1
|
Fu Y, Mao S, Liao T, Feng W. Simultaneous production of linear α-olefins and 2,5-furandicarboxylic acid by combining two recombinant enzymes OleT-ELP and HMFO-ELP. Enzyme Microb Technol 2025; 188:110637. [PMID: 40154140 DOI: 10.1016/j.enzmictec.2025.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
The enzyme OleT can utilize H2O2 as the co-substrate, and this biocatalysis is an H2O2-driven enzymatic catalysis. In this work, OleT was recombinated by being fused to an elastin-like polypeptide (ELP). The recombinant enzyme OleT-ELP exhibits higher stability and resistance to H2O2 interference compared to native OleT. OleT-ELP showed improved catalytic efficiency in producing α-olefins via fatty acid decarboxylation. The recombinant 5-hydroxymethylfurfural oxidase (HMFO-ELP) catalyzes the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), generating H2O2 as a byproduct. Combining OleT-ELP with HMFO-ELP enabled simultaneous conversion of fatty acids and HMF. The in situ H2O2 generated by HMFO-ELP was transferred to OleT-ELP, enhancing catalytic efficiencies for both α-olefins and FDCA production.
Collapse
Affiliation(s)
- Yaqi Fu
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Siyu Mao
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianyue Liao
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
3
|
Boyle GE, Sitko KA, Galloway JG, Haddox HK, Bianchi AH, Dixon A, Wheelock MK, Vandi AJ, Wang ZR, Thomson RES, Garge RK, Rettie AE, Rubin AF, Geck RC, Gillam EMJ, DeWitt WS, Matsen FA, Fowler DM. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 2024; 228:iyae156. [PMID: 39319420 PMCID: PMC11538415 DOI: 10.1093/genetics/iyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.
Collapse
Affiliation(s)
- Gabriel E Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aisha Haley Bianchi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ajeya Dixon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melinda K Wheelock
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allyssa J Vandi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ziyu R Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - William S DeWitt
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Frederick A Matsen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Forman V, Luo D, Kampranis SC, Stærk D, Møller BL, Pateraki I. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae. Metab Eng 2024; 86:288-299. [PMID: 39454871 DOI: 10.1016/j.ymben.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Cytochrome B5s, or CytB5s, are small heme-binding proteins, ubiquitous across all kingdoms of life that serve mainly as electron donors to enzymes engaged in oxidative reactions. They often function as redox partners of the cytochrome P450s (CYPs), a superfamily of enzymes participating in multiple biochemical processes. In plants, CYPs catalyze key reactions in the biosynthesis of plant specialized metabolites with their activity dependent on electron donation often from cytochrome P450 oxidoreductases (CPRs or PORs). In eukaryotic microsomal CYPs, CytB5s frequently participate in the electron transfer process although their exact role remains understudied, especially in plant systems. In this study, we assess the role of CytB5s in the heterologous biotechnological production of plant specialized metabolites in yeast. For this, we used as a case-study the biosynthesis of forskolin - a bioactive diterpenoid produced exclusively from the plant Coleus forskohlii. The complete biosynthetic pathway for forskolin is known and includes three CYP enzymes. We reconstructed the entire forskolin pathway in the yeast Saccharomyces cerevisiae, and upon co-expression of the three CytB5s - identified in C. forskohlii transcriptomes - alleviation of a CYP-related bottleneck step was noticed only when a specific CytB5, CfCytB5A, was used. Co-expression of CfCytB5A in yeast, in combination with forskolin pathway engineering, resulted in forskolin production at titers of 1.81 g/L in a bioreactor. Our findings demonstrate that CytB5s not only play an important role in plant specialized metabolism but also, they can interact with precision with specific CYPs, indicating that the properties of CytB5s are far from understood. Moreover, our work highlights how CytB5s may act as indispensable components in the sustainable microbial production of plant metabolites, when their biosynthetic pathways involve CYP enzymes.
