1
|
Zhao Z, Zhou J, Li X, Zhang T, Tian Z, Sun T, Jiang C. Manganese-based virus-mimicking nanomedicine with triple immunomodulatory functions inhibits breast cancer brain metastasis. Biomaterials 2025; 320:123262. [PMID: 40138963 DOI: 10.1016/j.biomaterials.2025.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/23/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Hindered by the challenges of blood-brain barrier (BBB) hindrance, tumor heterogeneity and immunosuppressive microenvironment, patients with breast cancer brain metastasis have yet to benefit from current clinical treatments, experiencing instead a decline in quality of life due to radiochemotherapy. While virus-mimicking nanosystems (VMN) mimicking viral infection processes show promise in treating peripheral tumors, the inability to modulate the immunosuppressive microenvironment limits the efficacy against brain metastasis. Accordingly, a VMN-based triple immunomodulatory strategy is initially proposed, aiming to activate innate and adaptive immune responses and reverse the immunosuppressive microenvironment. Here, manganese-based virus-mimicking nanomedicine (Vir-HD@HM) with intratumoral drug enrichment is engineered. Vir-HD@HM can induce the immune response through the activation of cGAS-STING by mimicking the in vivo infection process of herpesviruses. Meanwhile, DNAzyme mimicking the genome can rescue the epigenetic silencing of PTEN with the assistance of Mn2+, thus ameliorating the immunosuppressive metastatic microenvironment and achieving synergistic sensitizing therapeutic efficacy. In vivo experiments substantiate the efficacy of Vir-HD@HM in recruiting NK cells and CD8+ T cells to metastatic foci, inhibiting Treg cells infiltration, and prolonging murine survival without adjunctive radiochemotherapy. This study demonstrates that Vir-HD@HM with triple immunomodulation offers an encouraging therapeutic option for patients with brain metastasis.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Jingyi Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Muñoz-González M, Silva-Galleguillos V, Parra-Meneses V, Aguilar R, Cepeda-Plaza M. Catalytic mechanisms of the 8-17 and 10-23 DNAzymes: shared mechanistic strategies. Org Biomol Chem 2025; 23:4564-4577. [PMID: 40243498 DOI: 10.1039/d5ob00387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
RNA-cleaving DNAzymes have emerged as promising catalytic nucleic acids with potential applications in biotechnology and therapeutics. Among them, the 10-23 and 8-17 DNAzymes, both derived from the same in vitro selection experiment, have emerged as the most widely studied RNA-cleaving DNAzymes due to their high catalytic efficiency and broad metal ion dependence. Despite their apparent structural differences, recent structural, functional, and computational studies have revealed convergent catalytic strategies in their mechanisms. This review examines the commonalities between the 8-17 and 10-23 DNAzymes, offering a comparative mechanistic perspective on the catalytic strategies underlying their RNA cleavage activity, following the nomenclature proposed by Breaker et al. We discuss recent evidence from functional, crystallographic, NMR-based, and molecular dynamics studies that highlight how conserved guanine residues act as general bases, while hydrated metal ions contribute as general acids in both DNAzymes. By summarizing the latest advancements in the field, this review aims to provide a comprehensive perspective on the fundamental catalytic strategies employed by the 8-17 and the 10-23 DNAzymes and their relevance for future applications in nucleic acid-based catalysis.
Collapse
Affiliation(s)
- Marcelo Muñoz-González
- Chemical Sciences Department, Universidad Andres Bello, Santiago, Chile.
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | | | | | - Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
3
|
Kaiser L, Ondruš M, Poštová Slavětínská L, Raindlová V, Hocek M. Polymerase Synthesis of Hypermodified DNA Displaying a Combination of Thiol, Hydroxyl, Carboxylate, and Imidazole Functional Groups in the Major Groove. Chemistry 2025:e202501034. [PMID: 40327399 DOI: 10.1002/chem.202501034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
We designed and synthesized a set of six 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing functional groups mimicking amino acid side chains in enzyme active sites (OH, SH, COOH, and imidazole) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through different linkers. These modified dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using several DNA polymerases. In primer extension (PEX), all modified dNTPs provided DNA containing one, two, three, or, (all) four modified nucleotides each bearing a different modification, although the thiol-modified dNTPs were worse substrates compared to the others. In PCR, we observed exponential amplification for any combination of one, two, or three nonsulfur dNTPs but the thiol-modified dNTP did not work well in any combinations. Sequencing of the hypermodified DNA confirmed the good fidelity of the incorporation of all the modified nucleotides. This set of modified dNTPs extends the portfolio of building blocks for prospective use in selections of functional nucleic acids.
