1
|
Lam AYW, Tomari Y, Tsuboyama K. No structure, no problem: Protein stabilization by Hero proteins and other chaperone-like IDPs. Biochim Biophys Acta Gen Subj 2025; 1869:130786. [PMID: 40037507 DOI: 10.1016/j.bbagen.2025.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
In order for a protein to function, it must fold into its proper three-dimensional structure. Otherwise, improperly folded proteins are typically prone to aggregate through a process that is detrimental to cellular health. It is widely known that a diverse group of proteins, called molecular chaperones, function to promote proper folding of other proteins and prevent aggregation. In contrast, intrinsically disordered proteins (IDPs) lack substantial tertiary structures, but nonetheless serve important functional roles. In some cases, IDPs have been observed to display remarkably chaperone-like activities, where they stabilize the activities of client proteins and prevent their aggregation. While it was previously thought that chaperone-like IDPs were mainly utilized by extremophilic organisms in their survival of extreme stress, we recently showed that a group of chaperone-like IDPs, we named heat-resistant obscure (Hero) proteins, are also widespread in non-extremophile animals, including humans and flies. Thus, we should consider the possibility that IDPs serve significant chaperone-like functions in protein stabilization relevant to physiological conditions. However, as most of our understanding of how chaperones function is based on insights from their structured domains, it is unclear how chaperone-like IDPs elicit chaperone-like effects without these structures. Here we summarize our understanding of Hero proteins to date and, based on experimental evidence, outline the features that are likely important for their protein stabilizing activities. We draw on concepts from the studies of chaperones and chaperone-like IDPs, in order to draft potential models of how chaperone-like IDPs achieve chaperone-like effects in the absence of well-defined structures.
Collapse
Affiliation(s)
- Andy Y W Lam
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Kotaro Tsuboyama
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
2
|
Rahman MM, Zamakhaeva S, Rush JS, Chaton CT, Kenner CW, Hla YM, Tsui HCT, Uversky VN, Winkler ME, Korotkov KV, Korotkova N. Glycosylation of serine/threonine-rich intrinsically disordered regions of membrane-associated proteins in streptococci. Nat Commun 2025; 16:4011. [PMID: 40301326 PMCID: PMC12041528 DOI: 10.1038/s41467-025-58692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Here, our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Rahman MM, Zamakhaeva S, Rush JS, Chaton CT, Kenner CW, Hla YM, Tsui HCT, Uversky VN, Winkler ME, Korotkov KV, Korotkova N. Glycosylation of serine/threonine-rich intrinsically disordered regions of membrane-associated proteins in streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.05.592596. [PMID: 38746434 PMCID: PMC11092751 DOI: 10.1101/2024.05.05.592596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
Collapse
Affiliation(s)
- Mohammad M. Rahman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey S. Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T. Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Cameron W. Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | | | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Byeon CH, Hansen KH, Jeffrey J, Saricayir H, Andreasen M, Akbey Ü. Intrinsically disordered Pseudomonas chaperone FapA slows down the fibrillation of major biofilm-forming functional amyloid FapC. FEBS J 2024; 291:1925-1943. [PMID: 38349812 DOI: 10.1111/febs.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jasper Jeffrey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Alderson TR, Pritišanac I, Kolarić Đ, Moses AM, Forman-Kay JD. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proc Natl Acad Sci U S A 2023; 120:e2304302120. [PMID: 37878721 PMCID: PMC10622901 DOI: 10.1073/pnas.2304302120] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
The AlphaFold Protein Structure Database contains predicted structures for millions of proteins. For the majority of human proteins that contain intrinsically disordered regions (IDRs), which do not adopt a stable structure, it is generally assumed that these regions have low AlphaFold2 confidence scores that reflect low-confidence structural predictions. Here, we show that AlphaFold2 assigns confident structures to nearly 15% of human IDRs. By comparison to experimental NMR data for a subset of IDRs that are known to conditionally fold (i.e., upon binding or under other specific conditions), we find that AlphaFold2 often predicts the structure of the conditionally folded state. Based on databases of IDRs that are known to conditionally fold, we estimate that AlphaFold2 can identify conditionally folding IDRs at a precision as high as 88% at a 10% false positive rate, which is remarkable considering that conditionally folded IDR structures were minimally represented in its training data. We find that human disease mutations are nearly fivefold enriched in conditionally folded IDRs over IDRs in general and that up to 80% of IDRs in prokaryotes are predicted to conditionally fold, compared to less than 20% of eukaryotic IDRs. These results indicate that a large majority of IDRs in the proteomes of human and other eukaryotes function in the absence of conditional folding, but the regions that do acquire folds are more sensitive to mutations. We emphasize that the AlphaFold2 predictions do not reveal functionally relevant structural plasticity within IDRs and cannot offer realistic ensemble representations of conditionally folded IDRs.