Collapse
Affiliation(s)
- Victor Forman
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; EvodiaBio ApS, Islevdalvej 211, DK-2610, Rødovre, Denmark.
| | - Dan Luo
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; European Innovation Center, FMC corporation, Genvej 2, DK-2970, Hørsholm, Denmark
| | - Sotirios C Kampranis
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Building 22, DK-2100, Copenhagen Ø, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Yan X, David SD, Du G, Li W, Liang D, Nie S, Ge M, Wang C, Qiao J, Li Y, Caiyin Q. Biological Properties of Sandalwood Oil and Microbial Synthesis of Its Major Sesquiterpenoids. Biomolecules 2024; 14:971. [PMID: 39199359 PMCID: PMC11352278 DOI: 10.3390/biom14080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Sandalwood essential oil is extracted from the heartwood part of mature sandalwood and is known for its pleasant fragrance and exceptional medicinal activities, including antimicrobial, antitumor, and anti-inflammatory properties. The (Z)-α-santalol and (Z)-β-santalol are the most vital ingredients contributing to sandalwood oil's bioactivities and unique woody odor characteristics. Metabolic engineering strategies have shown promise in transforming microorganisms such as yeast and bacteria into effective cell factories for enhancing the production of vital sesquiterpenes (santalene and santalol) found in sandalwood oil. This review aims to summarize sources of sandalwood oil, its components/ingredients, and its applications. It also highlights the biosynthesis of santalene and santalol and the various metabolic engineering strategies employed to reconstruct and enhance santalene and santalol biosynthesis pathways in heterologous hosts.
Collapse
Affiliation(s)
- Xiaoguang Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Sichone Daniel David
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Guangzhao Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Dongmei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Mingyue Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute, Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Davis NK, Chionh YH, McBee ME, Hia F, Ma D, Cui L, Sharaf ML, Cai WM, Jumpathong W, Levine SS, Alonso S, Dedon PC. Facile metabolic reprogramming distinguishes mycobacterial adaptation to hypoxia and starvation: ketosis drives starvation-induced persistence in M. bovis BCG. Commun Biol 2024; 7:866. [PMID: 39009734 PMCID: PMC11250799 DOI: 10.1038/s42003-024-06562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Mycobacteria adapt to infection stresses by entering a reversible non-replicating persistence (NRP) with slow or no cell growth and broad antimicrobial tolerance. Hypoxia and nutrient deprivation are two well-studied stresses commonly used to model the NRP, yet little is known about the molecular differences in mycobacterial adaptation to these distinct stresses that lead to a comparable NRP phenotype. Here we performed a multisystem interrogation of the Mycobacterium bovis BCG (BCG) starvation response, which revealed a coordinated metabolic shift away from the glycolysis of nutrient-replete growth to depletion of lipid stores, lipolysis, and fatty acid ß-oxidation in NRP. This contrasts with BCG's NRP hypoxia response involving a shift to cholesterol metabolism and triglyceride storage. Our analysis reveals cryptic metabolic vulnerabilities of the starvation-induced NRP state, such as their newfound hypersensitivity to H2O2. These observations pave the way for developing precision therapeutics against these otherwise drug refractory pathogens.
Collapse
Affiliation(s)
- Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- GenScript Biotech (Singapore) Pte. Ltd, Singapore, Singapore
| | - Megan E McBee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Fabian Hia
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Duanduan Ma
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Mariam Lucila Sharaf
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- BioNTech SE An der Goldgrube, Mainz, Germany
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- British High Commission, Singapore, Singapore
| | - Watthanachai Jumpathong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical Biology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
7
|
Zhong J, Wang Y, Chen Z, Yalikun Y, He L, Liu T, Ma G. Engineering cyanobacteria as a new platform for producing taxol precursors directly from carbon dioxide. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:99. [PMID: 39014505 PMCID: PMC11253407 DOI: 10.1186/s13068-024-02555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Taxol serves as an efficient natural anticancer agent with extensive applications in the treatment of diverse malignancies. Although advances in synthetic biology have enabled the de novo synthesis of taxol precursors in various microbial chassis, the total biosynthesis of taxol remains challengable owing to the restricted oxidation efficiency in heterotrophic microbes. Here, we engineered Synechocystis sp. PCC 6803 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and taxol biosynthetic enzymes for production of taxadiene-5α-ol (T5α-ol), the key oxygenated intermediate of taxol. The best strain DIGT-P560 produced up to 17.43 mg/L of oxygenated taxanes and 4.32 mg/L of T5α-ol. Moreover, transcriptomic analysis of DIGT-P560 revealed that establishing a oxygenated taxane flux may enhance photosynthetic electron transfer efficiency and central metabolism in the engineered strain to ameliorate the metabolic disturbances triggered by the incorporation of exogenous genes. This is the first demonstration of photosynthetic production of taxadiene-5α-ol from CO2 in cyanobacteria, highlighting the broad prospects of engineered cyanobacteria as bio-solar cell factories for valuable terpenoids production and expanding the ideas for further rational engineering and optimization.