Collapse
Affiliation(s)
- Lukáš Kaiser
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, CZ-12843, Czech Republic
| |
Collapse
|
4
|
Solyanikova VV, Gorbenko DA, Zryacheva VV, Shtro AA, Rubel MS. Multicomponent DNA Nanomachines for Amplification-Free Viral RNA Detection. Int J Mol Sci 2025; 26:3652. [PMID: 40332168 PMCID: PMC12026728 DOI: 10.3390/ijms26083652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
The rapid and accurate detection of viral infections is of paramount importance, given their widespread impact across diverse demographics. Common viruses such as influenza, parainfluenza, rhinovirus, and adenovirus contribute significantly to respiratory illnesses. The pathogenic nature of certain viruses, characterized by rapid mutations and high transmissibility, underscores the urgent need for dynamic detection methodologies. Quantitative reverse transcription PCR (RT-qPCR) remains the gold-standard diagnostic tool. Its reliance on costly equipment, reagents, and skilled personnel has driven explorations of alternative approaches, such as catalytic DNA nanomachines. Diagnostic platforms using catalytic DNA nanomachines offer amplification-free nucleic acid detection without the need for protein enzymes and demonstrate feasibility and cost-effectiveness for both laboratory and point-of-care diagnostics. This study focuses on the development of multicomponent DNA nanomachines with catalytic proficiency towards a fluorescent substrate, enabling the generation of a fluorescent signal upon the presence of target nucleic acids. Specifically tailored variants are designed for detecting human parainfluenza virus type 3 (HPIV) and respiratory syncytial virus (RSV). The engineered DNA nanomachine features six RNA-binding arms for recognition and unwinding of RNA secondary structures, along with a catalytic core for nucleic acid cleavage, indicating potential utility in real clinical practice with minimal requirements. This research showcases the potential of DNA nanomachines as a reliable and sensitive diagnostic tool for RNA virus identification, offering promising prospects for clinical applications in the realm of infectious disease management.
Collapse
Affiliation(s)
- Valeria V. Solyanikova
- DNA-Nanosensoric Diagnostic Lab., ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (V.V.S.); (D.A.G.); (M.S.R.)
| | - Daria A. Gorbenko
- DNA-Nanosensoric Diagnostic Lab., ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (V.V.S.); (D.A.G.); (M.S.R.)
| | - Valeriya V. Zryacheva
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., 197022 St. Petersburg, Russia;
| | - Anna A. Shtro
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., 197022 St. Petersburg, Russia;
| | - Maria S. Rubel
- DNA-Nanosensoric Diagnostic Lab., ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (V.V.S.); (D.A.G.); (M.S.R.)
- Amyloid Biology Lab., St. Petersburg State University, 7-9 Universitetskaya enb., 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Li T, Zhang Y, Cheng W, Wang T, Hou S, Zhao S, Pan L, Chen M, Ding C, Liu Q. Advancements in DNAzyme-based biosensors for the detection of hazardous substances in foodstuff: current applications and future perspectives. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188422 DOI: 10.1080/10408398.2025.2486268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
DNAzyme-based biosensors have emerged as a promising tool for ensuring food safety due to their high sensitivity, specificity, and potential for rapid, cost-effective detection of hazardous substances. These biosensors leverage DNAzymes-catalytically active DNA molecules-to detect a range of contaminants, including metal ions, fungal toxins, pesticides, and pathogens. While DNAzyme-based biosensors show significant advantages over conventional techniques, challenges such as nuclease degradation, interference from complex sample matrices, and the high costs associated with DNAzyme synthesis still hinder their widespread application. Recent advancements in the stability of DNAzymes, their immobilization strategies, and integration with nanomaterials are progressively addressing these limitations, enhancing the performance and reliability of DNAzyme-based sensors. This review highlights the structural and catalytic characteristics of DNAzymes, assesses their current applications in food safety, and discusses innovative strategies to overcome existing challenges. The continuous evolution of DNAzyme-based biosensors, particularly in design and device integration, holds great promise for their future role in routine, reliable food analysis.