Collapse
Affiliation(s)
- T. Reid Alderson
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 35G, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz8010, Austria
| | - Đesika Kolarić
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz8010, Austria
| | - Alan M. Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 35G, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
6
|
Caruso Bavisotto C, Provenzano A, Passantino R, Marino Gammazza A, Cappello F, San Biagio PL, Bulone D. Oligomeric State and Holding Activity of Hsp60. Int J Mol Sci 2023; 24:ijms24097847. [PMID: 37175554 PMCID: PMC10177986 DOI: 10.3390/ijms24097847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alessia Provenzano
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | | | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| |
Collapse
|
7
|
Rasmussen HØ, Kumar A, Shin B, Stylianou F, Sewell L, Xu Y, Otzen DE, Pedersen JS, Matthews SJ. FapA is an Intrinsically Disordered Chaperone for Pseudomonas Functional Amyloid FapC. J Mol Biol 2023; 435:167878. [PMID: 36368411 DOI: 10.1016/j.jmb.2022.167878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Bacterial functional amyloids contribute to biofilm development by bacteria and provide protection from the immune system and prevent antibiotic treatment. Strategies to target amyloid formation and interrupt biofilm formation have attracted recent interest due to their antimicrobial potential. Functional amyloid in Pseudomonas (Fap) includes FapC as the major component of the fibril while FapB is a minor component suggested to function as a nucleator of FapC. The system also includes the small periplasmic protein FapA, which has been shown to regulate fibril composition and morphology. The interplay between these three components is central in Fap fibril biogenesis. Here we present a comprehensive biophysical and spectroscopy analysis of FapA, FapB and FapC and provide insight into their molecular interactions. We show that all three proteins are primarily disordered with some regions with structural propensities for α-helix and β-sheet. FapA inhibits FapC fibrillation by targeting the nucleation step, whereas for FapB the elongation step is modulated. Furthermore, FapA alters the morphology of FapC (more than FapB) fibrils. Complex formation is observed between FapA and FapC, but not between FapA and FapB, and likely involves the N-terminus of FapA. We conclude that FapA is an intrinsically disordered chaperone for FapC that guards against fibrillation within the periplasm. This new understanding of a natural protective mechanism of Pseudomonas against amyloid formations can serve as inspiration for strategies blocking biofilm formation in infections.
Collapse
Affiliation(s)
- Helena Ø Rasmussen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Amit Kumar
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Ben Shin
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Lee Sewell
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steve J Matthews
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom.
| |
Collapse
|
8
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
9
|
Litberg TJ, Sannapureddi RKR, Huang Z, Son A, Sathyamoorthy B, Horowitz S. Why are G-quadruplexes good at preventing protein aggregation? RNA Biol 2023; 20:495-509. [PMID: 37493593 PMCID: PMC10373610 DOI: 10.1080/15476286.2023.2228572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Maintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation. Notably, three factors emerged as vital in determining holdase activity of G-quadruplexes: their structural topology, G-quadruplex accessibility and dynamics, and oligomerization state. These factors together appear to largely dictate whether a G-quadruplex is able to prevent partially misfolded proteins from aggregating. Understanding the physical traits that govern the ability of G-quadruplexes to modulate protein aggregation will help elucidate their possible roles in neurodegenerative disease.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | | | - Zijue Huang
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
10
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
11
|
Kaku H, Balaj AR, Rothstein TL. Small Heat Shock Proteins Collaborate with FAIM to Prevent Accumulation of Misfolded Protein Aggregates. Int J Mol Sci 2022; 23:11841. [PMID: 36233145 PMCID: PMC9570119 DOI: 10.3390/ijms231911841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cells and tissues are continuously subject to environmental insults, such as heat shock and oxidative stress, which cause the accumulation of cytotoxic, aggregated proteins. We previously found that Fas Apoptosis Inhibitory Molecule (FAIM) protects cells from stress-induced cell death by preventing abnormal generation of protein aggregates similar to the effect of small heat shock proteins (HSPs). Protein aggregates are often associated with neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we sought to determine how FAIM protein dynamics change during cellular stress and how FAIM prevents the formation of amyloid-β aggregates/fibrils, one of the pathological hallmarks of AD. Here, we found that the majority of FAIM protein shifts to the detergent-insoluble fraction in response to cellular stress. A similar shift to the insoluble fraction was also observed in small heat shock protein (sHSP) family molecules, such as HSP27, after stress. We further demonstrate that FAIM is recruited to sHSP-containing complexes after cellular stress induction. These data suggest that FAIM might prevent protein aggregation in concert with sHSPs. In fact, we observed the additional effect of FAIM and HSP27 on the prevention of protein aggregates using an in vitro amyloid-β aggregation model system. Our work provides new insights into the interrelationships among FAIM, sHSPs, and amyloid-β aggregation.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Allison R Balaj
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Thomas L Rothstein
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| |
Collapse
|
12
|
Kukharsky MS, Everett MW, Lytkina OA, Raspopova MA, Kovrazhkina EA, Ovchinnikov RK, Antohin AI, Moskovtsev AA. Protein Homeostasis Dysregulation in Pathogenesis of Neurodegenerative Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893322060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Kogan GL, Mikhaleva EA, Olenkina OM, Ryazansky SS, Galzitskaya OV, Abramov YA, Leinsoo TA, Akulenko NV, Lavrov SA, Gvozdev VA. Extended disordered regions of ribosome-associated NAC proteins paralogs belong only to the germline in Drosophila melanogaster. Sci Rep 2022; 12:11191. [PMID: 35778515 PMCID: PMC9249742 DOI: 10.1038/s41598-022-15233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
The nascent polypeptide-associated complex (NAC) consisting of α- and β-subunits is an essential ribosome-associated protein conserved in eukaryotes. NAC is a ubiquitously expressed co-translational regulator of nascent protein folding and sorting providing for homeostasis of cellular proteins. Here we report on discovering the germline-specific NACαβ paralogs (gNACs), whose β-subunits, non-distinguishable by ordinary immunodetection, are encoded by five highly homologous gene copies, while the α-subunit is encoded by a single αNAC gene. The gNAC expression is detected in the primordial embryonic and adult gonads via immunostaining. The germline-specific α and β subunits differ from the ubiquitously expressed paralogs by the extended intrinsically disordered regions (IDRs) acquired at the N- and C-termini of the coding regions, predicted to be phosphorylated. The presence of distinct phosphorylated isoforms of gNAC-β subunits is confirmed by comparing of their profiles by 2D-isoeletrofocusing resolution before and after phosphatase treatment of testis ribosomes. We revealed that the predicted S/T sites of phosphorylation in the individual orthologous IDRs of gNAC-β sequences of Drosophila species are positionally conserved despite these disordered regions are drastically different. We propose the IDR-dependent molecular crowding and specific coordination of NAC and other proteostasis regulatory factors at the ribosomes of germinal cells. Our findings imply that there may be a functional crosstalk between the germinal and ubiquitous α- and β-subunits based on assessing their depletion effects on the fly viability and gonad development.
