1
|
Reséndiz-Juárez ME, Rosas-Soto AL, Pérez-Rangel A, Tapia-Ramírez J, Ríos-Castro E, Rodríguez-Cruz F, Alejandre-Aguilar R, Manning-Cela R, León-Avila G, Hernández-Hernández JM. Trypanosoma cruzi has Two Peptidyl-tRNA Hydrolases Showing Different Localization and Function. Acta Parasitol 2025; 70:60. [PMID: 39945942 DOI: 10.1007/s11686-025-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Peptidyl-tRNA hydrolase (Pth), first described in Escherichia coli, is responsible for rescuing stalled ribosomes during peptidyl-tRNA "drop off". Bacterial Pth has been widely studied, but the characterization of eukaryotic Pth remains a poorly researched field, especially in protozoan parasites. This work aimed to characterize Trypanosoma cruzi Pths and determine their localization. METHODS Two open reading frames (ORFs) that may encode Pths were identified in the T. cruzi genome. Bioinformatics analysis was performed for each protein using conserved domain analysis and multiple alignment. ORFs were cloned into an expression vector, E. coli pth(Ts) competent cells were transformed, and thermosensitivity tests were performed. Recombinant proteins were expressed and purified to immunize rats and obtain polyclonal antibodies. Pull down and immunoprecipitation followed by mass spectrometry to verify the interactions. RESULTS TcPth and TcPth2 have a conserved domain corresponding to the Pth2 superfamily. Multiple alignments with previously characterized amino acid sequences of Pths showed that they are unrelated to T. cruzi proteins, considering that conserved residues of catalytic importance are absent. TcPth was able to rescue the E. coli thermosensitive pth(Ts) mutation, but TcPth2 was not. TcPth2 interacts with reservosome proteins such as cysteine peptidase and endocytic pathway proteins. CONCLUSION The results suggest that TcPth and TcPth2 has a different function. This work represents the first in its area since the Pths of the T. cruzi were characterized and breaks ground for the characterization of Pths from other protozoan parasites.
Collapse
Affiliation(s)
- María Elizabeth Reséndiz-Juárez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Ana Laura Rosas-Soto
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - José Tapia-Ramírez
- Departamento de Genética y Biología Molecular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, CINVESTAV, Av. IPN 2508, LaNSE, Ciudad de México, C.P. 07300, México
| | - Fanny Rodríguez-Cruz
- Departamento de Biología Celular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Ricardo Alejandre-Aguilar
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México.
| | | |
Collapse
|
2
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Teran D, Zhang Y, Korostelev AA. Endogenous trans-translation structure visualizes the decoding of the first tmRNA alanine codon. Front Microbiol 2024; 15:1369760. [PMID: 38500588 PMCID: PMC10944890 DOI: 10.3389/fmicb.2024.1369760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on ribosome rescue mechanisms to replenish the pool of ribosomes available for translation. Trans-translation, the main ribosome-rescue pathway, uses a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and label the resulting peptide for degradation. Previous studies have visualized how tmRNA and its helper protein SmpB interact with the stalled ribosome to establish a new open reading frame. As tmRNA presents the first alanine codon via a non-canonical mRNA path in the ribosome, the incoming alanyl-tRNA must rearrange the tmRNA molecule to read the codon. Here, we describe cryo-EM analyses of an endogenous Escherichia coli ribosome-tmRNA complex with tRNAAla accommodated in the A site. The flexible adenosine-rich tmRNA linker, which connects the mRNA-like domain with the codon, is stabilized by the minor groove of the canonically positioned anticodon stem of tRNAAla. This ribosome complex can also accommodate a tRNA near the E (exit) site, bringing insights into the translocation and dissociation of the tRNA that decoded the defective mRNA prior to tmRNA binding. Together, these structures uncover a key step of ribosome rescue, in which the ribosome starts translating the tmRNA reading frame.
