1
|
Russo G, Unkauf T, Meier D, Wenzel EV, Langreder N, Schneider KT, Wiesner R, Bischoff R, Stadler V, Dübel S. In vitro evolution of myc-tag antibodies: in-depth specificity and affinity analysis of Myc1-9E10 and Hyper-Myc. Biol Chem 2022; 403:479-494. [PMID: 35312243 DOI: 10.1515/hsz-2021-0405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.
Collapse
Affiliation(s)
- Giulio Russo
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,Abcalis GmbH, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Tobias Unkauf
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,Abcalis GmbH, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Nora Langreder
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,iTUBS mbH, Wilhelmsgarten 3, D-38100 Braunschweig, Germany
| | - Kai-Thomas Schneider
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Rebecca Wiesner
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ralf Bischoff
- Division of Functional Genome Analysis, Research Program "Functional and Structural Genomics", German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Volker Stadler
- Pepperprint GmbH, Rischerstrasse 12, D-69123 Heidelberg, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| |
Collapse
|
2
|
Sheng Z, Bimela JS, Katsamba PS, Patel SD, Guo Y, Zhao H, Guo Y, Kwong PD, Shapiro L. Structural Basis of Antibody Conformation and Stability Modulation by Framework Somatic Hypermutation. Front Immunol 2022; 12:811632. [PMID: 35046963 PMCID: PMC8761896 DOI: 10.3389/fimmu.2021.811632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Accumulation of somatic hypermutation (SHM) is the primary mechanism to enhance the binding affinity of antibodies to antigens in vivo. However, the structural basis of the effects of many SHMs remains elusive. Here, we integrated atomistic molecular dynamics (MD) simulation and data mining to build a high-throughput structural bioinformatics pipeline to study the effects of individual and combination SHMs on antibody conformation, flexibility, stability, and affinity. By applying this pipeline, we characterized a common mechanism of modulation of heavy-light pairing orientation by frequent SHMs at framework positions 39H, 91H, 38L, and 87L through disruption of a conserved hydrogen-bond network. Q39LH alone and in combination with light chain framework 4 (FWR4L) insertions further modulated the elbow angle between variable and constant domains of many antibodies, resulting in improved binding affinity for a subset of anti-HIV-1 antibodies. Q39LH also alleviated aggregation induced by FWR4L insertion, suggesting remote epistasis between these SHMs. Altogether, this study provides tools and insights for understanding antibody affinity maturation and for engineering functionally improved antibodies.
Collapse
Affiliation(s)
- Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Saurabh D Patel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Haiqing Zhao
- Department of Systems Biology, Columbia University, New York, NY, United States
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States.,Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Madan B, Zhang B, Xu K, Chao CW, O'Dell S, Wolfe JR, Chuang GY, Fahad AS, Geng H, Kong R, Louder MK, Nguyen TD, Rawi R, Schön A, Sheng Z, Nimrania R, Wang Y, Zhou T, Lin BC, Doria-Rose NA, Shapiro L, Kwong PD, DeKosky BJ. Mutational fitness landscapes reveal genetic and structural improvement pathways for a vaccine-elicited HIV-1 broadly neutralizing antibody. Proc Natl Acad Sci U S A 2021; 118:e2011653118. [PMID: 33649208 PMCID: PMC7958426 DOI: 10.1073/pnas.2011653118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vaccine-based elicitation of broadly neutralizing antibodies holds great promise for preventing HIV-1 transmission. However, the key biophysical markers of improved antibody recognition remain uncertain in the diverse landscape of potential antibody mutation pathways, and a more complete understanding of anti-HIV-1 fusion peptide (FP) antibody development will accelerate rational vaccine designs. Here we survey the mutational landscape of the vaccine-elicited anti-FP antibody, vFP16.02, to determine the genetic, structural, and functional features associated with antibody improvement or fitness. Using site-saturation mutagenesis and yeast display functional screening, we found that 1% of possible single mutations improved HIV-1 envelope trimer (Env) affinity, but generally comprised rare somatic hypermutations that may not arise frequently in vivo. We observed that many single mutations in the vFP16.02 Fab could enhance affinity >1,000-fold against soluble FP, although affinity improvements against the HIV-1 trimer were more measured and rare. The most potent variants enhanced affinity to both soluble FP and Env, had mutations concentrated in antibody framework regions, and achieved up to 37% neutralization breadth compared to 28% neutralization of the template antibody. Altered heavy- and light-chain interface angles and conformational dynamics, as well as reduced Fab thermal stability, were associated with improved HIV-1 neutralization breadth and potency. We also observed parallel sets of mutations that enhanced viral neutralization through similar structural mechanisms. These data provide a quantitative understanding of the mutational landscape for vaccine-elicited FP-directed broadly neutralizing antibody and demonstrate that numerous antigen-distal framework mutations can improve antibody function by enhancing affinity simultaneously toward HIV-1 Env and FP.