Collapse
Affiliation(s)
- Jialing Zhong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Yushu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Zhuoyang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Yaliqin Yalikun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tiangang Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| |
Collapse
|
8
|
Minerdi D, Sabbatini P. Impact of Cytochrome P450 Enzyme on Fruit Quality. Int J Mol Sci 2024; 25:7181. [PMID: 39000287 PMCID: PMC11241655 DOI: 10.3390/ijms25137181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Paolo Sabbatini
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, CN, Italy
| |
Collapse
|
9
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
10
|
Mohamed H, Child SA, Doherty DZ, Bruning JB, Bell SG. Structural determination and characterisation of the CYP105Q4 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2024; 754:109950. [PMID: 38430969 DOI: 10.1016/j.abb.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
11
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
12
|
Kačar D, Cañedo LM, Rodríguez P, Schleissner C, de la Calle F, García JL, Galán B. Tailoring modifications in labrenzin synthesis: a-la-carte production of pathway intermediates. Microb Biotechnol 2024; 17:e14355. [PMID: 37909860 PMCID: PMC10832518 DOI: 10.1111/1751-7915.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Pederin-family polyketides today constitute a group of more than 30 molecules being produced as natural products by different microorganisms across multitude of ecological niches. They are mostly known for their extreme cytotoxic activity and the decades of long exploration as potential antitumor drugs. The difference in their potency and biological activity lies in the tailoring modifications of the core molecule. Despite the isolation of many pederin-like molecules until the date, only marine bacterium Labrenzia sp. PHM005 was reported as a cultivable producer and able to be genetically modified. Here, we study the role of tailoring enzymes from the lab gene cluster responsible for methylation and hydroxylation of labrenzin core molecule. We managed to produce a spectrum of differently tailored labrenzin analogs for the development of future drugs. This work constitutes one-step forward in understanding the biosynthesis of pederin-family polyketides and provides the tools to modify and overproduce these anticancer drugs in a-la-carte manner in Labrenzia sp. PHM005, but also in other producers in the future.
Collapse
Affiliation(s)
- Dina Kačar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | | | - Pilar Rodríguez
- Research and Development DepartmentPharmaMar S.A.MadridSpain
| | | | | | - José Luis García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
13
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
14
|
Sun Y, Huang X, Osawa Y, Chen YE, Zhang H. The Versatile Biocatalyst of Cytochrome P450 CYP102A1: Structure, Function, and Engineering. Molecules 2023; 28:5353. [PMID: 37513226 PMCID: PMC10383305 DOI: 10.3390/molecules28145353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Wild-type cytochrome P450 CYP102A1 from Bacillus megaterium is a highly efficient monooxygenase for the oxidation of long-chain fatty acids. The unique features of CYP102A1, such as high catalytic activity, expression yield, regio- and stereoselectivity, and self-sufficiency in electron transfer as a fusion protein, afford the requirements for an ideal biocatalyst. In the past three decades, remarkable progress has been made in engineering CYP102A1 for applications in drug discovery, biosynthesis, and biotechnology. The repertoire of engineered CYP102A1 variants has grown tremendously, whereas the substrate repertoire is avalanched to encompass alkanes, alkenes, aromatics, organic solvents, pharmaceuticals, drugs, and many more. In this article, we highlight the major advances in the past five years in our understanding of the structure and function of CYP102A1 and the methodologies used to engineer CYP102A1 for novel applications. The objective is to provide a succinct review of the latest developments with reference to the body of CYP102A1-related literature.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| | - Xiaoqiang Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| | - Yuqing Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| |
Collapse
|
15
|
Sharko A, Spitzbarth B, Hermans TM, Eelkema R. Redox-Controlled Shunts in a Synthetic Chemical Reaction Cycle. J Am Chem Soc 2023; 145:9672-9678. [PMID: 37092741 PMCID: PMC10161229 DOI: 10.1021/jacs.3c00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants. Furthermore, we introduce a strategy to recycle one of the main products under flow conditions to partially reverse the CRN and control product speciation throughout time. These findings introduce new levels of control over artificial CRNs, driven by redox chemistry, narrowing the gap between synthetic and natural systems.