Collapse
Affiliation(s)
| | | | - Andrei A. Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Tomasi FG, Schweber JTP, Kimura S, Zhu J, Cleghorn LAT, Davis SH, Green SR, Waldor MK, Rubin EJ. Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in Mycobacterium tuberculosis. mBio 2023; 14:e0346922. [PMID: 36695586 PMCID: PMC9973355 DOI: 10.1128/mbio.03469-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura A. T. Cleghorn
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan H. Davis
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon R. Green
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew K. Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Staudt A, Brack Y, Jr II, Leal ICR. Biocatalytic synthesis of monoterpene esters – A review study on the phylogenetic evolution of biocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Abstract
Persisters are transiently nongrowing and antibiotic-tolerant phenotypic variants identified in major human pathogens, including intracellular Staphylococcus aureus. Due to their capacity to regrow once the environmental stress is relieved and to promote resistance, persisters possibly contribute to therapeutic failures. While persistence and its related quiescence have been mostly studied under starvation, little is known within host cell environments. Here, we examined how the level of reactive oxygen species (ROS) in different host cells affects dormancy depth of intracellular S. aureus. Using single-cell approaches, we found that host ROS induce variable dormant states in S. aureus persisters, displaying heterogeneous and increased lag times for resuscitation in liquid medium. Dormant persisters displayed decreased translation and energy metabolism, but remained infectious, exiting from dormancy and resuming growth when reinoculated in low-oxidative-stress cells. In high-oxidative-stress cells, ROS-induced ATP depletion was associated with the formation of visible dark foci similar to those induced by the protein aggregation inducer CCCP (carbonyl cyanide m-chlorophenylhydrazone) and with the recruitment of the DnaK-ClpB chaperone system involved in the clearance of protein aggregates. ATP depletion led to higher fractions of dormant persisters than ROS, due to a counterbalancing effect of ROS-induced translational repression, suggesting a pivotal role of translation in the dormant phenotype. Consistently, protein synthesis inhibition limited dormancy to levels similar to those observed in low-oxidative-stress cells. This study supports the hypothesis that intracellular S. aureus persisters can reach heterogeneous dormancy depths and highlights the link between ROS, ATP depletion, dark focus formation, and subsequent dormancy state. IMPORTANCE By their capacity to survive to antibiotic pressure and to regrow and give rise to a susceptible population once this pressure is relieved, intracellular persisters of S. aureus may contribute to explain therapeutic failures and recurrent infections. Here, we show that the level of dormancy and the subsequent capacity to resuscitate from this resting state are dependent on the level of oxidative stress in the host cells where bacteria survive. This observation nourishes the debate as whether the most appropriate strategy to cope with S. aureus intracellular infections would consist of trying to push persisters to a deep dormancy state from which wakening is improbable or, on the contrary, to prevent ROS-induced dormancy and force bacteria to maintain regular metabolism in order to restore their responsiveness to antibiotics. Importantly also, our data highlight the interest in single-cell analyses with conventional enumeration of CFU to quantify persisters and study host-pathogen interactions.
Collapse
|
7
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
8
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Hoshino S, Kanemura R, Kurita D, Soutome Y, Himeno H, Takaine M, Watanabe M, Nameki N. A stalled-ribosome rescue factor Pth3 is required for mitochondrial translation against antibiotics in Saccharomyces cerevisiae. Commun Biol 2021; 4:300. [PMID: 33686140 PMCID: PMC7940416 DOI: 10.1038/s42003-021-01835-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial translation appears to involve two stalled-ribosome rescue factors (srRFs). One srRF is an ICT1 protein from humans that rescues a "non-stop" type of mitochondrial ribosomes (mitoribosomes) stalled on mRNA lacking a stop codon, while the other, C12orf65, reportedly has functions that overlap with those of ICT1; however, its primary role remains unclear. We herein demonstrated that the Saccharomyces cerevisiae homolog of C12orf65, Pth3 (Rso55), preferentially rescued antibiotic-dependent stalled mitoribosomes, which appear to represent a "no-go" type of ribosomes stalled on intact mRNA. On media containing a non-fermentable carbon source, which requires mitochondrial gene expression, respiratory growth was impaired significantly more by the deletion of PTH3 than that of the ICT1 homolog PTH4 in the presence of antibiotics that inhibit mitochondrial translation, such as tetracyclines and macrolides. Additionally, the in organello labeling of mitochondrial translation products and quantification of mRNA levels by quantitative RT-PCR suggested that in the presence of tetracycline, the deletion of PTH3, but not PTH4, reduced the protein expression of all eight mtDNA-encoded genes at the post-transcriptional or translational level. These results indicate that Pth3 can function as a mitochondrial srRF specific for ribosomes stalled by antibiotics and plays a role in antibiotic resistance in fungi.