Collapse
Affiliation(s)
- Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Arne Schön
- Department of Biology, John Hopkins University, Baltimore, MD 21218
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027
| | - Rajani Nimrania
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045;
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045
| |
Collapse
|
4
|
Tabasinezhad M, Talebkhan Y, Wenzel W, Rahimi H, Omidinia E, Mahboudi F. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. Immunol Lett 2019; 212:106-113. [PMID: 31247224 DOI: 10.1016/j.imlet.2019.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Current advances in antibody engineering driving the strongest growth area in biotherapeutic agents development. Affinity improvement that is mainly important for biological activity and clinical efficacy of therapeutic antibodies, has still remained a challenging task. In the human body, during a course of immune response affinity maturation increase antibody activity by several rounds of somatic hypermutation and clonal selection in the germinal center. The final outputs are antibodies representing higher affinity and specificity against a particular antigen. In the realm of biotechnology, exploring of mutations which improve antibody affinity while preserving its specificity and stability is an extremely time-consuming and laborious process. Recent advances in computational algorithms and DNA sequencing technologies help researchers to redesign antibody structure to achieve desired properties such as improved binding affinity. In this review, we briefly described the principle of affinity maturation and different corresponding in vitro techniques. Also, we recapitulated the most recent advancements in the field of antibody affinity maturation including computational approaches and next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Maryam Tabasinezhad
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yeganeh Talebkhan
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hamzeh Rahimi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Eskandar Omidinia
- Genetics & Metabolism Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
5
|
Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol 2019; 26:116-124. [PMID: 30879901 DOI: 10.1016/j.tracli.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intravascular hemolysis is a hallmark of a large spectrum of diseases, including the sickle cell disease (SCD), and is characterized by liberation of red blood cell (RBC) degradation products in the circulation. Released Hb, heme, RBC fragments and microvesicles (MVs) exert pro-inflammatory, pro-oxidative and cytotoxic effects and contribute to vascular and tissue damage. The innate immune complement system not only contributes to the RBC lysis, but it is also itself activated by heme, RBC MVs and the hypoxia-altered endothelium, amplifying thus the cell and tissue damage. This review focuses on the implication of the complement system in hemolysis and hemolysis-mediated injuries in SCD and in cases of delayed hemolytic transfusion reactions (DHTR). We summarize the evidences for presence of biomarkers of complement activation in patients with SCD and the mechanisms of complement activation in DHTR. We discuss the role of antibodies-dependent activation of the classical complement pathway as well as the heme-dependent activation of the alternative pathway. Finally, we describe the available evidences for the efficacy of therapeutic blockade of complement in cases of DHTR. In conclusion, complement blockade is holding promises but future prospective studies are required to introduce Eculizumab or another upcoming complement therapeutic for DHTR and even in SCD.