Collapse
Affiliation(s)
- Taolin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Yijia Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiwei Cheng
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Tiantian Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Shuai Hou
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Siqi Zhao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| |
Collapse
|
6
|
Kolpashchikov DM, Gerasimova YV. Cleavage of Structured RNAs Is Accelerated by High Affinity DNAzyme Agents. Chembiochem 2025; 26:e202400950. [PMID: 39901000 DOI: 10.1002/cbic.202400950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
DNAzymes (Dz) have been suggested as sequence-specific agents for cleaving RNA for therapeutic purposes. This concept paper discusses the challenges of Dz 10-23 design to effciently cleave folded RNA substrates. Dz with traditionally designed RNA binding arms (Tm~37 °C) have low affinity to the folded RNA substrates, which limits the overall cleavage rate. The RNA cleavage can be facilitated using Dz with high-affinity arms. However, this strategy is efficient only for cleaving RNA into folded RNA products. The unfolded products inhibit multiple substrate turnover. In a more general approach, Dz should be equipped with additional RNA binding arms to achieve tight RNA binding. This can be accomplished by bivalent and multivalent Dz constructs that have multiple catalytic cores. In all cases, high selectivity toward single nucleotide variations can be achieved in addition to multiple turnovers. The presence of RNase H, which plays a role in the antisense effect of oligonucleotide gene therapy agents, stabilizes the Dz:RNA complex and reduces its selectivity but significantly increases RNA cleavage efficiency. This work proposes changes in the algorithms of Dz design, which can help in constructing potent Dz agents for RNA inhibition both in cell cultures and in vivo. The concept article is supplemented with a quiz, which tests knowledge of the main concepts discussed in this work.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
| |
Collapse
|
7
|
Kuprikova N, Ondruš M, Bednárová L, Kraus T, Slavětínská L, Sýkorová V, Hocek M. Zwitterionic DNA: enzymatic synthesis of hypermodified DNA bearing four different cationic substituents at all four nucleobases. Nucleic Acids Res 2025; 53:gkaf155. [PMID: 40057376 PMCID: PMC11890062 DOI: 10.1093/nar/gkaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing cationic substituents (protonated amino, methylamino, dimethylamino and trimethylammonium groups) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through hex-1-ynyl or propargyl linker. These cationic dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase. In primer extension (PEX), we successfully obtained DNA containing one, two, three, or (all) four modified nucleotides, each bearing a different cationic modification. The cationic dNTPs were somewhat worse substrates compared to previously studied dNTPs bearing hydrophobic or anionic modifications, but the polymerase was still able to synthesize sequences up to 73 modified nucleotides. We also successfully combined one cationic modification with one anionic and two hydrophobic modifications in PEX. In polymerase chain reaction (PCR), we observed exponential amplification only in the case of one cationic modification, while the combination of more cationic nucleotides gave either very low amplification or no PCR product. The hypermodified oligonucleotides prepared by PEX were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies of hybridization, denaturation, and circular dichroism spectroscopy showed that the presence of cationic modifications increases the stability of duplexes.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
8
|
Wang R, Huang Z, Wu Z, Li X, Jiang JH. Chemical Engineering of DNAzyme for Effective Biosensing and Gene Therapy. SMALL METHODS 2025:e2401514. [PMID: 39895229 DOI: 10.1002/smtd.202401514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Indexed: 02/04/2025]
Abstract