Collapse
Affiliation(s)
- Galina L Kogan
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Elena A Mikhaleva
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Oxana M Olenkina
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Sergei S Ryazansky
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Yuri A Abramov
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Toomas A Leinsoo
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Natalia V Akulenko
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Sergey A Lavrov
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Vladimir A Gvozdev
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia.
| |
Collapse
|
14
|
He W, Li X, Xue H, Yang Y, Mencius J, Bai L, Zhang J, Xu J, Wu B, Xue Y, Quan S. Insights into the client protein release mechanism of the ATP-independent chaperone Spy. Nat Commun 2022; 13:2818. [PMID: 35595811 PMCID: PMC9122904 DOI: 10.1038/s41467-022-30499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular chaperones play a central role in regulating protein homeostasis, and their active forms often contain intrinsically disordered regions (IDRs). However, how IDRs impact chaperone action remains poorly understood. Here, we discover that the disordered N terminus of the prototype chaperone Spy facilitates client release. With NMR spectroscopy and molecular dynamics simulations, we find that the N terminus can bind transiently to the client-binding cavity of Spy primarily through electrostatic interactions mediated by the N-terminal D26 residue. This intramolecular interaction results in a dynamic competition of the N terminus with the client for binding to Spy, which promotes client discharge. Our results reveal the mechanism by which Spy releases clients independent of energy input, thus enriching the current knowledge on how ATP-independent chaperones release their clients and highlighting the importance of synergy between IDRs and structural domains in regulating protein function.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Xinming Li
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, 100084, Beijing, China
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuanyuan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Ling Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Jiayin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Yi Xue
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, 100084, Beijing, China.
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China. .,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
15
|
Abstract
This mini-review represents a brief, disorder-centric consideration of the interplay between order and disorder in proteins. The goal here is to show that inside the cell, folding, non-folding, and misfolding of proteins are interlinked on multiple levels. This is evidenced by the highly heterogeneous spatio-temporal structural organization of a protein molecule, where one can find differently (dis)ordered components that can undergo local or global order-to-disorder and disorder-to-order transitions needed for functionality. This is further illustrated by the fact that at particular moments of their life, most notably during their synthesis and degradation, all proteins are at least partially disordered. In addition to these intrinsic forms of disorder, proteins are constantly facing extrinsic disorder, which is intrinsic disorder in their functional partners. All this comprises the multileveled protein disorder cycle.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
16
|
Ren C, Zheng Y, Liu C, Mencius J, Wu Z, Quan S. Molecular Characterization of an Intrinsically Disordered Chaperone Reveals Net-Charge Regulation in Chaperone Action. J Mol Biol 2021; 434:167405. [PMID: 34914967 DOI: 10.1016/j.jmb.2021.167405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
Molecular chaperones are diverse biomacromolecules involved in the maintenance of cellular protein homeostasis (proteostasis). Here we demonstrate that in contrast to most chaperones with defined three-dimensional structures, the acid-inducible protein Asr in Escherichia coli is intrinsically disordered and exhibits varied aggregation-preventing or aggregation-promoting activities, acting as a "conditionally active chaperone". Bioinformatics and experimental analyses of Asr showed that it is devoid of hydrophobic patches but rich in positive charges and local polyproline II backbone structures. Asr contributes to the integrity of the bacterial outer membrane under mildly acidic conditions in vivo and possesses chaperone activities toward model clients in vitro. Notably, its chaperone activity is dependent on the net charges of clients: on the one hand, it inhibits the aggregation of clients with similar net charges; on the other hand, it stimulates the aggregation of clients with opposite net charges. Mutational analysis confirmed that positively charged residues in Asr are essential for the varied effects on protein aggregation, suggesting that electrostatic interactions are the major driving forces underlying Asr's proteostasis-related activity. These findings present a unique example of an intrinsically disordered molecular chaperone with distinctive dual functions-as an aggregase or as a chaperone-depending on the net charges of clients.
Collapse
Affiliation(s)
- Chang Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Yongxin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Chunlan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Zhili Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China.
| |
Collapse
|
17
|
Nomura K, Kitagawa Y, Aihara M, Ohki Y, Furuyama K, Hirokawa T. Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX. FEBS Lett 2021; 595:3019-3029. [PMID: 34704252 DOI: 10.1002/1873-3468.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner. The substitution of C108 P109 [CP motif 3 (CP3)] with A108 A109 in ALAS1 resulted in a loss of ability to bind ClpX. Computational disorder analyses revealed that CP3 was located in a potential intrinsically disordered protein region (IDPR). Thus, we propose that conditional disorder-to-order transitions in the IDPRs of ALAS1 may represent key mechanisms underlying the heme-dependent recognition of ALAS1 by ClpX.