Collapse
Affiliation(s)
| | - Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas M Hermans
- University of Strasbourg & CNRS, UMR7140, 67083 Strasbourg, France
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
16
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
17
|
Abstract
The P450 superfamily comprises some of the most powerful and versatile enzymes for the site-selective oxidation of small molecules. One of the main drawbacks for the applications of the P450s in biotechnology is that the majority of these enzymes is multicomponent in nature and requires the presence of suitable redox partners to support their functions. Nevertheless, the discovery of several self-sufficient P450s, namely those from Classes VII and VIII, has served as an inspiration for fusion approaches to generate chimeric P450 systems that are self-sufficient. In this Perspective, we highlight the domain organizations of the Class VII and Class VIII P450 systems, summarize recent case studies in the engineering of catalytically self-sufficient P450s based on these systems, and outline outstanding challenges in the field, along with several emerging technologies as potential solutions.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005
| |
Collapse
|
18
|
Wang S, Huang Q. A spectroscopic approach to identifying the out-of-plane conformations of Ni(II) meso-tetraphenylporphyrin in solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Collins DP, Johnson E, Coulter ED, Beharry Z, Ballou DP, Dawson JH. Caught in the act: Monitoring OO bond cleavage in Acylperoxoferric cytochrome P450cam to form compound I in real time. J Inorg Biochem 2022; 236:111949. [PMID: 36028338 DOI: 10.1016/j.jinorgbio.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
While monitoring the reaction of ferric cytochrome P450cam (Cyp101) with substituted peroxybenzoic acids using rapid-scanning, stopped-flow (RSSF) spectroscopy, an intermediate appears en route to formation of the high-valent moiety known as Compound I [Fe(IV)=O/porphyrin radical cation] that is thought to be the key catalytic species for O-atom transfer to substrate. We have previously suggested (Spolitak, T., Dawson, J.H., Ballou, D.P., J. Biol. Chem.2005, 280, 20,300-20,309) that this species is an acylperoxo-ferric heme adduct that subsequently undergoes OO bond cleavage to generate Compound I. Singular value decomposition analysis of the RSSF data for formation of this intermediate shows that the energy of its Soret absorption peak is sensitive to the electron donor properties of the aryl substituents on the peracid. A linear Hammett correlation plot is seen for the energy of the Soret absorption peak vs. the Hammett σ constant. This correlation requires that the aryl substituents remain as part of the ligand bound to the heme iron, providing direct evidence that the adduct is indeed a ferric acylperoxo derivative. Linear Hammett correlation plots are also seen for both the rate of formation of the intermediate as well as for its conversion to Compound I. It is proposed that the electron donating/withdrawing properties of the aryl-bound substituents affect the electrophilic nature for binding substrate, changing the observed rate of formation for the acylperoxo intermediate, as well as the propensity and stability of the substituted benzoic acid to serve as the leaving group during OO bond cleavage yielding Compound I.
Collapse
Affiliation(s)
- Daniel P Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Johnson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Eric D Coulter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Zanna Beharry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - David P Ballou
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John H Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
20
|
Wang Y, Malaco Morotti AL, Xiao Y, Wang Z, Wu S, Chen J, Tatsis EC. Decoding the Cytochrome P450 Catalytic Activity in Divergence of Benzophenone and Xanthone Biosynthetic Pathways. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
| | - Yiren Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Evangelos C. Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, China
- CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai 20032, China
| |
Collapse
|
21
|
Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning. J Med Chem 2022; 65:14066-14081. [PMID: 36239985 DOI: 10.1021/acs.jmedchem.2c01303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug candidates or even withdrawal of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) for enzymes, which interact with drug-like molecules, in the early stages of the research. This study presents methods for predicting the isoform-specific metabolism for human AOs, FMOs, and UGTs and general CYP metabolism for preclinical species. The models use semi-empirical quantum mechanical simulations, validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James Suri
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
22
|
Ganesan M, Mani R, Sai S, Kasivelu G, Awasthi MK, Rajagopal R, Wan Azelee NI, Selvi PK, Chang SW, Ravindran B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. CHEMOSPHERE 2022; 303:134956. [PMID: 35588873 DOI: 10.1016/j.chemosphere.2022.134956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Collapse
Affiliation(s)
- Mirunalini Ganesan
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravi Mani
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sakthinarenderan Sai
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China.