RNA-cleaving DNAzymes are in vitro selected functional nucleic acids with inherent catalytic activities. Due to their unique properties, such as high specificity, substrate cleavage capability, and programmability, DNAzymes have emerged as powerful tools in the fields of analytical chemistry, chemical biology, and biomedicine. Nevertheless, the biological applications of DNAzymes are still impeded by several challenges, such as structural instability, compromised catalytic activity in biological environments and the lack of spatiotemporal control designs, which may result in false-positive signals, limited efficacy or non-specific activation associated with side effects. To address these challenges, various strategies have been explored to regulate DNAzyme activity through chemical modifications, enhancing their stability, selectivity, and functionality, thereby positioning them as ideal candidates for biological applications. In this review, a comprehensive overview of chemically modified DNAzymes is provided, discussing modification strategies and the effects of these modifications on DNAzymes. Specific examples of the use of chemically modified DNAzymes in biosensing and gene therapy are also presented and discussed. Finally, the current challenges in the field are addressed and offer perspectives on the potential direction for chemically modified DNAzymes.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhimei Huang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenkun Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, The Third Hospital of Changsha (the Affiliated Changsha Hospital of Hunan University), Hunan University, Changsha, 410015, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
9
|
Adeoye RI, Ralebitso-Senior TK, Boddis A, Reid AJ, Giuntini F, Fatokun AA, Powell AK, Ihekwaba-Ndibe A, Malomo SO, Olorunniji FJ. Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes. BIOSENSORS 2025; 15:12. [PMID: 39852063 PMCID: PMC11763995 DOI: 10.3390/bios15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities. Spermine alters the structures and enhances the activities of some G4 DNAzymes. The reported effect of spermine in shifting the conformation of some G4 DNAzymes from antiparallel to parallel has not been tested on multimeric G4 DNAzymes. In this study, we examined the effects of spermine on the catalytic activities of multivalent constructs of Bcl2, c-MYC, PS2.M, and PS5.M. Our findings show that spermine significantly improved the peroxidase activity of PS2.M, an antiparallel G4 DNAzyme, while there was no significant effect on c-MYC, which already exists in a parallel conformation. The addition of spermine led to a substantial increase in the initial velocity of PS2.M and its multimeric form, enhancing it by approximately twofold. Therefore, spermine enhancement offers promise in expanding the range of DNAzymes available for use as biosensing tools.
Collapse
Affiliation(s)
- Raphael I. Adeoye
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
- Department of Biochemistry, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Theresia K. Ralebitso-Senior
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | - Amanda Boddis
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | - Amanda J. Reid
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | - Francesca Giuntini
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | - Andrew K. Powell
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| | | | - Sylvia O. Malomo
- Department of Biochemistry, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.I.A.)
| |
Collapse
|
10
|
Aguilar R, Mardones C, Moreno AA, Cepeda-Plaza M. A guide to RNA structure analysis and RNA-targeting methods. FEBS J 2024. [PMID: 39718192 DOI: 10.1111/febs.17368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mardones
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
11
|
Yin F, Hou Z, Yao Y, He M, Xiang Y, Wang Z. Enzyme-free and highly sensitive detection of human epidermal growth factor receptor-2 based on MNAzyme signal amplification in breast cancer. J Mater Chem B 2024; 13:305-311. [PMID: 39539244 DOI: 10.1039/d4tb01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As a common cancer biomarker, human epidermal growth factor receptor-2 (HER2) is highly expressed in breast cancer. Consequently, developing a simple and accurate HER2 sensing platform is of great significance for early diagnosis and treatment of breast cancer. Herein, we developed a rapid enzyme-free fluorescent assay biosensor based on MNAzyme signal amplification for breast cancer biomarker, HER2. The MNAzyme consists of multiple parts, including complementary DNA (cDNA) and two parts of DNAzyme (partzyme A/B). Initially, cDNA is blocked by combining with the HER2 aptamer to form a double-stranded DNA. When HER2 is present, cDNA is released as a result of the binding between HER2 and its aptamer. Due to the complementary sequences among cDNA and partzyme A/B, the MNAzyme is successfully assembled to cleave the substrate, recovering the fluorescence output. The MNAzyme biosensor exhibited a low detection limit of 0.02 ng mL-1 and excellent selectivity. Furthermore, the proposed biosensor can also change the recognition element by changing the aptamer sequence to detect various biomarkers, holding great potential for cancer diagnosis and other related biomedical applications.