Collapse
Affiliation(s)
- Kazumi Nomura
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yu Kitagawa
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Marina Aihara
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yusuke Ohki
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | | | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
18
|
Disorder is a critical component of lipoprotein sorting in Gram-negative bacteria. Nat Chem Biol 2021; 17:1093-1100. [PMID: 34326538 DOI: 10.1038/s41589-021-00845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria express structurally diverse lipoproteins in their cell envelope. Here, we find that approximately half of lipoproteins destined to the Escherichia coli outer membrane display an intrinsically disordered linker at their N terminus. Intrinsically disordered regions are common in proteins, but establishing their importance in vivo has remained challenging. As we sought to unravel how lipoproteins mature, we discovered that unstructured linkers are required for optimal trafficking by the Lol lipoprotein sorting system, whereby linker deletion re-routes three unrelated lipoproteins to the inner membrane. Focusing on the stress sensor RcsF, we found that replacing the linker with an artificial peptide restored normal outer-membrane targeting only when the peptide was of similar length and disordered. Overall, this study reveals the role played by intrinsic disorder in lipoprotein sorting, providing mechanistic insight into the biogenesis of these proteins and suggesting that evolution can select for intrinsic disorder that supports protein function.
Collapse
|
19
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
20
|
Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140576. [PMID: 33253897 DOI: 10.1016/j.bbapap.2020.140576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
HdeA is a small acid-stress chaperone protein with a unique activity profile. At physiological pH, it forms a folded, but inactive, dimer. Below pH 3.0, HdeA unfolds and dissociates into disordered monomers, utilizing exposed hydrophobic patches to bind other unfolded proteins and prevent their irreversible aggregation. In this way, HdeA has a key role in helping pathogenic bacteria survive our acidic stomach and colonize our intestines, facilitating the spread of dysentery. Despite numerous publications on the topic, there remain questions about the mechanism by which HdeA unfolding and activation are triggered. Previous studies usually assessed HdeA unfolding over pH increments that are too far apart to gain fine detail of the process of unfolding and dimer dissociation, and often employed techniques that prevented thorough evaluation of specific regions of the protein. We used a variety of heteronuclear NMR experiments to investigate changes to backbone and side chain structure and dynamics of HdeA at four pHs between 3.0 and 2.0. We found that the long loop in the dimer interface is an early site of initiation of dimer dissociation, and that a molecular "clasp" near the disulfide bond is broken open at low pH as part, or as a trigger, of unfolding; this process also results in the separation of C-terminal helices and exposure of key hydrophobic client binding sites. Our results highlight important regions of HdeA that may have previously been overlooked because they lie too close to the disulfide bond or are thought to be too dynamic in the folded state to influence unfolding processes.
Collapse
|
21
|
Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO. A Disorder-to-Order Transition Activates an ATP-Independent Membrane Protein Chaperone. J Mol Biol 2020; 432:166708. [PMID: 33188783 PMCID: PMC7780713 DOI: 10.1016/j.jmb.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
The 43 kDa subunit of the chloroplast signal recognition particle, cpSRP43, is an ATP-independent chaperone essential for the biogenesis of the light harvesting chlorophyll-binding proteins (LHCP), the most abundant membrane protein family on earth. cpSRP43 is activated by a stromal factor, cpSRP54, to more effectively capture and solubilize LHCPs. The molecular mechanism underlying this chaperone activation is unclear. Here, a combination of hydrogen-deuterium exchange, electron paramagnetic resonance, and NMR spectroscopy experiments reveal that a disorder-to-order transition of the ankyrin repeat motifs in the substrate binding domain of cpSRP43 drives its activation. An analogous coil-to-helix transition in the bridging helix, which connects the ankyrin repeat motifs to the cpSRP54 binding site in the second chromodomain, mediates long-range allosteric communication of cpSRP43 with its activating binding partner. Our results provide a molecular model to explain how the conformational dynamics of cpSRP43 enables regulation of its chaperone activity and suggest a general mechanism by which ATP-independent chaperones with cooperatively folding domains can be regulated.
Collapse
Affiliation(s)
- Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Camille Z McAvoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Vinh Lam
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Fu-Cheng Liang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily Miaou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Patrick Griffin
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
22
|
Ulrich K, Schwappach B, Jakob U. Thiol-based switching mechanisms of stress-sensing chaperones. Biol Chem 2020; 402:239-252. [PMID: 32990643 DOI: 10.1515/hsz-2020-0262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Thiol-based redox switches evolved as efficient post-translational regulatory mechanisms that enable individual proteins to rapidly respond to sudden environmental changes. While some protein functions need to be switched off to save resources and avoid potentially error-prone processes, protective functions become essential and need to be switched on. In this review, we focus on thiol-based activation mechanisms of stress-sensing chaperones. Upon stress exposure, these chaperones convert into high affinity binding platforms for unfolding proteins and protect cells against the accumulation of potentially toxic protein aggregates. Their chaperone activity is independent of ATP, a feature that becomes especially important under oxidative stress conditions, where cellular ATP levels drop and canonical ATP-dependent chaperones no longer operate. Vice versa, reductive inactivation and substrate release require the restoration of ATP levels, which ensures refolding of client proteins by ATP-dependent foldases. We will give an overview over the different strategies that cells evolved to rapidly increase the pool of ATP-independent chaperones upon oxidative stress and provide mechanistic insights into how stress conditions are used to convert abundant cellular proteins into ATP-independent holding chaperones.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI48109, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
23
|
Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. Regulation of chaperone function by coupled folding and oligomerization. SCIENCE ADVANCES 2020; 6:6/43/eabc5822. [PMID: 33087350 PMCID: PMC7577714 DOI: 10.1126/sciadv.abc5822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.
