1
|
Ricci C, Abbandonato G, Giannangeli M, Matthews L, Almásy L, Sartori B, Podestà A, Caselli A, Boffi A, Thiel G, Del Favero E, Moroni A. Ferritin at different iron loading: From biological to nanotechnological applications. Int J Biol Macromol 2024; 276:133812. [PMID: 39032902 DOI: 10.1016/j.ijbiomac.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble, France
| | - László Almásy
- HUN-REN Centre for Energy Research, POB 49, Budapest 1525, Hungary
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/4, Graz, Austria
| | - Alessandro Podestà
- Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | | | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Gerhard Thiel
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Neusch A, Wiedwald U, Novoselova IP, Kuckla DA, Tetos N, Sadik S, Hagemann P, Farle M, Monzel C. Semisynthetic ferritin-based nanoparticles with high magnetic anisotropy for spatial magnetic manipulation and inductive heating. NANOSCALE 2024; 16:15113-15127. [PMID: 39054876 DOI: 10.1039/d4nr01652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The human iron storage protein ferritin represents an appealing template to obtain a semisynthetic magnetic nanoparticle (MNP) for spatial manipulation or inductive heating applications on a nanoscale. Ferritin consists of a protein cage of well-defined size (12 nm), which is genetically modifiable and biocompatible, and into which a magnetic core is synthesised. Here, we probed the magnetic response and hence the MNP's suitability for (bio-)nanotechnological or nanomedical applications when the core is doped with 7% cobalt or 7% zinc in comparison with the undoped iron oxide MNP. The samples exhibit almost identical core and hydrodynamic sizes, along with their tunable magnetic core characteristics as verified by structural and magnetic characterisation. Cobalt doping significantly increased the MNP's anisotropy and hence the heating power in comparison with other magnetic cores with potential application as a mild heat mediator. Spatial magnetic manipulation was performed with MNPs inside droplets, the cell cytoplasm, or the cell nucleus, where the MNP surface conjugation with mEGFP and poly(ethylene glycol) gave rise to excellent intracellular stability and traceability within the complex biological environment. A magnetic stimulus (smaller than fN forces) results in the quick and reversible redistribution of the MNPs. The obtained data suggest that semisynthetic ferritin MNPs are highly versatile nanoagents and promising candidates for theranostic or (bio-)nanotechnological applications.
Collapse
Affiliation(s)
- Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Iuliia P Novoselova
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Daniel A Kuckla
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Nikolaos Tetos
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Sarah Sadik
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Philipp Hagemann
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Zhang DG, Pan YJ, Chen BQ, Lu XC, Xu QX, Wang P, Kankala RK, Jiang NN, Wang SB, Chen AZ. Protein-guided biomimetic nanomaterials: a versatile theranostic nanoplatform for biomedical applications. NANOSCALE 2024; 16:1633-1649. [PMID: 38168813 DOI: 10.1039/d3nr05495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.
Collapse
Affiliation(s)
- Da-Gui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yu-Jing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Biao-Qi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xiao-Chang Lu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qin-Xi Xu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Pei Wang
- Jiangxi Provincial Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ni-Na Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
4
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Guerra JPL, Penas D, Tavares P, Pereira AS. Influence of Cupric (Cu 2+) Ions on the Iron Oxidation Mechanism by DNA-Binding Protein from Starved Cells (Dps) from Marinobacter nauticus. Int J Mol Sci 2023; 24:10256. [PMID: 37373403 DOI: 10.3390/ijms241210256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Dps proteins (DNA-binding proteins from starved cells) are multifunctional stress defense proteins from the Ferritin family expressed in Prokarya during starvation and/or acute oxidative stress. Besides shielding bacterial DNA through binding and condensation, Dps proteins protect the cell from reactive oxygen species by oxidizing and storing ferrous ions within their cavity, using either hydrogen peroxide or molecular oxygen as the co-substrate, thus reducing the toxic effects of Fenton reactions. Interestingly, the interaction between Dps and transition metals (other than iron) is a known but relatively uncharacterized phenomenon. The impact of non-iron metals on the structure and function of Dps proteins is a current topic of research. This work focuses on the interaction between the Dps from Marinobacter nauticus (a marine facultative anaerobe bacterium capable of degrading petroleum hydrocarbons) and the cupric ion (Cu2+), one of the transition metals of greater biological relevance. Results obtained using electron paramagnetic resonance (EPR), Mössbauer and UV/Visible spectroscopies revealed that Cu2+ ions bind to specific binding sites in Dps, exerting a rate-enhancing effect on the ferroxidation reaction in the presence of molecular oxygen and directly oxidizing ferrous ions when no other co-substrate is present, in a yet uncharacterized redox reaction. This prompts additional research on the catalytic properties of Dps proteins.