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
23
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
24
|
Abstract
Cytochrome P450 (CYP450) is a major drug-metabolizing enzyme system mainly distributed in liver microsomes and involved in the metabolism of many endogenous substances (such as fatty acids and arachidonic acids), and exogenous compounds (such as drugs, toxicants, carcinogens, and procarcinogens). Due to the similarity in structures and catalytic functions between CYP450 isoforms, the lack of effective selective detection tools greatly limits the understanding and the research of their respective physiological roles in living organisms. Until now, several small-molecular fluorescent probes have been employed for selective detection and monitoring of CYP450s (Cytochrome P450 enzymes) in vitro or in vivo owing to the tailored properties, biodegradability, and high temporal and spatial resolution imaging in situ. In this review, we summarize the recent advances in fluorescent probes for CYP450s (including CYP1, CYP2, and CYP3 families), and we discuss and focus on their identification mechanisms, general probe design strategies, and bioimaging applications. We also highlight the potential challenges and prospects of designing new generations of fluorescent probes in CYP450 studies, which will further enhance the diversity, practicality, and clinical feasibility of research into CYP450.
Collapse
|
25
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
26
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
27
|
Metabolomics-Guided Analysis of the Biocatalytic Conversion of Sclareol to Ambradiol by Hyphozyma roseoniger. Catalysts 2022. [DOI: 10.3390/catal12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The biocatalytic conversion of sclareol to ambradiol, a valuable component in the fragrance industry, using whole-cell biotransformation by the dimorphic yeast Hyphozyma roseoniger, was investigated using metabolomics tools. An integrated approach was used to identify and quantify the participating intermediates in this bioconversion using both nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled to mass spectrometry (LC–MS). This study entailed growth stage-dependent analysis of H. roseoniger suspensions grown in batch culture over a 14-day period, beginning with a three-day induction period using 20 mg/200 mL sclareol, followed by a further 1 g/200 mL sclareol dose to enable ambradiol production. The progress of the bioconversion and the resulting dynamic changes to the metabolome were monitored using NMR analysis and semi-targeted LC–MS metabolomics. This outlined the molecular conversions occurring within the matrix and no novel intermediates participating in the sclareol to ambradiol conversion could be identified. This study presents new findings about the transformative capabilities of H. roseoniger as a whole cell biocatalyst, highlighting its potential utility in similar applications.
Collapse
|
28
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
29
|
Wan NW, Cui HB, Zhao L, Shan J, Chen K, Wang ZQ, Zhou XJ, Cui BD, Han WY, Chen YZ. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric high throughput screening method was developed based on a dual-enzyme cascade and used for the directed evolution of cytochrome P450 hydroxylase activity.
