand fold, but unexpectedly, has an additional α-helix (often called a ligand mimic [LM] helix), which is packed into the hydrophobic core. Biophysical and biochemical analyses reveal that DGKα-EF adopts a protease-susceptible "open" conformation without Ca2+ that tends to form a dimer. Cooperative binding of two Ca2+ ions dissociates the dimer into a well-folded monomer, which resists to proteolysis. Taken together, our results provide experimental evidence that Ca2+ binding induces substantial conformational changes in DGKα-EF, which likely regulates intra-molecular interactions responsible for the activation of DGKα and suggest a possible role of the LM helix for the Ca2+ -induced conformational changes. SIGNIFICANCE STATEMENT: Diacylglycerol kinases (DGKs), which modulates the levels of two lipid second messengers, diacylglycerol and phosphatidic acid, is still structurally enigmatic enzymes since its first identification in 1959. We here present the first crystal structure of EF-hand domains of diacylglycerol kinase α in its Ca2+ bound form and characterize Ca2+ -induced conformational changes, which likely regulates intra-molecular interactions. Our study paves the way for future studies to understand the structural basis of DGK isozymes.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takeo Iwamoto
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.,Molecular Chirality Research Center, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents. J Proteome Res 2019; 18:1175-1190. [DOI: 10.1021/acs.jproteome.8b00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Mamen Regalado-Reyes
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Calle de Valderrebollo, 5, 28031 Madrid, Spain
| | | |
Collapse
|
43
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
44
|
Merida I, Arranz-Nicolás J, Torres-Ayuso P, Ávila-Flores A. Diacylglycerol Kinase Malfunction in Human Disease and the Search for Specific Inhibitors. Handb Exp Pharmacol 2019; 259:133-162. [PMID: 31227890 DOI: 10.1007/164_2019_221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.
Collapse
Affiliation(s)
- Isabel Merida
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI-NIH), Frederick, MD, USA
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
45
|
Mingorance L, Castro V, Ávila-Pérez G, Calvo G, Rodriguez MJ, Carrascosa JL, Pérez-del-Pulgar S, Forns X, Gastaminza P. Host phosphatidic acid phosphatase lipin1 is rate limiting for functional hepatitis C virus replicase complex formation. PLoS Pathog 2018; 14:e1007284. [PMID: 30226904 PMCID: PMC6161900 DOI: 10.1371/journal.ppat.1007284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection constitutes a significant health burden worldwide, because it is a major etiologic agent of chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV replication cycle is closely tied to lipid metabolism and infection by this virus causes profound changes in host lipid homeostasis. We focused our attention on a phosphatidate phosphate (PAP) enzyme family (the lipin family), which mediate the conversion of phosphatidate to diacylglycerol in the cytoplasm, playing a key role in triglyceride biosynthesis and in phospholipid homeostasis. Lipins may also translocate to the nucleus to act as transcriptional regulators of genes involved in lipid metabolism. The best-characterized member of this family is lipin1, which cooperates with lipin2 to maintain glycerophospholipid homeostasis in the liver. Lipin1-deficient cell lines were generated by RNAi to study the role of this protein in different steps of HCV replication cycle. Using surrogate models that recapitulate different aspects of HCV infection, we concluded that lipin1 is rate limiting for the generation of functional replicase complexes, in a step downstream primary translation that leads to early HCV RNA replication. Infection studies in lipin1-deficient cells overexpressing wild type or phosphatase-defective lipin1 proteins suggest that lipin1 phosphatase activity is required to support HCV infection. Finally, ultrastructural and biochemical analyses in replication-independent models suggest that lipin1 may facilitate the generation of the membranous compartment that contains functional HCV replicase complexes. Hepatitis C virus (HCV) infection is an important biomedical problem worldwide because it causes severe liver disease and cancer. Although immunological events are major players in HCV pathogenesis, interference with host cell metabolism contribute to HCV-associated pathologies. HCV utilizes resources of the cellular lipid metabolism to strongly modify subcellular compartments, using them as platforms for replication and infectious particle assembly. In particular, HCV induces the formation of a “membranous web” that hosts the viral machinery dedicated to the production of new copies of the viral genome. This lipid-rich structure provides an optimized platform for viral genome replication and hides new viral genomes from host´s antiviral surveillance. In this study, we have identified a cellular protein, lipin1, involved in the production of a subset of cellular lipids, as a rate-limiting factor for HCV infection. Our results indicate that the enzymatic activity of lipin1 is required to build the membranous compartment dedicated to viral genome replication. Lipin1 is probably contributing to the formation of the viral replication machinery by locally providing certain lipids required for an optimal membranous environment. Based on these results, interfering with lipin1 capacity to modify lipids may therefore constitute a potential strategy to limit HCV infection.
Collapse
Affiliation(s)
- Lidia Mingorance
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - María Josefa Rodriguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - José L. Carrascosa
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
- * E-mail:
| |
Collapse
|
46
|
Moine H, Vitale N. Of local translation control and lipid signaling in neurons. Adv Biol Regul 2018; 71:194-205. [PMID: 30262213 DOI: 10.1016/j.jbior.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Fine-tuned regulation of new proteins synthesis is key to the fast adaptation of cells to their changing environment and their response to external cues. Protein synthesis regulation is particularly refined and important in the case of highly polarized cells like neurons where translation occurs in the subcellular dendritic compartment to produce long-lasting changes that enable the formation, strengthening and weakening of inter-neuronal connection, constituting synaptic plasticity. The changes in local synaptic proteome of neurons underlie several aspects of synaptic plasticity and new protein synthesis is necessary for long-term memory formation. Details of how neuronal translation is locally controlled only start to be unraveled. A generally accepted view is that mRNAs are transported in a repressed state and are translated locally upon externally cued triggering signaling cascades that derepress or activate translation machinery at specific sites. Some important yet poorly considered intermediates in these cascades of events are signaling lipids such as diacylglycerol and its balancing partner phosphatidic acid. A link between these signaling lipids and the most common inherited cause of intellectual disability, Fragile X syndrome, is emphasizing the important role of these secondary messages in synaptically controlled translation.