Collapse
Affiliation(s)
- Soichiro Hoshino
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Ryohei Kanemura
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yukihiro Soutome
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Masak Takaine
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan.
| |
Collapse
|
10
|
Kurita D, Abo T, Himeno H. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue. J Biol Chem 2020; 295:13326-13337. [PMID: 32727848 DOI: 10.1074/jbc.ra120.014664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Translation termination in bacteria requires that the stop codon be recognized by release factor RF1 or RF2, leading to hydrolysis of the ester bond between the peptide and tRNA on the ribosome. As a consequence, normal termination cannot proceed if the translated mRNA lacks a stop codon. In Escherichia coli, the ribosome rescue factor ArfA releases the nascent polypeptide from the stalled ribosome with the help of RF2 in a stop codon-independent manner. Interestingly, the reaction does not proceed if RF1 is instead provided, even though the structures of RF1 and RF2 are very similar. Here, we identified the regions of RF2 required for the ArfA-dependent ribosome rescue system. Introduction of hydrophobic residues from RF2 found at the interface between RF2 and ArfA into RF1 allowed RF1 to associate with the ArfA-ribosome complex to a certain extent but failed to promote peptidyl-tRNA hydrolysis, whereas WT RF1 did not associate with the complex. We also identified the key residues required for the process after ribosome binding. Our findings provide a basis for understanding how the ArfA-ribosome complex is specifically recognized by RF2 and how RF2 undergoes a conformational change upon binding to the ArfA-ribosome complex.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
11
|
Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nat Commun 2019; 10:5397. [PMID: 31776341 PMCID: PMC6881298 DOI: 10.1038/s41467-019-13408-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems. In bacteria, the conserved trans-translation system serves as the primary pathway of ribosome rescue, but many species can also use alternative rescue pathways. Here the authors report that in B. subtilis, the rescue factor BrfA binds to non-stop stalled ribosomes, recruits RF2 but not RF1, and induces transition of the ribosome into an open active conformation.
Collapse
|
12
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
13
|
Peng S, Sun R, Wang W, Chen C. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Multiple target sites for designing candidate drugs. Biochem J 2018. [PMID: 29523702 DOI: 10.1042/bcj20180007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rational drug discovery strategy requires a design of small molecules as candidate drugs which can specifically inhibit a target protein or any other macromolecule and effectively interfere in a defined physiological process. One of the important bacterial protein targets aimed toward developing new antibiotics is peptidyl-tRNA hydrolase (Pth). The discovery that cytarabine, a known anticancer drug, binds to Pth from Acinetobacter baumannii in a cleft located away from the catalytic site of this enzyme, published in Biochemical Journal, opens up interesting new avenues for drug design. An approach involving crystallographic identification of multiple ligand-binding sites on a target protein surface could enable iterative optimization of multiple high-affinity ligands, which may synergistically interfere in the target function with enhanced effect.