Collapse
Affiliation(s)
- Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Zhong-Qiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
30
|
Qian X, Westensee IN, Fernandes CC, Städler B. Enzyme Mimic Facilitated Artificial Cell to Mammalian Cell Signal Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | | | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
31
|
Qian X, Westensee IN, Fernandes CC, Städler B. Enzyme Mimic Facilitated Artificial Cell to Mammalian Cell Signal Transfer. Angew Chem Int Ed Engl 2021; 60:18704-18711. [PMID: 34096152 DOI: 10.1002/anie.202104904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Catalyzing biochemical reactions with enzymes and communicating with neighboring cells via chemical signaling are two fundamental cellular features that play a critical role in maintaining the homeostasis of organisms. Herein, we present an artificial enzyme (AE) facilitated signal transfer between artificial cells (ACs) and mammalian HepG2 cells. We synthesize metalloporphyrins (MPs) based AEs that mimic cytochrome P450 enzymes (CYPs) to catalyze a dealkylation and a hydroxylation reaction, exemplified by the conversion of resorufin ethyl ether (REE) to resorufin and coumarin (COU) to 7-hydroxycoumarin (7-HC), respectively. The AEs are immobilized in hydrogels to produce ACs that generate the two diffusive fluorophores, which can diffuse into HepG2 cells and result in dual intracellular emissions. This work highlights the use of AEs to promote AC to mammalian signal transfer, which opens up new opportunities for integrating the synthetic and living world with a bottom-up strategy.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | | | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
32
|
Zhang X, Jiang Y, Chen Q, Dong S, Feng Y, Cong Z, Shaik S, Wang B. H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
33
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
34
|
Liu TT, Xiao H, Xiao JH, Zhong JJ. Impact of oxygen supply on production of terpenoids by microorganisms: State of the art. Chin J Chem Eng 2021; 30:46-53. [DOI: 10.1016/j.cjche.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
|
37
|
Renata H. Exploration of Iron- and a-Ketoglutarate-Dependent Dioxygenases as Practical Biocatalysts in Natural Product Synthesis. Synlett 2021; 32:775-784. [PMID: 34413574 PMCID: PMC8372184 DOI: 10.1055/s-0040-1707320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Catalytic C─H oxidation is a powerful transformation with enormous promise to streamline access to complex molecules. In recent years, biocatalytic C─H oxidation strategies have received tremendous attention due to their potential to address unmet regio- and stereoselectivity challenges that are often encountered with the use of small-molecule-based catalysts. This Account provides an overview of recent contributions from our laboratory in this area, specifically in the use of iron- and α-ketoglutarate-dependent dioxygenases in the chemoenzymatic synthesis of complex natural products.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
38
|
Aschenbrenner JC, Ebrecht AC, Tolmie C, Smit MS, Opperman DJ. Structure of the fungal hydroxylase, CYP505A30, and rational transfer of mutation data from CYP102A1 to alter regioselectivity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01348c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective oxyfunctionalisation of n-alkanes and production of non-vicinal diols by evolved CYP505A30 through rational transfer of knowledge between protein scaffolds.
Collapse
Affiliation(s)
- Jasmin C. Aschenbrenner
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, South Africa
| | - Ana C. Ebrecht
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Carmien Tolmie
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Martha S. Smit
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, South Africa
| | - Diederik J. Opperman
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
39
|
Silveira CM, Rodrigues PR, Ghach W, Pereira SA, Esteves F, Kranendonk M, Etienne M, Almeida MG. Electrochemical Activity of Cytochrome P450 1A2: The Relevance of O
2
Control and the Natural Electron Donor. ChemElectroChem 2020. [DOI: 10.1002/celc.202001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Célia M. Silveira
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Instituto de Tecnologia Química e Biológica António Xavier ITQB NOVA Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Patrícia R. Rodrigues
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Systems Immunity Research Institute and Division of Infection and Immunity School of Medicine Cardiff University Cardiff CF14 4XN UK
| | - Wissam Ghach
- Chimie et Physique Moléculaires, LCPME CNRS and Université de Lorraine 54000 Nancy France
| | - Sofia A. Pereira
- CEDOC, Chronic Diseases Research Centre NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics) CEDOC, NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics) CEDOC, NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Mathieu Etienne
- Chimie et Physique Moléculaires, LCPME CNRS and Université de Lorraine 54000 Nancy France