Collapse
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beatrice Claudi
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
24
|
DispHred: A Server to Predict pH-Dependent Order-Disorder Transitions in Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21165814. [PMID: 32823616 PMCID: PMC7461198 DOI: 10.3390/ijms21165814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical principles, of which the balance between a low sequence hydrophobicity and a high net charge appears to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of the charge–hydropathy (C–H) space and that a linear boundary condition is sufficient to distinguish between folded and disordered proteins, an approach widely applied for the prediction of protein disorder. Nevertheless, it is evident that the C–H relation of a protein is not unalterable but can be modulated by factors extrinsic to its sequence. Here, we applied a C–H-based analysis to develop a computational approach that evaluates sequence disorder as a function of pH, assuming that both protein net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for diverse applications, from the analysis of conditionally disordered segments to the synthetic design of disorder tags for biotechnological applications. Importantly, since many disorder predictors use hydrophobicity as an input, the here developed framework can be implemented in other state-of-the-art algorithms.
Collapse
|
25
|
Murvai N, Kalmar L, Szalaine Agoston B, Szabo B, Tantos A, Csikos G, Micsonai A, Kardos J, Vertommen D, Nguyen PN, Hristozova N, Lang A, Kovacs D, Buday L, Han KH, Perczel A, Tompa P. Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Cells 2020; 9:E1856. [PMID: 32784707 PMCID: PMC7465474 DOI: 10.3390/cells9081856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.
Collapse
Affiliation(s)
- Nikoletta Murvai
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bianka Szalaine Agoston
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Beata Szabo
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Gyorgy Csikos
- Department of General Zoology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - Didier Vertommen
- Faculty of Medicine and de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Phuong N. Nguyen
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Nevena Hristozova
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Andras Lang
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Denes Kovacs
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Kyou-Hoon Han
- Gene Editing Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Andras Perczel
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| |
Collapse
|
26
|
Ghosh DK, Ranjan A. The metastable states of proteins. Protein Sci 2020; 29:1559-1568. [PMID: 32223005 PMCID: PMC7314396 DOI: 10.1002/pro.3859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native-to-metastable structural transitions are governed by transient or long-lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| |
Collapse
|
27
|
Abstract
Neutrophils kill invading microbes and therefore represent the first line of defense of the innate immune response. Activated neutrophils assemble NADPH oxidase to convert substantial amounts of molecular oxygen into superoxide, which, after dismutation into peroxide, serves as the substrate for the generation of the potent antimicrobial hypochlorous acid (HOCl) in the phagosomal space. In this minireview, we explore the most recent insights into physiological consequences of HOCl stress. Not surprisingly, Gram-negative bacteria have evolved diverse posttranslational defense mechanisms to protect their proteins, the main targets of HOCl, from HOCl-mediated damage. We discuss the idea that oxidation of conserved cysteine residues and partial unfolding of its structure convert the heat shock protein Hsp33 into a highly active chaperone holdase that binds unfolded proteins and prevents their aggregation. We examine two novel members of the Escherichia coli chaperone holdase family, RidA and CnoX, whose thiol-independent activation mechanism differs from that of Hsp33 and requires N-chlorination of positively charged amino acids during HOCl exposure. Furthermore, we summarize the latest findings with respect to another bacterial defense strategy employed in response to HOCl stress, which involves the accumulation of the universally conserved biopolymer inorganic polyphosphate. We then discuss sophisticated adaptive strategies that bacteria have developed to enhance their survival during HOCl stress. Understanding bacterial defense and survival strategies against one of the most powerful neutrophilic oxidants may provide novel insights into treatment options that potentially compromise the ability of pathogens to resist HOCl stress and therefore may increase the efficacy of the innate immune response.
Collapse
|
28
|
Alderson TR, Ying J, Bax A, Benesch JLP, Baldwin AJ. Conditional Disorder in Small Heat-shock Proteins. J Mol Biol 2020; 432:3033-3049. [PMID: 32081587 PMCID: PMC7245567 DOI: 10.1016/j.jmb.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Small heat-shock proteins (sHSPs) are molecular chaperones that respond to cellular stresses to combat protein aggregation. HSP27 is a critical human sHSP that forms large, dynamic oligomers whose quaternary structures and chaperone activities depend on environmental factors. Upon exposure to cellular stresses, such as heat shock or acidosis, HSP27 oligomers can dissociate into dimers and monomers, which leads to significantly enhanced chaperone activity. The structured core of the protein, the α-crystallin domain (ACD), forms dimers and can prevent the aggregation of substrate proteins to a similar degree as the full-length protein. When the ACD dimer dissociates into monomers, it partially unfolds and exhibits enhanced activity. Here, we used solution-state NMR spectroscopy to characterize the structure and dynamics of the HSP27 ACD monomer. Web show that the monomer is stabilized at low pH and that its backbone chemical shifts, 15N relaxation rates, and 1H-15N residual dipolar couplings suggest structural changes and rapid motions in the region responsible for dimerization. By analyzing the solvent accessible and buried surface areas of sHSP structures in the context of a database of dimers that are known to dissociate into disordered monomers, we predict that ACD dimers from sHSPs across all kingdoms of life may partially unfold upon dissociation. We propose a general model in which conditional disorder-the partial unfolding of ACDs upon monomerization-is a common mechanism for sHSP activity.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
29
|
Hu Y, Li C, He L, Jin C, Liu M. Mechanisms of Chaperones as Active Assistant/Protector for Proteins: Insights from NMR Studies. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, College of Life Sciences, Peking University Beijing 100871 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
30
|
Uversky VN, Finkelstein AV. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019; 9:E842. [PMID: 31817975 PMCID: PMC6995567 DOI: 10.3390/biom9120842] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand, intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface, and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils, and intermolecular liquid-liquid or liquid-gel phase transitions associated with the biogenesis of membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase behavior of protein molecules and their ensembles, and provides a description of the major physical principles governing intramolecular and intermolecular phase transitions in protein solutions.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow, Russia
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
- Bioltechnogy Department, Lomonosov Moscow State University, 142290 Pushchino, Moscow, Russia
| |
Collapse
|
31
|
SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proc Natl Acad Sci U S A 2019; 116:23040-23049. [PMID: 31659041 DOI: 10.1073/pnas.1913316116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aβ40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aβ40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aβ40 and α-synuclein into single amyloid-prone conformations.