Collapse
Affiliation(s)
- Feifan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Miao He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
| |
Collapse
|
12
|
Albada B. Functionalized DNA secondary structures and nanostructures for specific protein modifications. Trends Biochem Sci 2024; 49:1124-1135. [PMID: 39443210 DOI: 10.1016/j.tibs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Sewid AH, Dylewski HC, Ramos JH, Morgan BM, Gelalcha BD, D'Souza DH, Wu JJ, Dego OK, Eda S. Colorimetric and electrochemical analysis of DNAzyme-LAMP amplicons for the detection of Escherichia coli in food matrices. Sci Rep 2024; 14:28942. [PMID: 39578633 PMCID: PMC11584896 DOI: 10.1038/s41598-024-80392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Foodborne bacteria like Escherichia coli threaten global food security, necessitating affordable, on-site detection methods, especially in resource-limited settings. This study optimized loop-mediated isothermal amplification (LAMP) integrated with peroxidase-mimicking G-quadruplex DNA structures (DNAzyme), termed DNAzyme-LAMP which was designed to incorporate two different catalytic DNAzymes per amplification unit, enabling colorimetric detection of E. coli in leafy vegetables and milk samples. Additionally, we introduce a novel electrochemical method that enhances analytical sensitivity. The optimized DNAzyme-LAMP achieved a detection limit below 6.3 CFU per reaction or 0.1 aM gene copies. This system lays the groundwork for the development of on-site biosensors and can be adapted for detecting other foodborne pathogens.
Collapse
Affiliation(s)
- Alaa H Sewid
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haley C Dylewski
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Joseph H Ramos
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bailey M Morgan
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Benti D Gelalcha
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Doris H D'Souza
- Departments of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA
| | - Oudessa Kerro Dego
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Shigetoshi Eda
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
14
|
Cai S, Li M, Hu X, Gui S, Li M, Zhang Y, Wang X, Zhou N. DNAzyme-mediated fluorescence signal variation of DNA-Ag nanoclusters and construction of an aptasensor for ATP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7676-7682. [PMID: 39403815 DOI: 10.1039/d4ay01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) are novel nanomaterials with unique fluorescence characteristics. DNAzyme is a functional oligonucleotide that can catalyze the disruption of nucleic acid substrates. In this research, the effect of DNAzyme digestion on the fluorescence property of DNA-AgNCs was explored for the first time. A significant reduction in the fluorescence intensity of DNA-AgNCs after cleavage by DNAzyme was discovered. Further research found that the DNAzyme-catalyzed cleavage reduced the stability of DNA-AgNCs and led to their aggregation, accounting for a decline in fluorescence intensity up to 84%. Inspired by the above finding, a fluorescent aptasensor that integrates the benefits of DNA-AgNCs, exonuclease III (Exo III)-assisted signal amplification and DNAzyme was developed for sensitive detection of adenosine triphosphate (ATP). Under optimal conditions, the linear range was from 25 μM to 1000 μM and the detection limit was estimated to be 4.46 μM. Furthermore, this fluorescent aptasensor was effectively employed to quantify ATP levels in human serum samples, demonstrating its practicality in detecting ATP in biological matrices. The elucidation of DNAzyme-based fluorescence characteristic variation of DNA-AgNCs may provide insights into the interactions between DNAzyme and nanomaterials and has great prospects in the construction of fluorescent biosensors.
Collapse
Affiliation(s)
- Shixin Cai
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Mingrui Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xinqi Hu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Shuhua Gui
- Department of Neurology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China.