| | - M. Gabriela Almeida
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Centro de investigação interdisciplinar Egas Moniz (CiiEM) Instituto Universitário Egas Moniz Monte de Caparica 2829-511 Caparica Portugal
| |
Collapse
|
40
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
41
|
McBride GM, Soo JY, Varcoe T, Morrison JL, Wiese MD. Development of a method to determine cytochrome P450 1A2, 2C9, 2D6 and 3A4 activity sheep hepatic microsomes. J Pharmacol Toxicol Methods 2020; 106:106934. [PMID: 33080390 DOI: 10.1016/j.vascn.2020.106934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Ex vivo studies of human fetal hepatic drug metabolism are uncommon as it requires access to functional liver tissue and therefore raises practical and ethical concerns. Large animal models provide an alternative opportunity to study changes in cytochrome P450 (CYP) activity in the mother and fetus during pregnancy. We aimed to develop methods to determine the activity of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in sheep hepatic microsomes. METHODS We identified optimal conditions to determine the activity of CYP1A2 (using the probe drug phenacetin), CYP2C9 (diclofenac), CYP2D6 (dextromethorphan) and CYP3A4 (midazolam) by varying techniques for microsome extraction, probe drug concentration, incubation time and microsome concentration. The specificity of each probe drug was assessed by determining the rate of metabolism when specific CYP enzyme inhibitors were included in the reaction. RESULTS The optimum incubation time and probe drug concentration was six hours with 5 μM phenacetin (CYP1A2), four hours with 10 μM diclofenac (CYP2C9), 30 min with 1 μM of midazolam (CYP3A4) and 10 min with 1 μM dextromethorphan (CYP2D6). For both CYP2D6 and CYP3A4 reactions required 20 μg of microsomal protein, whereas for CYP1A2 and CYP2C9, reactions required 40 μg of microsomal protein. Metabolism of phenacetin, dextromethorphan and midazolam was reduced by specific enzyme inhibitors, but the specific CYP2C9 inhibitor sulfaphenazole did not substantially inhibit diclofenac metabolism. DISCUSSION This study identifies the optimal conditions for determining CYP activity in maternal sheep hepatic microsomes. In doing so, we have developed a standardised protocol for assessment of microsomal activity of CYP3A4, CYP1A2 and CYP2D6, but we were unable to optimise conditions for assessment of CYP2C9. This approach can be applied to investigate the impact of pregnancy complications on maternal and fetal hepatic drug metabolism.
Collapse
Affiliation(s)
- Grace M McBride
- Early Origins of Adult Health Research Group, Australia; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Australia; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Tamara Varcoe
- Early Origins of Adult Health Research Group, Australia; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Michael D Wiese
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
42
|
Louka S, Barry SM, Heyes DJ, Mubarak MQE, Ali HS, Alkhalaf LM, Munro AW, Scrutton NS, Challis GL, de Visser SP. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. J Am Chem Soc 2020; 142:15764-15779. [PMID: 32811149 PMCID: PMC7586343 DOI: 10.1021/jacs.0c05070] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
cytochromes P450 are heme-dependent enzymes that catalyze many
vital reaction processes in the human body related to biodegradation
and biosynthesis. They typically act as mono-oxygenases; however,
the recently discovered P450 subfamily TxtE utilizes O2 and NO to nitrate aromatic substrates such as L-tryptophan.
A direct and selective aromatic nitration reaction may be useful in
biotechnology for the synthesis of drugs or small molecules. Details
of the catalytic mechanism are unknown, and it has been suggested
that the reaction should proceed through either an iron(III)-superoxo
or an iron(II)-nitrosyl intermediate. To resolve this controversy,
we used stopped-flow kinetics to provide evidence for a catalytic
cycle where dioxygen binds prior to NO to generate an active iron(III)-peroxynitrite
species that is able to nitrate l-Trp efficiently. We show
that the rate of binding of O2 is faster than that of NO
and also leads to l-Trp nitration, while little evidence
of product formation is observed from the iron(II)-nitrosyl complex.
To support the experimental studies, we performed density functional
theory studies on large active site cluster models. The studies suggest
a mechanism involving an iron(III)-peroxynitrite that splits homolytically
to form an iron(IV)-oxo heme (Compound II) and a free NO2 radical via a small free energy of activation. The latter activates
the substrate on the aromatic ring, while compound II picks up the ipso-hydrogen to form the product. The calculations give
small reaction barriers for most steps in the catalytic cycle and,
therefore, predict fast product formation from the iron(III)-peroxynitrite
complex. These findings provide the first detailed insight into the
mechanism of nitration by a member of the TxtE subfamily and highlight
how the enzyme facilitates this novel reaction chemistry.