Collapse
|
15
|
KKL-35 Exhibits Potent Antibiotic Activity against Legionella Species Independently of trans-Translation Inhibition. Antimicrob Agents Chemother 2018; 62:AAC.01459-17. [PMID: 29158279 PMCID: PMC5786812 DOI: 10.1128/aac.01459-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 11/20/2022] Open
Abstract
trans-Translation is a ribosome-rescue system that is ubiquitous in bacteria. Small molecules defining a new family of oxadiazole compounds that inhibit trans-translation have been found to have broad-spectrum antibiotic activity. We sought to determine the activity of KKL-35, a potent member of the oxadiazole family, against the human pathogen Legionella pneumophila and other related species that can also cause Legionnaires' disease (LD). Consistent with the essential nature of trans-translation in L. pneumophila, KKL-35 inhibited the growth of all tested strains at submicromolar concentrations. KKL-35 was also active against other LD-causing Legionella species. KKL-35 remained equally active against L. pneumophila mutants that have evolved resistance to macrolides. KKL-35 inhibited the multiplication of L. pneumophila in human macrophages at several stages of infection. No resistant mutants could be obtained, even during extended and chronic exposure. Surprisingly, KKL-35 was not synergistic with other ribosome-targeting antibiotics and did not induce the filamentation phenotype observed in cells defective for trans-translation. Importantly, KKL-35 remained active against L. pneumophila mutants expressing an alternate ribosome-rescue system and lacking transfer-messenger RNA, the essential component of trans-translation. These results indicate that the antibiotic activity of KKL-35 is not related to the specific inhibition of trans-translation and its mode of action remains to be identified. In conclusion, KKL-35 is an effective antibacterial agent against the intracellular pathogen L. pneumophila with no detectable resistance development. However, further studies are needed to better understand its mechanism of action and to assess further the potential of oxadiazoles in treatment.
Collapse
|
16
|
Macé K, Demay F, Guyomar C, Georgeault S, Giudice E, Goude R, Trautwetter A, Ermel G, Blanco C, Gillet R. A Genetic Tool to Quantify trans-Translation Activity in Vivo. J Mol Biol 2017; 429:3617-3625. [PMID: 29031699 DOI: 10.1016/j.jmb.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 11/17/2022]
Abstract
In bacteria, trans-translation is the main quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a critical role in the viability and virulence of many pathogens. We developed a reliable in vivo double-fluorescence reporter system for the simultaneous quantification of both trans-translation and the associated proteolysis activities in bacteria. The assay was validated using mutant bacteria lacking tmRNA, SmpB, and the ClpP protease. Both antisense tmRNA-binding RNA and a peptide mimicking the SmpB C-terminal tail proved to be potent inhibitors of trans-translation in vivo. The double-fluorescent reporter was also tested with KKL-35, an oxadiazole derivative that is supposed to be a promising trans-translation inhibitor, and it surprisingly turns out that trans-translation is not the only target of KKL-35 in vivo.
Collapse
Affiliation(s)
- Kevin Macé
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Fanny Demay
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Charlotte Guyomar
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sylvie Georgeault
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Emmanuel Giudice
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Renan Goude
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Annie Trautwetter
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Gwennola Ermel
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Carlos Blanco
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France.
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France.
| |
Collapse
|
17
|
Huter P, Müller C, Arenz S, Beckert B, Wilson DN. Structural Basis for Ribosome Rescue in Bacteria. Trends Biochem Sci 2017. [PMID: 28629612 DOI: 10.1016/j.tibs.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems.
Collapse
Affiliation(s)
- Paul Huter
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Claudia Müller
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Stefan Arenz
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Bertrand Beckert
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
18
|
Zeng F, Chen Y, Remis J, Shekhar M, Phillips JC, Tajkhorshid E, Jin H. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature 2017; 541:554-557. [PMID: 28077875 DOI: 10.1038/nature21053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
Abstract
Quality control mechanisms intervene appropriately when defective translation events occur, in order to preserve the integrity of protein synthesis. Rescue of ribosomes translating on messenger RNAs that lack stop codons is one of the co-translational quality control pathways. In many bacteria, ArfA recognizes stalled ribosomes and recruits the release factor RF2, which catalyses the termination of protein synthesis. Although an induced-fit mechanism of nonstop mRNA surveillance mediated by ArfA and RF2 has been reported, the molecular interaction between ArfA and RF2 in the ribosome that is responsible for the mechanism is unknown. Here we report an electron cryo-microscopy structure of ArfA and RF2 in complex with the 70S ribosome bound to a nonstop mRNA. The structure, which is consistent with our kinetic and biochemical data, reveals the molecular interactions that enable ArfA to specifically recruit RF2, not RF1, into the ribosome and to enable RF2 to release the truncated protein product in this co-translational quality control pathway. The positively charged C-terminal domain of ArfA anchors in the mRNA entry channel of the ribosome. Furthermore, binding of ArfA and RF2 induces conformational changes in the ribosomal decoding centre that are similar to those seen in other protein-involved decoding processes. Specific interactions between residues in the N-terminal domain of ArfA and RF2 help RF2 to adopt a catalytically competent conformation for peptide release. Our findings provide a framework for understanding recognition of the translational state of the ribosome by new proteins, and expand our knowledge of the decoding potential of the ribosome.