Collapse
Affiliation(s)
- João P L Guerra
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Daniela Penas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro Tavares
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alice S Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Wang B, Wang S, Yan H, Bai Y, She Y, Zhang F. Synthesis and Enhanced Oil Recovery Potential of the Bio-Nano-Oil Displacement System. ACS OMEGA 2023; 8:17122-17133. [PMID: 37214730 PMCID: PMC10193539 DOI: 10.1021/acsomega.3c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) have attracted great attention in the tertiary oil recovery process due to their unique properties. As an economical and efficient green synthesis method, biosynthesized nanoparticles have the advantages of low toxicity, fast preparation, and high yield. In this study, with the theme of biotechnology, for the first time, the bio-nanoparticles reduced by iron-reducing bacteria were compounded with the biosurfactant produced by Bacillus to form a stable bio-nano flooding system, revealing the oil flooding mechanism and enhanced oil recovery (EOR) potential of the bio-nano flooding system. The interfacial properties of the bio-nano-oil displacement system were studied by interfacial tension and wettability change experiments. The enhanced oil recovery potential of the bio-nano-oil displacement agent was measured by microscopic oil displacement experiments and core flooding experiments. The bio-nano-oil displacement system with different nanoparticle concentrations can form a stable dispersion system. The oil-water interfacial tension and contact angle decreased with the increase in concentration of the bio-nano flooding system, which also has a high salt tolerance. Microscopic oil displacement experiments proved the efficient oil displacement of the bio-nano-oil displacement system and revealed its main oil displacement mechanism. The effects of concentration and temperature on the recovery of the nano-biological flooding system were investigated by core displacement experiments. The results showed that the recovery rate increased from 4.53 to 15.26% with the increase of the concentration of the system. The optimum experimental temperature was 60 °C, and the maximum recovery rate was 15.63%.
Collapse
Affiliation(s)
- Bo Wang
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
| | - Shunping Wang
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
| | - Huaxue Yan
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
| | - Yangsong Bai
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
| | - Yuehui She
- College
of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
- Hubei
Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China
| | - Fan Zhang
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Hubei
Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China
| |
Collapse
|
7
|
Lu M, Zhang H, Yin S, Jiang H, Wang X, Yang F. Biomimetic mineralization synthesis of poly(sodium 4‐styrenesulfonate)‐mediated calcium carbonate magnetic microsphere for kallikrein immobilization. SEPARATION SCIENCE PLUS 2022; 5:237-246. [DOI: 10.1002/sscp.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
AbstractIn this study, the poly (sodium 4‐styrenesulfonate)‐mediated calcium carbonate magnetic microspheres were prepared by a simple spontaneous biomimetic mineralization method to immobilize kallikrein. The immobilized kallikrein can be easily separated from the reaction mixture by an external magnet. The structural properties of the materials were studied by several characterization techniques. Subsequently, the immobilized kallikrein enzyme activity and stability were studied. Moreover, the inhibitory potency of ten natural compounds on kallikrein was evaluated by combining with capillary electrophoresis analysis. The immobilized kallikrein exhibited optimum pH and temperature at 7.5 and 75°C, respectively. After seven successive cycles, the immobilized kallikrein retained 82% of its initial activity. Furthermore, the Michaelis–Menten constant (Km) and the half‐maximal inhibitory concentration (IC50) of serine protease inhibitor on the immobilized kallikrein were determined to be 3.30 mM and 67.04 μM, respectively. In addition, berberine, evodine, coptisine, and jatrorrhizine among the ten natural compounds showed good inhibitory activity on the immobilized kallikrein, and their % of inhibition were (43.1 ± 1.7), (34.4 ± 1.9), (38.0 ± 1.7), and (28.5 ± 1.0)%, respectively. These results indicate that the biomimetic mineralization synthetic magnetic microsphere is an efficient method for kallikrein immobilization.