Collapse
|
6
|
Antibody specificity and promiscuity. Biochem J 2019; 476:433-447. [PMID: 30723137 DOI: 10.1042/bcj20180670] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
The immune system is capable of making antibodies against anything that is foreign, yet it does not react against components of self. In that sense, a fundamental requirement of the body's immune defense is specificity. Remarkably, this ability to specifically attack foreign antigens is directed even against antigens that have not been encountered a priori by the immune system. The specificity of an antibody for the foreign antigen evolves through an iterative process of somatic mutations followed by selection. There is, however, accumulating evidence that the antibodies are often functionally promiscuous or multi-specific which can lead to their binding to more than one antigen. An important cause of antibody cross-reactivity is molecular mimicry. Molecular mimicry has been implicated in the generation of autoimmune response. When foreign antigen shares similarity with the component of self, the antibodies generated could result in an autoimmune response. The focus of this review is to capture the contrast between specificity and promiscuity and the structural mechanisms employed by the antibodies to accomplish promiscuity, at the molecular level. The conundrum between the specificity of the immune system for foreign antigens on the one hand and the multi-reactivity of the antibody on the other has been addressed. Antibody specificity in the context of the rapid evolution of the antigenic determinants and molecular mimicry displayed by antigens are also discussed.
Collapse
|
7
|
Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev 2018; 47:9137-9157. [PMID: 30298157 DOI: 10.1039/c8cs00523k] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Owing to their outstanding performances in molecular recognition, antibodies are extensively used in research and applications in molecular biology, biotechnology and medicine. Recent advances in experimental and computational methods are making it possible to complement well-established in vivo (first generation) and in vitro (second generation) methods of antibody discovery with novel in silico (third generation) approaches. Here we describe the principles of computational antibody design and review the state of the art in this field. We then present Modular, a method that implements the rational design of antibodies in a modular manner, and describe the opportunities offered by this approach.
Collapse
Affiliation(s)
- Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|
8
|
Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Front Immunol 2017; 8:986. [PMID: 28928732 PMCID: PMC5591402 DOI: 10.3389/fimmu.2017.00986] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Tong Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Seth D Ludwig
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sabyasachi Sen
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
9
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
10
|
Hadzhieva M, Vassilev TL, Roumenina LT, Bayry J, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Mechanism and Functional Implications of the Heme-Induced Binding Promiscuity of IgE. Biochemistry 2015; 54:2061-72. [DOI: 10.1021/bi501507m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maya Hadzhieva
- Institute
of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Lubka T. Roumenina
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jagadeesh Bayry
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Srinivas V. Kaveri
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jordan D. Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
11
|
Lecerf M, Scheel T, Pashov AD, Jarossay A, Ohayon D, Planchais C, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. J Biol Chem 2015; 290:5203-5213. [PMID: 25564611 DOI: 10.1074/jbc.m114.618124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses.
Collapse
Affiliation(s)
- Maxime Lecerf
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Tobias Scheel
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Anastas D Pashov
- the Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria, and
| | - Annaelle Jarossay
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Delphine Ohayon
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Cyril Planchais
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Stephane Mesnage
- the Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia Berek
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Srinivas V Kaveri
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Jordan D Dimitrov
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France,.
| |
Collapse
|
12
|
Tóth-Petróczy A, Tawfik DS. The robustness and innovability of protein folds. Curr Opin Struct Biol 2014; 26:131-8. [PMID: 25038399 DOI: 10.1016/j.sbi.2014.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Assignment of protein folds to functions indicates that >60% of folds carry out one or two enzymatic functions, while few folds, for example, the TIM-barrel and Rossmann folds, exhibit hundreds. Are there structural features that make a fold amenable to functional innovation (innovability)? Do these features relate to robustness--the ability to readily accumulate sequence changes? We discuss several hypotheses regarding the relationship between the architecture of a protein and its evolutionary potential. We describe how, in a seemingly paradoxical manner, opposite properties, such as high stability and rigidity versus conformational plasticity and structural order versus disorder, promote robustness and/or innovability. We hypothesize that polarity--differentiation and low connectivity between a protein's scaffold and its active-site--is a key prerequisite for innovability.
Collapse
Affiliation(s)
- Agnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|