Collapse
Affiliation(s)
- Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yanbo Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jonathan Remis
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Mrinal Shekhar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
19
|
James NR, Brown A, Gordiyenko Y, Ramakrishnan V. Translational termination without a stop codon. Science 2016; 354:1437-1440. [PMID: 27934701 PMCID: PMC5351859 DOI: 10.1126/science.aai9127] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/17/2016] [Indexed: 11/02/2022]
Abstract
Ribosomes stall when they encounter the end of messenger RNA (mRNA) without an in-frame stop codon. In bacteria, these "nonstop" complexes can be rescued by alternative ribosome-rescue factor A (ArfA). We used electron cryomicroscopy to determine structures of ArfA bound to the ribosome with 3'-truncated mRNA, at resolutions ranging from 3.0 to 3.4 angstroms. ArfA binds within the ribosomal mRNA channel and substitutes for the absent stop codon in the A site by specifically recruiting release factor 2 (RF2), initially in a compact preaccommodated state. A similar conformation of RF2 may occur on stop codons, suggesting a general mechanism for release-factor-mediated translational termination in which a conformational switch leads to peptide release only when the appropriate signal is present in the A site.
Collapse
Affiliation(s)
- Nathan R James
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alan Brown
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yuliya Gordiyenko
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - V Ramakrishnan
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature 2016; 541:550-553. [PMID: 27906160 DOI: 10.1038/nature20822] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
During cellular translation of messenger RNAs by ribosomes, the translation apparatus sometimes pauses or stalls at the elongation and termination steps. With the exception of programmed stalling, which is usually used by cells for regulatory purposes, ribosomes stalled on mRNAs need to be terminated and recycled to maintain adequate translation capacity. Much ribosome stalling originates in aberrant mRNAs that lack a stop codon. Transcriptional errors, misprocessing of primary transcripts, and undesired mRNA cleavage all contribute to the formation of non-stop mRNAs. Ribosomes stalled at the 3' end of non-stop mRNAs do not undergo normal termination owing to the lack of specific stop-codon recognition by canonical peptide release factors at the A-site decoding centre. In bacteria, the transfer-messenger RNA (tmRNA)-SmpB-mediated trans-translation rescue system reroutes stalled ribosomes to the normal elongation cycle and translation termination. Two additional rescue systems, ArfA-RF2 (refs 13, 14, 15, 16) and ArfB (formerly known as YaeJ), are also present in many bacterial species, but their mechanisms are not fully understood. Here, using cryo-electron microscopy, we characterize the structure of the Escherichia coli 70S ribosome bound with ArfA, the release factor RF2, a short non-stop mRNA and a cognate P-site tRNA. The C-terminal loop of ArfA occupies the mRNA entry channel on the 30S subunit, whereas its N terminus is sandwiched between the decoding centre and the switch loop of RF2, leading to marked conformational changes in both the decoding centre and RF2. Despite the distinct conformation of RF2, its conserved catalytic GGQ motif is precisely positioned next to the CCA-end of the P-site tRNA. These data illustrate a stop-codon surrogate mechanism for ArfA in facilitating the termination of non-stop ribosomal complexes by RF2.
Collapse
|
21
|
Macé K, Gillet R. Origins of tmRNA: the missing link in the birth of protein synthesis? Nucleic Acids Res 2016; 44:8041-51. [PMID: 27484476 PMCID: PMC5041485 DOI: 10.1093/nar/gkw693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.