Collapse
Affiliation(s)
- Min Lu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shi‐Jun Yin
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hui Jiang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Xu Wang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Feng‐Qing Yang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
8
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
9
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
10
|
Time-Resolved Studies of Ytterbium Distribution at Interfacial Surfaces of Ferritin-like Dps Protein Demonstrate Metal Uptake and Storage Pathways. Biomedicines 2021; 9:biomedicines9080914. [PMID: 34440117 PMCID: PMC8389677 DOI: 10.3390/biomedicines9080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
Cage-shaped protein (CSP) complexes are frequently used in bionanotechnology, and they have a variety of different architectures and sizes. The smallest cage-shaped protein, Dps (DNA binding protein from starved cells), can naturally form iron oxide biominerals in a multistep process of ion attraction, translocation, oxidation, and nucleation. The structural basis of this biomineralization mechanism is still unclear. The aim of this paper is to further develop understanding of this topic. Time-resolved metal translocation of Yb3+ ions has been investigated on Dps surfaces using X-ray crystallography. The results reveal that the soak time of protein crystals with Yb3+ ions strongly affects metal positions during metal translocation, in particular, around and inside the ion translocation pore. We have trapped a dynamic state with ongoing translocation events and compared this to a static state, which is reached when the cavity of Dps is entirely filled by metal ions and translocation is therefore blocked. By comparison with La3+ and Co2+ datasets, the time-dependence together with the coordination sphere chemistry primarily determine metal−protein interactions. Our data can allow structure-based protein engineering to generate CSPs for the production of tailored nanoparticles.
Collapse
|
11
|
Biosynthetic magnetic nanocages: towards effective and safe magneto-catalytic cancer therapy. Sci Bull (Beijing) 2021; 66:640-642. [PMID: 36654434 DOI: 10.1016/j.scib.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Lei Z, Zhang Y, Liu G. eMIONs: novel genetically engineered nanocages for magnetic hyperthermia cancer therapy. Mol Cell Oncol 2021; 8:1863739. [PMID: 33553611 PMCID: PMC7849714 DOI: 10.1080/23723556.2020.1863739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
The clinical introduction of magnetic hyperthermia therapy (MHT) has been hindered by current available agents with poor magnetic-to-thermal conversion efficiency and biocompatibility. It is believed that the genetically engineered magnetic nanocages of encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) have great potential as clinically translatable MHT agents for cancer magneto-catalytic theranostics.
Collapse
Affiliation(s)
- Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Zhang Y, Wang X, Chu C, Zhou Z, Chen B, Pang X, Lin G, Lin H, Guo Y, Ren E, Lv P, Shi Y, Zheng Q, Yan X, Chen X, Liu G. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun 2020; 11:5421. [PMID: 33110072 PMCID: PMC7591490 DOI: 10.1038/s41467-020-19061-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zijian Zhou
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 117597, Singapore, Singapore
| | - Biaoqi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, 361021, Xiamen, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Yuxin Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 117597, Singapore, Singapore
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
14
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
15
|
Molybdate pumping into the molybdenum storage protein via an ATP-powered piercing mechanism. Proc Natl Acad Sci U S A 2019; 116:26497-26504. [PMID: 31811022 DOI: 10.1073/pnas.1913031116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molybdenum storage protein (MoSto) deposits large amounts of molybdenum as polyoxomolybdate clusters in a heterohexameric (αβ)3 cage-like protein complex under ATP consumption. Here, we suggest a unique mechanism for the ATP-powered molybdate pumping process based on X-ray crystallography, cryoelectron microscopy, hydrogen-deuterium exchange mass spectrometry, and mutational studies of MoSto from Azotobacter vinelandii First, we show that molybdate, ATP, and Mg2+ consecutively bind into the open ATP-binding groove of the β-subunit, which thereafter becomes tightly locked by fixing the previously disordered N-terminal arm of the α-subunit over the β-ATP. Next, we propose a nucleophilic attack of molybdate onto the γ-phosphate of β-ATP, analogous to the similar reaction of the structurally related UMP kinase. The formed instable phosphoric-molybdic anhydride becomes immediately hydrolyzed and, according to the current data, the released and accelerated molybdate is pressed through the cage wall, presumably by turning aside the Metβ149 side chain. A structural comparison between MoSto and UMP kinase provides valuable insight into how an enzyme is converted into a molecular machine during evolution. The postulated direct conversion of chemical energy into kinetic energy via an activating molybdate kinase and an exothermic pyrophosphatase reaction to overcome a proteinous barrier represents a novelty in ATP-fueled biochemistry, because normally, ATP hydrolysis initiates large-scale conformational changes to drive a distant process.