Collapse
Affiliation(s)
- Savvas Louka
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Derren J Heyes
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nigel S Scrutton
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.,ARC Centre for Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| |
Collapse
|
43
|
Wu Y, Zheng Y, Chen Y, Wang S, Chen Y, Hu F, Zheng H. Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb Biotechnol 2020; 13:1201-1212. [PMID: 32338446 PMCID: PMC7264748 DOI: 10.1111/1751-7915.13579] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau-fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline-treated workers and untreated workers demonstrated that antibiotic-induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co-treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yufei Zheng
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yanan Chen
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Shuai Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | | - Fuliang Hu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Huoqing Zheng
- College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
44
|
Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. Characterization of a Self-Sufficient Cytochrome P450 Monooxygenase from Deinococcus apachensis for Enantioselective Benzylic Hydroxylation. Chembiochem 2020; 21:1820-1825. [PMID: 32012422 DOI: 10.1002/cbic.201900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Indexed: 12/22/2022]
Abstract
A self-sufficient cytochrome P450 monooxygenase from Deinococcus apachensis (P450DA) was identified and successfully overexpressed in Escherichia coli BL21(DE3). P450DA would be a member of the CYP102D subfamily and assigned as CYP102D2 according to the phylogenetic tree and sequence alignment. Purification and characterization of the recombinant P450DA indicated both NADH and NADPH could be used by P450DA as a reducing cofactor. The recombinant E. coli (P450DA) strain was functionally active, showing excellent enantioselectivity for benzylic hydroxylation of methyl 2-phenylacetate. Further substrate scope studies revealed that P450DA is able to catalyze benzylic hydroxylation of a variety of compounds, affording the corresponding chiral benzylic alcohols in 86-99 % ee and 130-1020 total turnover numbers.
Collapse
Affiliation(s)
- Lingzhi Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Haibo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
45
|
Weissenborn MJ, Koenigs RM. Iron‐porphyrin Catalyzed Carbene Transfer Reactions – an Evolution from Biomimetic Catalysis towards Chemistry‐inspired Non‐natural Reactivities of Enzymes. ChemCatChem 2020. [DOI: 10.1002/cctc.201901565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry Weinberg 3 Halle 06120 Germany
- Institute of ChemistryMartin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 Halle 06120 Germany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| |
Collapse
|
46
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
47
|
Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 PMCID: PMC6934812 DOI: 10.1038/s41598-019-56516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called “uncoupling”, whereby NAD(P)H derived electrons are lost due to the reduced intermediates’ (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2–22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
|
48
|
Ebrecht AC, van der Bergh N, Harrison STL, Smit MS, Sewell BT, Opperman DJ. Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 DOI: 10.1101/711317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 05/28/2023] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called "uncoupling", whereby NAD(P)H derived electrons are lost due to the reduced intermediates' (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2-22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Naadia van der Bergh
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Martha S Smit
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7700, South Africa.
| | - Diederik J Opperman
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa.
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.
| |
Collapse
|
49
|
Sekretarska J, Szczepaniak J, Sosnowska M, Grodzik M, Kutwin M, Wierzbicki M, Jaworski S, Bałaban J, Daniluk K, Sawosz E, Chwalibog A, Strojny B. Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4149. [PMID: 31835701 PMCID: PMC6947289 DOI: 10.3390/ma12244149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Carbon nanostructures have recently gained significant interest from scientists due to their unique physicochemical properties and low toxicity. They can accumulate in the liver, which is the main expression site of cytochrome P450 (CYP450) enzymes. These enzymes play an important role in the metabolism of exogenous compounds, such as drugs and xenobiotics. Altered activity or expression of CYP450 enzymes may lead to adverse drug effects and toxicity. The objective of this study was to evaluate the influence of three carbon nanostructures on the activity and expression at the mRNA and protein levels of CYP2C9 isoenzyme from the CYP2C subfamily: Diamond nanoparticles, graphite nanoparticles, and graphene oxide platelets. The experiments were conducted using two in vitro models. A microsome model was used to assess the influence of the three-carbon nanostructures on the activity of the CYP2C9 isoenzyme. The CYP2C9 gene expression at the mRNA and protein levels was determined using a hepatoma-derived cell line HepG2. The experiments have shown that all examined nanostructures inhibit the enzymatic activity of the studied isoenzymes. Moreover, a decrease in the expression at the mRNA and protein levels was also observed. This indicates that despite low toxicity, the nanostructures can alter the enzymatic function of CYP450 enzymes, and the molecular pathways involved in their expression.
Collapse
Affiliation(s)
- Justyna Sekretarska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Kutwin
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Karolina Daniluk
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| |
Collapse
|
50
|
Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem Sci 2019; 44:1022-1040. [DOI: 10.1016/j.tibs.2019.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|