Collapse
Affiliation(s)
- Kevin Macé
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France Institut Universitaire de France
| |
Collapse
|
22
|
Liu P, Chen Y, Wang D, Tang Y, Tang H, Song H, Sun Q, Zhang Y, Liu Z. Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4. Front Microbiol 2016; 7:1228. [PMID: 27588015 PMCID: PMC4988972 DOI: 10.3389/fmicb.2016.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Yong Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan University Chengdu, China
| | - Yueling Zhang
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
23
|
A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA. Mol Cell 2016; 63:86-96. [PMID: 27264868 PMCID: PMC4942678 DOI: 10.1016/j.molcel.2016.05.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The recalcitrance of many bacterial infections to antibiotic treatment is thought to be due to the presence of persisters that are non-growing, antibiotic-insensitive cells. Eventually, persisters resume growth, accounting for relapses of infection. Salmonella is an important pathogen that causes disease through its ability to survive inside macrophages. After macrophage phagocytosis, a significant proportion of the Salmonella population forms non-growing persisters through the action of toxin-antitoxin modules. Here we reveal that one such toxin, TacT, is an acetyltransferase that blocks the primary amine group of amino acids on charged tRNA molecules, thereby inhibiting translation and promoting persister formation. Furthermore, we report the crystal structure of TacT and note unique structural features, including two positively charged surface patches that are essential for toxicity. Finally, we identify a detoxifying mechanism in Salmonella wherein peptidyl-tRNA hydrolase counteracts TacT-dependent growth arrest, explaining how bacterial persisters can resume growth. TacT promotes Salmonella persister formation by inhibiting translation TacT is an acetyltransferase with positively charged patches essential for toxicity TacT blocks the primary amine group of amino acids on charged tRNA molecules Salmonella detoxifies TacT-corrupted tRNAs, allowing bacterial growth to resume
Collapse
|
24
|
Zhang F, Song Y, Niu L, Teng M, Li X. Crystal structure of Staphylococcus aureus peptidyl-tRNA hydrolase at a 2.25 Å resolution. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1005-10. [PMID: 26508479 DOI: 10.1093/abbs/gmv114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/13/2022] Open
Abstract
Peptidyl-tRNA hydrolase (Pth) catalyzes the release of tRNA to relieve peptidyl-tRNA accumulation. Because Pth activity is essential for the viability of bacteria, Pth is regarded as a promising target for the discovery of new antimicrobial agents. Here, the structure of Pth from the Gram-positive bacterium Staphylococcus aureus (SaPth) was solved by X-ray crystallography at a 2.25 Å resolution. The SaPth structure exhibits significant structural similarity with other members of the Pth superfamily, with a conserved α/β/α sandwich fold. A molecular phylogenetic analysis and a structure database search indicated that SaPth is most similar to its homolog in Streptococcus pyogenes, but it has a different substrate-binding cleft state.
Collapse
Affiliation(s)
- Fan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei 230026, China Key Laboratory of Structural Biology, Hefei Science Center, Chinese Academy of Science, Hefei 230026, China
| | - Yang Song
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei 230026, China Key Laboratory of Structural Biology, Hefei Science Center, Chinese Academy of Science, Hefei 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei 230026, China Key Laboratory of Structural Biology, Hefei Science Center, Chinese Academy of Science, Hefei 230026, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei 230026, China Key Laboratory of Structural Biology, Hefei Science Center, Chinese Academy of Science, Hefei 230026, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei 230026, China Key Laboratory of Structural Biology, Hefei Science Center, Chinese Academy of Science, Hefei 230026, China
| |
Collapse
|
25
|
Gillet R. Quality control in protein synthesis. Biochimie 2015; 114:1. [DOI: 10.1016/j.biochi.2015.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Abstract
La synthèse des protéines, également appelée traduction, est assurée dans chaque cellule par des machines moléculaires très sophistiquées : les ribosomes. Compte tenu de l’immense quantité de données biologiques à traiter, il arrive régulièrement que ces machines se bloquent et mettent en péril la survie de la cellule. Chez les bactéries, le principal processus de sauvetage des ribosomes bloqués est la trans-traduction. Il est assuré par un acide ribonucléique (ARN) hybride, l’ARN transfert-messager (ARNtm), associé à une petite protéine basique, SmpB (small protein B). Plusieurs autres systèmes de contrôle qualité ont récemment été mis en évidence, révélant un réseau de maintien de la survie cellulaire très sophistiqué. Cette machinerie du contrôle qualité de la synthèse protéique est une cible très prometteuse pour le développement de futurs antibiotiques.