Collapse
|
16
|
Zeth K, Sancho-Vaello E, Okuda M. Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps. Inorg Chem 2019; 58:11351-11363. [PMID: 31433627 DOI: 10.1021/acs.inorgchem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from Listeria innocua to structurally characterize these steps for Co2+, Zn2+, and La3+ ions. The structures reveal that differences in their ion coordination chemistry determine alternative metal ion-binding sites on the areas of the surface surrounding the translocation pore that captures nine La3+, three Co2+, or three Zn2+ ions as aquo clusters and passes them on for translocation. Inside these pores, ion-selective conformational changes at key residues occur before a gating residue to actively move ions through the constriction zone. Ions upstream of the Asp130 gate residue are typically hydrated, while ions downstream directly interact with the protein matrix. Inside the cavity, ions move along negatively charged residues to the ferroxidase center, where seven main residues adapt to the three different ions by dynamically changing their conformations. In total, we observed more than 20 metal-binding sites per Dps monomer, which clearly highlights the metal-binding capacity of this protein family. Collectively, our results provide a detailed structural description of the preparative steps for amino acid-assisted biomineralization in Dps proteins, demonstrating unexpected protein matrix plasticity.
Collapse
Affiliation(s)
- Kornelius Zeth
- Roskilde University , Department of Science and Environment , Universitetsvej 1 , 4000 Roskilde , Denmark.,Universidad del Pais Vasco (UPV/EHU) , 48940 Leioa , Basque Country , Spain
| | - Enea Sancho-Vaello
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain
| | - Mitsuhiro Okuda
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain.,CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain.,IKERBASQUE , Basque Foundation for Science , 48011 Bilbao , Basque Country , Spain
| |
Collapse
|
17
|
Facile synthesis and antibacterial applications of cuprous oxide/bovine serum albumin hierarchical nanocomposite particles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0963-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
18
|
Balejcikova L, Molcan M, Kovac J, Kubovcikova M, Saksl K, Mitroova Z, Timko M, Kopcansky P. Hyperthermic effect in magnetoferritin aqueous colloidal solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
20
|
Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 2019; 103:2913-2935. [PMID: 30778643 DOI: 10.1007/s00253-019-09675-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles (MNPs) with their diverse physical and chemical properties have been applied in various biomedical domains. The increasing demand for MNPs has attracted researchers to develop straightforward, inexpensive, simple, and eco-friendly processes for the enhanced production of MNPs. To discover new biomedical applications first requires knowledge of the interactions of MNPs with target cells. This review focuses on plant and microbial synthesis of biological MNPs, their cellular uptake, biocompatibility, any biological consequences such as cytotoxicity, and biomedical applications. We highlighted the involvement of biomolecules in capping and stabilization of MNPs and the effect of physicochemical parameters particularly the pH on the synthesis of MNPs. Recently achieved milestones to understand the role of synthetic biology (SynBiol) in the synthesis of tailored MNPs are also discussed.
Collapse
|
21
|
Nanoreactor Design Based on Self-Assembling Protein Nanocages. Int J Mol Sci 2019; 20:ijms20030592. [PMID: 30704048 PMCID: PMC6387247 DOI: 10.3390/ijms20030592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Self-assembling proteins that form diverse architectures are widely used in material science and nanobiotechnology. One class belongs to protein nanocages, which are compartments with nanosized internal spaces. Because of the precise nanoscale structures, proteinaceous compartments are ideal materials for use as general platforms to create distinct microenvironments within confined cellular environments. This spatial organization strategy brings several advantages including the protection of catalyst cargo, faster turnover rates, and avoiding side reactions. Inspired by diverse molecular machines in nature, bioengineers have developed a variety of self-assembling supramolecular protein cages for use as biosynthetic nanoreactors that mimic natural systems. In this mini-review, we summarize current progress and ongoing efforts creating self-assembling protein based nanoreactors and their use in biocatalysis and synthetic biology. We also highlight the prospects for future research on these versatile nanomaterials.