Collapse
Affiliation(s)
- Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France; Université de Strasbourg, 67084, Strasbourg, France.
| | - Nicolas Vitale
- Université de Strasbourg, 67084, Strasbourg, France; Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, 67084, Strasbourg, France
| |
Collapse
|
47
|
Takahashi D, Sakane F. Expression and purification of human diacylglycerol kinase α from baculovirus-infected insect cells for structural studies. PeerJ 2018; 6:e5449. [PMID: 30128205 PMCID: PMC6089211 DOI: 10.7717/peerj.5449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that modulate the levels of lipid second messengers, diacylglycerol and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. DGKα consists of the N-terminal regulatory domains including EF-hand motifs and C1 domains, and the C-terminal catalytic domain (DGKα-CD). To date, however, no structures of mammalian DGKs including their CDs have yet been reported, impeding our understanding on the catalytic mechanism of DGKs and the rational structure-based drug design. Here we attempted to produce DGKα-CD or a full-length DGKα using bacterial and baculovirus-insect cell expression system for structural studies. While several DGKα-CD constructs produced using both bacterial and insect cells formed insoluble or soluble aggregates, the full-length DGKα expressed in insect cells remained soluble and was purified to near homogeneity as a monomer with yields (1.3 mg/mL per one L cell culture) feasible for protein crystallization. Following enzymatic characterization showed that the purified DGKα is in fully functional state. We further demonstrated that the purified enzyme could be concentrated without any significant aggregation, and characterized its secondary structure by circular dichroism. Taken together, these results suggest that the presence of N-terminal regulatory domains suppress protein aggregation likely via their intramolecular interactions with DGKα-CD, and demonstrate that the baculovirus-insect cell expression of the full-length form of DGKα, not DGKα-CD alone, represents a promising approach to produce protein sample for structural studies of DGKα. Thus, our study will encourage future efforts to determine the crystal structure of DGK, which has not been determined since it was first identified in 1959.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
48
|
Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, Li Q, Hou X, Xu G. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal Chem 2018; 90:7608-7616. [PMID: 29807422 PMCID: PMC6242181 DOI: 10.1021/acs.analchem.8b01331] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Lipid coverage is crucial in comprehensive lipidomics studies challenged by high diversity in lipid structures and wide dynamic range in lipid levels. Current state-of-the-art lipidomics technologies are mostly based on mass spectrometry (MS), including direct-infusion MS, chromatography-MS, and matrix-assisted laser desorption ionization (MALDI) imaging MS, each with its pros and cons. Due to the need or favorability for measurement of isomers and isobars, chromatography-MS is preferable for lipid profiling. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based nontargeted lipidomics approach and UHPLC-tandem MS (UHPLC-MS/MS)-based targeted approach are two representative methodological platforms for chromatography-MS. In the present study, we developed a high coverage pseudotargeted lipidomics method combining the advantages of nontargeted and targeted lipidomics approaches. The high coverage of lipids was achieved by integration of the detected lipids derived from nontargeted UHPLC-HRMS lipidomics analysis of multiple matrices (e.g., plasma, cell, and tissue) and the predicted lipids speculated on the basis of the structure and chromatographic retention behavior of the known lipids. A total of 3377 targeted lipid ion pairs with over 7000 lipid molecular structures were defined. The pseudotargeted lipidomics method was well validated with satisfactory analytical characteristics in terms of linearity, precision, reproducibility, and recovery for lipidomics profiling. Importantly, it showed better repeatability and higher coverage of lipids than the nontargeted lipidomics method. The applicability of the developed pseudotargeted lipidomics method was testified in defining differential lipids related to diabetes. We believe that comprehensive lipidomics studies will benefit from the developed high coverage pseudotargeted lipidomics approach.
Collapse
Affiliation(s)
- Qiuhui Xuan
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiu Hu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
| | - Di Yu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Wang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjie Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
| | - Qi Li
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaoli Hou
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
49
|
D'Angelo G, Moorthi S, Luberto C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. Adv Cancer Res 2018; 140:61-96. [PMID: 30060817 DOI: 10.1016/bs.acr.2018.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingomyelin (SM) biosynthesis represents a complex, finely regulated process, mostly occurring in vertebrates. It is intimately linked to lipid transport and it is ultimately carried out by two enzymes, SM synthase 1 and 2, selectively localized in the Golgi and plasma membrane. In the course of the SM biosynthetic reaction, various lipids are metabolized. Because these lipids have both structural and signaling functions, the SM biosynthetic process has the potential to affect diverse important cellular processes (such as cell proliferation, cell survival, and migration). Thus defects in SM biosynthesis might directly or indirectly impact the normal physiology of the cell and eventually of the organism. In this chapter, we will focus on evidence supporting a role for SM biosynthesis in specific cellular functions and how its dysregulation can affect neoplastic transformation.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
50
|
D'Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance. Nutrients 2018; 10:nu10040399. [PMID: 29570618 PMCID: PMC5946184 DOI: 10.3390/nu10040399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Geena V Paramel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| |
Collapse
|