Collapse
|
27
|
Gilet L, DiChiara JM, Figaro S, Bechhofer DH, Condon C. Small stable RNA maturation and turnover in Bacillus subtilis. Mol Microbiol 2014; 95:270-82. [PMID: 25402410 DOI: 10.1111/mmi.12863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Stable RNA maturation is a key process in the generation of functional RNAs, and failure to correctly process these RNAs can lead to their elimination through quality control mechanisms. Studies of the maturation pathways of ribosomal RNA and transfer RNA in Bacillus subtilis showed they were radically different from Escherichia coli and led to the identification of new B. subtilis-specific enzymes. We noticed that, despite their important roles in translation, a number of B. subtilis small stable RNAs still did not have characterised maturation pathways, notably the tmRNA, involved in ribosome rescue, and the RNase P RNA, involved in tRNA maturation. Here, we show that tmRNA is matured by RNase P and RNase Z at its 5' and 3' extremities, respectively, whereas the RNase P RNA is matured on its 3' side by RNase Y. Recent evidence that several RNases are not essential in B. subtilis prompted us to revisit maturation of the scRNA, a component of the signal recognition particle involved in co-translational insertion of specific proteins into the membrane. We show that RNase Y is also involved in 3' processing of scRNA. Lastly, we identified some of the enzymes involved in the turnover of these three stable RNAs.
Collapse
Affiliation(s)
- Laetitia Gilet
- CNRS FRE 3630 (affiliated with University Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
29
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
30
|
Hersch SJ, Elgamal S, Katz A, Ibba M, Navarre WW. Translation initiation rate determines the impact of ribosome stalling on bacterial protein synthesis. J Biol Chem 2014; 289:28160-71. [PMID: 25148683 DOI: 10.1074/jbc.m114.593277] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo. The α- and β-subunits of ATP synthase, AtpA and AtpD, are translated from the same mRNA transcript, and both contain a PPG motif; however, proteomic analysis revealed that AtpD levels are strongly dependent on EF-P, whereas AtpA levels are independent of EF-P. Using these model proteins, we systematically determined that EF-P dependence is strongly influenced by elements in the 5'-untranslated region of the mRNA. By mutating either the Shine-Dalgarno sequence or the start codon, we find that EF-P dependence correlates directly with the rate of translation initiation where strongly expressed proteins show the greatest dependence on EF-P. Our findings demonstrate that polyproline-induced stalls exert a net effect on protein levels only if they limit translation significantly more than initiation. This model can be generalized to explain why sequences that induce pauses in translation elongation to, for example, facilitate folding do not necessarily exact a penalty on the overall production of the protein.
Collapse
Affiliation(s)
- Steven J Hersch
- From the Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Sara Elgamal
- the Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - Assaf Katz
- the Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - Michael Ibba
- the Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - William Wiley Navarre
- From the Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
31
|
Structural and functional insights into peptidyl-tRNA hydrolase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1279-88. [DOI: 10.1016/j.bbapap.2014.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/31/2023]
|
32
|
Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 2014; 111:E2576-85. [PMID: 24927582 DOI: 10.1073/pnas.1401853111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.
Collapse
|
33
|
PURE ribosome display and its application in antibody technology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1925-1932. [PMID: 24747149 DOI: 10.1016/j.bbapap.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
Abstract
Ribosome display utilizes formation of the mRNA-ribosome-polypeptide ternary complex in a cell-free protein synthesis system to link genotype (mRNA) to phenotype (polypeptide). However, the presence of intrinsic components, such as nucleases in the cell-extract-based cell-free protein synthesis system, reduces the stability of the ternary complex, which would prevent attainment of reliable results. We have developed an efficient and highly controllable ribosome display system using the PURE (Protein synthesis Using Recombinant Elements) system. The mRNA-ribosome-polypeptide ternary complex is highly stable in the PURE system, and the selected mRNA can be easily recovered because activities of nucleases and other inhibitory factors are very low in the PURE system. We have applied the PURE ribosome display to antibody engineering approaches, such as epitope mapping and affinity maturation of antibodies, and obtained results showing that the PURE ribosome display is more efficient than the conventional method. We believe that the PURE ribosome display can contribute to the development of useful antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
34
|
Abo T, Chadani Y. The fail-safe system to rescue the stalled ribosomes in Escherichia coli. Front Microbiol 2014; 5:156. [PMID: 24782844 PMCID: PMC3989581 DOI: 10.3389/fmicb.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3′-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific “degradation tag.” Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.