Collapse
|
22
|
Poppe J, Brünle S, Hail R, Wiesemann K, Schneider K, Ermler U. The Molybdenum Storage Protein: A soluble ATP hydrolysis-dependent molybdate pump. FEBS J 2018; 285:4602-4616. [PMID: 30367742 DOI: 10.1111/febs.14684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
A continuous FeMo cofactor supply for nitrogenase maturation is ensured in Azotobacter vinelandii by developing a cage-like molybdenum storage protein (MoSto) capable to store ca. 120 molybdate molecules ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mtext>MoO</mml:mtext> <mml:mrow><mml:mn>4</mml:mn></mml:mrow> <mml:mrow><mml:mn>2</mml:mn> <mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> ) as discrete polyoxometalate (POM) clusters. To gain mechanistic insight into this process, MoSto was characterized by Mo and ATP/ADP content, structural, and kinetic analysis. We defined three functionally relevant states specified by the presence of both ATP/ADP and POM clusters (MoStofunct ), of only ATP/ADP (MoStobasal ) and of neither ATP/ADP nor POM clusters (MoStozero ), respectively. POM clusters are only produced when ATP is hydrolyzed to ADP and phosphate. Vmax was ca. 13 μmolphosphate ·min-1 ·mg-1 and Km for molybdate and ATP/Mg2+ in the low micromolar range. ATP hydrolysis presumably proceeds at subunit α, inferred from a highly occupied α-ATP/Mg2+ and a weaker occupied β-ATP/no Mg2+ -binding site found in the MoStofunct structure. Several findings indicate that POM cluster storage is separated into a rapid ATP hydrolysis-dependent molybdate transport across the protein cage wall and a slow molybdate assembly induced by combined auto-catalytic and protein-driven processes. The cage interior, the location of the POM cluster depot, is locked in all three states and thus not rapidly accessible for molybdate from the outside. Based on Vmax , the entire Mo storage process should be completed in less than 10 s but requires, according to the molybdate content analysis, ca. 15 min. Long-time incubation of MoStobasal with nonphysiological high molybdate amounts implicates an equilibrium in and outside the cage and POM cluster self-formation without ATP hydrolysis. DATABASES: The crystal structures MoSto in the MoSto-F6, MoSto-F7, MoStobasal , MoStozero , and MoSto-F1vitro states were deposited to PDB under the accession numbers PDB 6GU5, 6GUJ, 6GWB, 6GWV, and 6GX4.
Collapse
Affiliation(s)
- Juliane Poppe
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | - Steffen Brünle
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | - Ron Hail
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany.,Biochemie I, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Katharina Wiesemann
- Abteilung molelukare Biowissensschaften, Molekulare Zellbiologie der Pflanzen, Goethe Universität, Frankfurt am Main, Germany
| | - Klaus Schneider
- Biochemie I, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|
24
|
Magnetically targeted photothemal cancer therapy in vivo with bacterial magnetic nanoparticles. Colloids Surf B Biointerfaces 2018; 172:308-314. [PMID: 30176510 DOI: 10.1016/j.colsurfb.2018.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022]
Abstract
The biomineralized bacterial magnetic nanoparticles (BMPs) have been widely studied for biomedical applications with their magnetic properties and a layer of biomembrane. Herein, BMPs were firstly used for magnetically targeted photothermal cancer therapy in vivo. A self-build C-shaped bipolar permanent magnet was used for magnetic targeting though the generation of a high gradient magnetic field within a small target area. For in vitro simulated experiment, BMPs had a high retention rate in magnetically targeted region with different flow rates. In H22 tumor bearing mice, the magnetic targeting induced a 40% increase of BMPs retention in tumor tissues. In vivo photothermal therapy with 808 nm laser irradiation could induce a complete tumor elimination with magnetic targeting. These results indicated that the systematically administrated BMPs with magnetic targeting would be promising for photothermal cancer therapy.
Collapse
|
25
|
Manuguri S, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malmström J. Assembly of Protein Stacks With in Situ Synthesized Nanoparticle Cargo. NANO LETTERS 2018; 18:5138-5145. [PMID: 30047268 DOI: 10.1021/acs.nanolett.8b02055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of proteins to form hierarchical structures through self-assembly provides an opportunity to synthesize and organize nanoparticles. Ordered nanoparticle assemblies are a subject of widespread interest due to the potential to harness their emergent functions. In this work, the toroidal-shaped form of the protein peroxiredoxin, which has a pore size of 7 nm, was used to organize iron oxyhydroxide nanoparticles. Iron in the form of Fe2+ was sequestered into the central cavity of the toroid ring using metal-binding sites engineered there and then hydrolyzed to form iron oxyhydroxide particles bound into the protein pore. By precise manipulation of the pH, the mineralized toroids were organized into stacks confining one-dimensional nanoparticle assemblies. We report the formation and the procedures leading to the formation of such nanostructures and their characterization by chromatography and microscopy. Electrostatic force microscopy clearly revealed the formation of iron-containing nanorods as a result of the self-assembly of the iron-loaded protein. This research bodes well for the use of peroxiredoxin as a template with which to form nanowires and structures for electronic and magnetic applications.