Collapse
|
32
|
Affiliation(s)
- Frederick Stull
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Launay H, Receveur-Bréchot V, Carrière F, Gontero B. Orchestration of algal metabolism by protein disorder. Arch Biochem Biophys 2019; 672:108070. [PMID: 31408624 DOI: 10.1016/j.abb.2019.108070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that provide many functional advantages in a large number of metabolic and signalling pathways. Because of their high flexibility that endows them with pressure-, heat- and acid-resistance, IDPs are valuable metabolic regulators that help algae to cope with extreme conditions of pH, temperature, pressure and light. They have, however, been overlooked in these organisms. In this review, we present some well-known algal IDPs, including the conditionally disordered CP12, a protein involved in the regulation of CO2 assimilation, as probably the best known example, whose disorder content is strongly dependent on the redox conditions, and the essential pyrenoid component 1 that serves as a scaffold for ribulose-1, 5-bisphosphate carboxylase/oxygenase. We also describe how some enzymes are regulated by protein regions, called intrinsically disordered regions (IDRs), such as ribulose-1, 5-bisphosphate carboxylase/oxygenase activase, the A2B2 form of glyceraldehyde-3-phosphate dehydrogenase and the adenylate kinase. Several molecular chaperones, which are crucial for cell proteostasis, also display significant disorder propensities such as the algal heat shock proteins HSP33, HSP70 and HSP90. This review confirms the wide distribution of IDPs in algae but highlights that further studies are needed to uncover their full role in orchestrating algal metabolism.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| |
Collapse
|
34
|
Proteasome Activation to Combat Proteotoxicity. Molecules 2019; 24:molecules24152841. [PMID: 31387243 PMCID: PMC6696185 DOI: 10.3390/molecules24152841] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of proteome fidelity leads to the accumulation of non-native protein aggregates and oxidatively damaged species: hallmarks of an aged cell. These misfolded and aggregated species are often found, and suggested to be the culpable party, in numerous neurodegenerative diseases including Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Diseases (AD). Many strategies for therapeutic intervention in proteotoxic pathologies have been put forth; one of the most promising is bolstering the efficacy of the proteasome to restore normal proteostasis. This strategy is ideal as monomeric precursors and oxidatively damaged proteins, so called "intrinsically disordered proteins" (IDPs), are targeted by the proteasome. This review will provide an overview of disorders in proteins, both intrinsic and acquired, with a focus on susceptibility to proteasomal degradation. We will then examine the proteasome with emphasis on newly published structural data and summarize current known small molecule proteasome activators.
Collapse
|
35
|
The Hsp70 Chaperone System Stabilizes a Thermo-sensitive Subproteome in E. coli. Cell Rep 2019; 28:1335-1345.e6. [DOI: 10.1016/j.celrep.2019.06.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
|
36
|
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:19-61. [PMID: 31521232 DOI: 10.1016/bs.pmbts.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Diego M Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
37
|
Dagliyan O, Hahn KM. Controlling protein conformation with light. Curr Opin Struct Biol 2019; 57:17-22. [PMID: 30849716 DOI: 10.1016/j.sbi.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, United States.
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
38
|
Teixeira F, Tse E, Castro H, Makepeace KAT, Meinen BA, Borchers CH, Poole LB, Bardwell JC, Tomás AM, Southworth DR, Jakob U. Chaperone activation and client binding of a 2-cysteine peroxiredoxin. Nat Commun 2019; 10:659. [PMID: 30737390 PMCID: PMC6368585 DOI: 10.1038/s41467-019-08565-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023] Open
Abstract
Many 2-Cys-peroxiredoxins (2-Cys-Prxs) are dual-function proteins, either acting as peroxidases under non-stress conditions or as chaperones during stress. The mechanism by which 2-Cys-Prxs switch functions remains to be defined. Our work focuses on Leishmania infantum mitochondrial 2-Cys-Prx, whose reduced, decameric subpopulation adopts chaperone function during heat shock, an activity that facilitates the transition from insects to warm-blooded host environments. Here, we have solved the cryo-EM structure of mTXNPx in complex with a thermally unfolded client protein, and revealed that the flexible N-termini of mTXNPx form a well-resolved central belt that contacts and encapsulates the unstructured client protein in the center of the decamer ring. In vivo and in vitro cross-linking studies provide further support for these interactions, and demonstrate that mTXNPx decamers undergo temperature-dependent structural rearrangements specifically at the dimer-dimer interfaces. These structural changes appear crucial for exposing chaperone-client binding sites that are buried in the peroxidase-active protein.
Collapse
Affiliation(s)
- Filipa Teixeira
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, 94158, CA, USA
| | - Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal
| | - Karl A T Makepeace
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, V8P 5C2, BC, Canada.,Genome British Columbia Proteomics Centre, University of Victoria, Victoria, V8Z 7X8, BC, Canada
| | - Ben A Meinen
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, 48109-1085, MI, USA
| | - Christoph H Borchers
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, V8P 5C2, BC, Canada.,Genome British Columbia Proteomics Centre, University of Victoria, Victoria, V8Z 7X8, BC, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, H4A 3T2, QC, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, QC, Canada
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - James C Bardwell
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, 48109-1085, MI, USA
| | - Ana M Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, 94158, CA, USA.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.
| |
Collapse
|
39
|
Abstract
Polyphosphate (polyP) consists of a linear arrangement of inorganic phosphates and defies its structural simplicity with an astounding number of different activities in the cell. Already well known for its ability to partake in phosphate, calcium, and energy metabolism, polyP recently gained a new functional dimension with the discovery that it serves as a stabilizing scaffold for protein-folding intermediates. In this review, we summarize and discuss the recent studies that have identified polyP not only as a potent protein-like chaperone that protects cells against stress-induced protein aggregation, but also as a robust modifier of amyloidogenic processes that shields neuronal cells from amyloid toxicity. We consider some of the most pressing questions in the field, the obstacles faced, and the potential avenues to take to provide a complete picture about the working mechanism and physiological relevance of this intriguing biopolymer.