Collapse
Affiliation(s)
- Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan ; Department of Biology, Faculty of Science, Okayama University Okayama, Japan
| | - Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| |
Collapse
|
35
|
Giudice E, Macé K, Gillet R. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB. Front Microbiol 2014; 5:113. [PMID: 24711807 PMCID: PMC3968760 DOI: 10.3389/fmicb.2014.00113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosome stalling is a serious issue for cell survival. In bacteria, the primary rescue system is trans-translation, performed by tmRNA and its protein partner small protein B (SmpB). Since its discovery almost 20 years ago, biochemical, genetic, and structural studies have paved the way to a better understanding of how this sophisticated process takes place at the cellular and molecular levels. Here we describe the molecular details of trans-translation, with special mention of recent cryo-electron microscopy and crystal structures that have helped explain how the huge tmRNA-SmpB complex targets and delivers stalled ribosomes without interfering with canonical translation.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Kevin Macé
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Reynald Gillet
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France ; Institut Universitaire de France France
| |
Collapse
|
36
|
Li Z, Malla S, Shin B, Li JM. Battle against RNA oxidation: molecular mechanisms for reducing oxidized RNA to protect cells. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:335-46. [PMID: 24375979 DOI: 10.1002/wrna.1214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/08/2023]
Abstract
Oxidation is probably the most common type of damage that occurs in cellular RNA. Oxidized RNA may be dysfunctional and is implicated in the pathogenesis of age-related human diseases. Cellular mechanisms controlling oxidized RNA have begun to be revealed. Currently, a number of ribonucleases and RNA-binding proteins have been shown to reduce oxidized RNA and to protect cells under oxidative stress. Although information about how these factors work is still very limited, we suggest several mechanisms that can be used to minimize oxidized RNA in various organisms.
Collapse
Affiliation(s)
- Zhongwei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | | | | |
Collapse
|
37
|
Nyquist K, Martin A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem Sci 2013; 39:53-60. [PMID: 24316303 DOI: 10.1016/j.tibs.2013.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
ATP-dependent proteases exist in all cells and are crucial regulators of the proteome. These machines consist of a hexameric, ring-shaped motor responsible for engaging, unfolding, and translocating protein substrates into an associated peptidase for degradation. Here, we discuss recent work that has established how the six motor subunits coordinate their ATP-hydrolysis and translocation activities. The closed topology of the ring and the rigidity of subunit/subunit interfaces cause conformational changes within a single subunit to drive motions in other subunits of the hexamer. This structural effect generates allostery between the ATP-binding sites, leading to a preferred order of binding and hydrolysis events among the motor subunits as well as a unique biphasic mechanism of translocation.
Collapse
Affiliation(s)
- Kristofor Nyquist
- QB3 Institute, University of California, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Andreas Martin
- QB3 Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Cougot N, Molza AE, Delesques J, Giudice E, Cavalier A, Rolland JP, Ermel G, Blanco C, Thomas D, Gillet R. Visualizing compaction of polysomes in bacteria. J Mol Biol 2013; 426:377-88. [PMID: 24095898 DOI: 10.1016/j.jmb.2013.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the "trans-translation" rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.
Collapse
Affiliation(s)
- Nicolas Cougot
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Anne-Elisabeth Molza
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jérémy Delesques
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Emmanuel Giudice
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Annie Cavalier
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Paul Rolland
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Gwennola Ermel
- Université de Rennes 1, EA 1254, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Carlos Blanco
- Université de Rennes 1, EA 1254, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Daniel Thomas
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Reynald Gillet
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France; Institut Universitaire de France.
| |
Collapse
|