Collapse
Affiliation(s)
- Sesha Manuguri
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - N Amy Yewdall
- Biomolecular Interaction Centre and School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | | | | | - Vaibhav Bhugra
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Juliet A Gerrard
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - David E Williams
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| |
Collapse
|
26
|
Williams SM, Chatterji D. Flexible aspartates propel iron to the ferroxidation sites along pathways stabilized by a conserved arginine in Dps proteins from Mycobacterium smegmatis. Metallomics 2018; 9:685-698. [PMID: 28418062 DOI: 10.1039/c7mt00008a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA-binding proteins under starvation (Dps) are dodecameric nano-compartments for iron oxidation and storage in bacterial cells. These proteins have roughly spherical structures with a hollow interior where iron is stored. Through mutational analysis of a conserved arginine residue in the second Dps protein from Mycobacterium smegmatis, we have identified residues which stabilize the interfaces between the iron entry and ferroxidation sites. Also, we have used X-ray crystallography to determine the structures of co-crystals of iron and Dps in varying proportions and compare the changes in these ligand-bound forms with respect to the apo-protein. The iron-loaded proteins of low, medium and high iron-bound forms were found to exhibit aspartate residues with alternate conformations, some of which could be directly linked to the sites of ferroxidation and iron entry. We conclude that the increased flexibility of aspartates in the presence of iron facilitates its movement from the entry site to the ferroxidaton site, and the two active sites are stabilized by the interactions of a conserved arginine residue R73.
Collapse
|
27
|
Putri R, Allende-Ballestero C, Luque D, Klem R, Rousou KA, Liu A, Traulsen CHH, Rurup WF, Koay MST, Castón JR, Cornelissen JJLM. Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake. ACS NANO 2017; 11:12796-12804. [PMID: 29166561 PMCID: PMC6150732 DOI: 10.1021/acsnano.7b07669] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent years have witnessed the emergence of bacterial semiorganelle encapsulins as promising platforms for bio-nanotechnology. To advance the development of encapsulins as nanoplatforms, a functional and structural basis of these assemblies is required. Encapsulin from Brevibacterium linens is known to be a protein-based vessel for an enzyme cargo in its cavity, which could be replaced with a foreign cargo, resulting in a modified encapsulin. Here, we characterize the native structure of B. linens encapsulins with both native and foreign cargo using cryo-electron microscopy (cryo-EM). Furthermore, by harnessing the confined enzyme (i.e., a peroxidase), we demonstrate the functionality of the encapsulin for an in vitro surface-immobilized catalysis in a cascade pathway with an additional enzyme, glucose oxidase. We also demonstrate the in vivo functionality of the encapsulin for cellular uptake using mammalian macrophages. Unraveling both the structure and functionality of the encapsulins allows transforming biological nanocompartments into functional systems.
Collapse
Affiliation(s)
- Rindia
M. Putri
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Carolina Allende-Ballestero
- Department
of Structure of Macromolecules, Centro Nacional
de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Department
of Structure of Macromolecules, Centro Nacional
de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
- Centro
Nacional de Microbiología/Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robin Klem
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Katerina-Asteria Rousou
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Aijie Liu
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Christoph H.-H. Traulsen
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - W. Frederik Rurup
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Melissa S. T. Koay
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - José R. Castón
- Department
of Structure of Macromolecules, Centro Nacional
de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
- E-mail:
| | - Jeroen J. L. M. Cornelissen
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
- E-mail:
| |
Collapse
|
28
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
29
|
Bizo ML, Nietzsche S, Mansfeld U, Langenhorst F, Majzlan J, Göttlicher J, Ozunu A, Formann S, Krause K, Kothe E. Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14455-14462. [PMID: 28444564 DOI: 10.1007/s11356-017-9020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (μ-XRD), revealing the presence of pyromorphite, Pb5[PO4]3(Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.
Collapse
Affiliation(s)
- Maria L Bizo
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele 30, 400294, Cluj-Napoca, Romania.