Collapse
Affiliation(s)
- Lihan Xie
- From the Departments of Molecular, Cellular and Developmental Biology and
| | - Ursula Jakob
- From the Departments of Molecular, Cellular and Developmental Biology and
- Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1085
| |
Collapse
|
40
|
Reichmann D, Voth W, Jakob U. Maintaining a Healthy Proteome during Oxidative Stress. Mol Cell 2019; 69:203-213. [PMID: 29351842 DOI: 10.1016/j.molcel.2017.12.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Some of the most challenging stress conditions that organisms encounter during their lifetime involve the transient accumulation of reactive oxygen and chlorine species. Extremely reactive to amino acid side chains, these oxidants cause widespread protein unfolding and aggregation. It is therefore not surprising that cells draw on a variety of different strategies to counteract the damage and maintain a healthy proteome. Orchestrated largely by direct changes in the thiol oxidation status of key proteins, the response strategies involve all layers of protein protection. Reprogramming of basic biological functions helps decrease nascent protein synthesis and restore redox homeostasis. Mobilization of oxidative stress-activated chaperones and production of stress-resistant non-proteinaceous chaperones prevent irreversible protein aggregation. Finally, redox-controlled increase in proteasome activity removes any irreversibly damaged proteins. Together, these systems pave the way to restore protein homeostasis and enable organisms to survive stress conditions that are inevitable when living an aerobic lifestyle.
Collapse
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Wilhelm Voth
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
41
|
Yu XC, Hu Y, Ding J, Li H, Jin C. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone. J Biol Chem 2018; 294:3192-3206. [PMID: 30573682 DOI: 10.1074/jbc.ra118.006398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/17/2018] [Indexed: 11/06/2022] Open
Abstract
The role of protein structural disorder in biological functions has gained increasing attention in the past decade. The bacterial acid-resistant chaperone HdeA belongs to a group of "conditionally disordered" proteins, because it is inactive in its well-structured state and becomes activated via an order-to-disorder transition under acid stress. However, the mechanism for unfolding-induced activation remains unclear because of a lack of experimental information on the unfolded state conformation and the chaperone-client interactions. Herein, we used advanced solution NMR methods to characterize the activated-state conformation of HdeA under acidic conditions and identify its client-binding sites. We observed that the structure of activated HdeA becomes largely disordered and exposes two hydrophobic patches essential for client interactions. Furthermore, using the pH-dependent chemical exchange saturation transfer (CEST) NMR method, we identified three acid-sensitive regions that act as structural locks in regulating the exposure of the two client-binding sites during the activation process, revealing a multistep activation mechanism of HdeA's chaperone function at the atomic level. Our results highlight the role of intrinsic protein disorder in chaperone function and the self-inhibitory role of ordered structures under nonstress conditions, offering new insights for improving our understanding of protein structure-function paradigms.
Collapse
Affiliation(s)
- Xing-Chi Yu
- From the College of Chemistry and Molecular Engineering.,Beijing Nuclear Magnetic Resonance Center
| | - Yunfei Hu
- From the College of Chemistry and Molecular Engineering, .,Beijing Nuclear Magnetic Resonance Center
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center.,College of Life Sciences
| | - Hongwei Li
- From the College of Chemistry and Molecular Engineering.,Beijing Nuclear Magnetic Resonance Center
| | - Changwen Jin
- From the College of Chemistry and Molecular Engineering, .,Beijing Nuclear Magnetic Resonance Center.,College of Life Sciences.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. Int J Biol Macromol 2018; 125:244-255. [PMID: 30529354 DOI: 10.1016/j.ijbiomac.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
pH-induced structural changes of the synthetic homopolypeptides poly-E, poly-K, poly-R, and intrinsically disordered proteins (IDPs) prothymosin α (ProTα) and linker histone H1, in concentrated PEG solutions simulating macromolecular crowding conditions within the membrane-less organelles, were characterized. The conformational transitions of the studied poly-amino acids in the concentrated PEG solutions depend on the polymerization degree of these homopolypeptides, the size of their side chains, the charge distribution of the side chains, and the crowding agent concentration. The results obtained for poly-amino acids are valid for IDPs having a significant total charge. The overcrowded conditions promote a significant increase in the cooperativity of the pH-induced coil-α-helix transition of ProTα and provoke histone H1 aggregation. The most favorable conditions for the pH-induced structural transitions in concentrated PEG solutions are realized when the charged residues are grouped in blocks, and when the distance between the end of the side group carrying charge and the backbone is small. Therefore, the block-wise distribution of charged residues within the IDPs not only plays an important role in the liquid-liquid phase transitions, but may also define the expressivity of structural transitions of these proteins in the overcrowded conditions of the membrane-less organelles.