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Ulrich Mansfeld
- Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, 07745, Jena, Germany
| | - Falko Langenhorst
- Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, 07745, Jena, Germany
| | - Juraj Majzlan
- Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, 07745, Jena, Germany
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-v.-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexandru Ozunu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele 30, 400294, Cluj-Napoca, Romania
| | - Steffi Formann
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| |
Collapse
|
30
|
Olsen CR, Smith TJ, Embley JS, Maxfield JH, Hansen KR, Peterson JR, Henrichsen AM, Erickson SD, Buck DC, Colton JS, Watt RK. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin. NANOTECHNOLOGY 2017; 28:195601. [PMID: 28332483 DOI: 10.1088/1361-6528/aa68ae] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates the comproportionation reaction of MnII with [Formula: see text] as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that [Formula: see text] serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.
Collapse
Affiliation(s)
- Cameron R Olsen
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Okuda M, Schwarze T, Eloi JC, Ward Jones SE, Heard PJ, Sarua A, Ahmad E, Kruglyak VV, Grundler D, Schwarzacher W. Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein arrays. NANOTECHNOLOGY 2017; 28:155301. [PMID: 28294104 DOI: 10.1088/1361-6528/aa62f3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show that chemical fixation enables top-down micro-machining of large periodic 3D arrays of protein-encapsulated magnetic nanoparticles (NPs) without loss of order. We machined 3D micro-cubes containing a superlattice of NPs by means of focused ion beam etching, integrated an individual micro-cube to a thin-film coplanar waveguide and measured the resonant microwave response. Our work represents a major step towards well-defined magnonic metamaterials created from the self-assembly of magnetic nanoparticles.
Collapse
Affiliation(s)
- M Okuda
- University of Bristol, H. H. Wills Physics Laboratory, School of Physics, Tyndall Avenue, Bristol BS8 1TL, United Kingdom. CIC nanoGUNE consolider, Avenida Tolosa 76, E-20018, Donostita-San Sebastian, Spain. Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 6ª planta, E-48013 Bilbao, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017; 69:414-422. [DOI: 10.1002/iub.1621] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Arosio
- Laboratory of Molecular Biology, Department of Molecular and Translational MedicineUniversity of BresciaBrescia Italy
| | - Leonardo Elia
- Laboratory of Molecular Biology, Department of Molecular and Translational MedicineUniversity of BresciaBrescia Italy
- Humanitas Clinical and Research CenterRozzano MI Italy
| | - Maura Poli
- Laboratory of Molecular Biology, Department of Molecular and Translational MedicineUniversity of BresciaBrescia Italy
| |
Collapse
|
33
|
Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng 2017; 11:633-646. [PMID: 29503759 DOI: 10.1007/s11705-017-1620-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
He M, Zhang Y, Munyemana JC, Wu T, Yang Z, Chen H, Qu W, Xiao J. Tuning the hierarchical nanostructure of hematite mesocrystals via collagen-templated biomineralization. J Mater Chem B 2017; 5:1423-1429. [DOI: 10.1039/c6tb02642g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of hematite mesocrystals with a tunable hierarchical nanostructure plays a critical role in the construction of improved functional materials.
Collapse
Affiliation(s)
- Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yuping Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Ting Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Zhangfu Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Haijun Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Wanpeng Qu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
35
|
Ishihara K, Chen W, Liu Y, Tsukamoto Y, Inoue Y. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:300-312. [PMID: 27877883 PMCID: PMC5111563 DOI: 10.1080/14686996.2016.1190257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 05/23/2023]
Abstract
Multifunctional polymeric nanoparticles are materials with great potential for a wide range of biomedical applications. For progression in this area of research, unfavorable interactions of these nanoparticles with proteins and cells must be avoided in biological environments, for example, through treatment of the nanoparticle surfaces. Construction of an artificial cell membrane structure based on polymers bearing the zwitterionic phosphorylcholine group can prevent biological reactions at the surface effectively. In addition, certain bioactive molecules can be immobilized on the surface of the polymer to generate enough affinity to capture target biomolecules. Furthermore, entrapment of inorganic nanoparticles inside polymeric matrices enhances the nanoparticle functionality significantly. This review summarizes the preparation and characterization of cytocompatible and multifunctional polymeric nanoparticles; it analyzes the efficiency of their fluorescence function, the nature of the artificial cell membrane structure, and their performance as in-cell devices; and finally, it evaluates both their chemical reactivity and effects in cells.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Weixin Chen
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yihua Liu
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuriko Tsukamoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|