Collapse
|
43
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 2018; 75:3907-3929. [PMID: 30066087 PMCID: PMC11105604 DOI: 10.1007/s00018-018-2894-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of "inert" macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid-liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
- St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
44
|
Formation of a Secretion-Competent Protein Complex by a Dynamic Wrap-around Binding Mechanism. J Mol Biol 2018; 430:3157-3169. [DOI: 10.1016/j.jmb.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022]
|
45
|
Liyanaarachchi W, Vasiljevic T. Caseins and their interactions that modify heat aggregation of whey proteins in commercial dairy mixtures. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Mileo E, Ilbert M, Barducci A, Bordes P, Castanié-Cornet MP, Garnier C, Genevaux P, Gillet R, Goloubinoff P, Ochsenbein F, Richarme G, Iobbi-Nivol C, Giudici-Orticoni MT, Gontero B, Genest O. Emerging fields in chaperone proteins: A French workshop. Biochimie 2018; 151:159-165. [PMID: 29890204 DOI: 10.1016/j.biochi.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
The "Bioénergétique et Ingénierie des Protéines (BIP)" laboratory, CNRS (France), organized its first French workshop on molecular chaperone proteins and protein folding in November 2017. The goal of this workshop was to gather scientists working in France on chaperone proteins and protein folding. This initiative was a great success with excellent talks and fruitful discussions. The highlights were on the description of unexpected functions and post-translational regulation of known molecular chaperones (such as Hsp90, Hsp33, SecB, GroEL) and on state-of-the-art methods to tackle questions related to this theme, including Cryo-electron microscopy, Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), simulation and modeling. We expect to organize a second workshop in two years that will include more scientists working in France in the chaperone field.
Collapse
Affiliation(s)
- Elisabetta Mileo
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Marianne Ilbert
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Cyrille Garnier
- Mécanismes Moléculaires dans les Démences Neurodégénératives, Université de Montpellier, EPHE, INSERM, U1198, F-34095, Montpellier, France; Université de Rennes 1, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Rennes, France
| | - Pierre Goloubinoff
- Département de Biologie Moléculaire Végétale, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilbert Richarme
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Chantal Iobbi-Nivol
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | | | - Brigitte Gontero
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France.
| |
Collapse
|
47
|
Kim J, Choi D, Cha SY, Oh YM, Hwang E, Park C, Ryu KS. Zinc-mediated Reversible Multimerization of Hsp31 Enhances the Activity of Holding Chaperone. J Mol Biol 2018; 430:1760-1772. [PMID: 29709570 DOI: 10.1016/j.jmb.2018.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Hsp31 protein, belonging to the DJ-1/ThiJ/PfpI superfamily, increases the survival of Escherichia coli under various stresses. While it was reported as a holding chaperone, Hsp31 was also shown to exhibit the glyoxalase III activity in subsequent study. Here, we describe our finding that Hsp31 undergoes a Zn+2-mediated multimerization (HMWZinc), resulting in an enhanced chaperone activity. Furthermore, it was shown that the formation of HMWZinc is reversible such that the oligomer dissociates into the native dimer by EDTA incubation. We attempted to determine the structural change involving the transition between the native dimer and HMWZinc by adding Ni+2, which is Zn+2-mimetic, producing a potential intermediate structure. An analysis of this intermediate revealed a structure with hydrophobic interior exposed, due to an unfolding of the N-terminal loop and the C-terminal β-to-α region. A treatment with hydrogen peroxide accelerated HMWZinc formation, so that the Hsp31C185E mutant rendered the formation of HMWZinc even at 45 °C. However, the presence of Zn+2 in the catalytic site antagonizes the oxidation of C185, implying a negative role. Our results suggest an unprecedented mechanism of the enhancing chaperone activity by Hsp31, in which the reversible formation of HMWZinc occurs in the presence of heat and Zn+2 ion.
Collapse
Affiliation(s)
- Jihong Kim
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Dongwook Choi
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - So-Young Cha
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Young-Mee Oh
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Eunha Hwang
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Chankyu Park
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea.
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
48
|
Zhang Y, Launay H, Schramm A, Lebrun R, Gontero B. Exploring intrinsically disordered proteins in Chlamydomonas reinhardtii. Sci Rep 2018; 8:6805. [PMID: 29717210 PMCID: PMC5931566 DOI: 10.1038/s41598-018-24772-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 11/14/2022] Open
Abstract
The content of intrinsically disordered protein (IDP) is related to organism complexity, evolution, and regulation. In the Plantae, despite their high complexity, experimental investigation of IDP content is lacking. We identified by mass spectrometry 682 heat-resistant proteins from the green alga, Chlamydomonas reinhardtii. Using a phosphoproteome database, we found that 331 of these proteins are targets of phosphorylation. We analyzed the flexibility propensity of the heat-resistant proteins and their specific features as well as those of predicted IDPs from the same organism. Their mean percentage of disorder was about 20%. Most of the IDPs (~70%) were addressed to other compartments than mitochondrion and chloroplast. Their amino acid composition was biased compared to other classic IDPs. Their molecular functions were diverse; the predominant ones were nucleic acid binding and unfolded protein binding and the less abundant one was catalytic activity. The most represented proteins were ribosomal proteins, proteins associated to flagella, chaperones and histones. We also found CP12, the only experimental IDP from C. reinhardtii that is referenced in disordered protein database. This is the first experimental investigation of IDPs in C. reinhardtii that also combines in silico analysis.
Collapse
Affiliation(s)
- Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France
| | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France
| | | | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IBiSA labeled, IMM, FR 3479, CNRS, B.P. 71, 13402, Marseille, Cedex 20, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France.
| |
Collapse
|
49
|
Alexander-Katz A, Van Lehn RC. Random copolymers that protect proteins. Science 2018; 359:1216-1217. [PMID: 29590064 DOI: 10.1126/science.aat0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
50
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|