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi 214000, China
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Cao X, Cai J, He Z, Ji H, Sun R, Zhang X, Chen C, Zhu Q. A strategy for detecting CSFV using DNAzyme-HCR cascade amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7772-7780. [PMID: 39403851 DOI: 10.1039/d4ay01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Hybridization Chain Reaction (HCR) is an isothermal amplification technique widely used for sensing nucleic acids and small molecules. Despite its effectiveness, conventional linear HCR exhibits relatively slow kinetics and insufficient sensitivity. To address this challenge, we have innovatively combined HCR with DNAzyme technology to enhance nucleic acid detection. In this novel approach, the presence of a target molecule triggers the formation of DNAzyme, leading to the cleavage of substrate S, the initiation of HCR, and the production of DNA nanowires and labeled DNAzyme. The newly generated DNAzyme continuously cleaves substrate S, promoting sequential HCR amplification and significantly enhancing the fluorescence signal. This system offers a simple, sensitive, selective, and versatile method for nucleic acid detection, with a detection limit as low as 5 pM. When tested on classical swine fever virus (CSFV) samples, the system demonstrated detection accuracy comparable to RT-qPCR and exhibited superior repeatability.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Jiajing Cai
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co. Ltd, Liuyang 410300, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co. Ltd, Liuyang 410300, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
16
|
Das PK, Silverman SK. Sequence-Dependent Acylation of Peptide Lysine Residues by DNAzymes. Chembiochem 2024; 25:e202400578. [PMID: 39239825 PMCID: PMC11543514 DOI: 10.1002/cbic.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
Methods for modifying intact peptides are useful but can be unselective with regard to amino acid position and sequence context. In this work, we used in vitro selection to identify DNAzymes that acylate a Lys residue of a short peptide in sequence-dependent fashion. The DNAzymes do not acylate Lys when placed at other residues in the peptide, and the acylation activity depends on the Lys sequence context. A high acylation yield is observed on the preparative nanomole scale. These findings are promising for further development of DNAzymes for broader application to top-down Lys acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Prakriti K Das
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| |
Collapse
|
17
|
Stratton RL, Pokhrel B, Smith B, Adeyemi A, Dhakal A, Shen H. DNA Catalysis: Design, Function, and Optimization. Molecules 2024; 29:5011. [PMID: 39519652 PMCID: PMC11547689 DOI: 10.3390/molecules29215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA's complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.
Collapse
Affiliation(s)
- Rebecca L. Stratton
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bryce Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Adeola Adeyemi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Ananta Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
18
|
Nurmi C, Gu J, Mathai A, Brennan J, Li Y. Making target sites in large structured RNAs accessible to RNA-cleaving DNAzymes through hybridization with synthetic DNA oligonucleotides. Nucleic Acids Res 2024; 52:11177-11187. [PMID: 39248110 PMCID: PMC11472044 DOI: 10.1093/nar/gkae778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The 10-23 DNAzyme is one of the most active DNA-based enzymes, and in theory, can be designed to target any purine-pyrimidine junction within an RNA sequence for cleavage. However, purine-pyrimidine junctions within a large, structured RNA (lsRNA) molecule of biological origin are not always accessible to 10-23, negating its general utility as an RNA-cutting molecular scissor. Herein, we report a generalizable strategy that allows 10-23 to access any purine-pyrimidine junction within an lsRNA. Using three large SARS-CoV-2 mRNA sequences of 566, 584 and 831 nucleotides in length as model systems, we show that the use of antisense DNA oligonucleotides (ASOs) that target the upstream and downstream regions flanking the cleavage site can restore the activity (kobs) of previously poorly active 10-23 DNAzyme systems by up to 2000-fold. We corroborated these findings mechanistically using in-line probing to demonstrate that ASOs reduced 10-23 DNAzyme target site structure within the lsRNA substrates. This approach represents a simple, efficient, cost-effective, and generalizable way to improve the accessibility of 10-23 to a chosen target site within an lsRNA molecule, especially where direct access to the genomic RNA target is necessary.
Collapse
MESH Headings
- DNA, Catalytic/chemistry
- DNA, Catalytic/metabolism
- SARS-CoV-2/genetics
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Nucleic Acid Hybridization
- Oligonucleotides, Antisense/chemistry
- Nucleic Acid Conformation
- RNA Cleavage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- COVID-19/virology
- RNA/chemistry
- RNA/metabolism
- DNA, Single-Stranded
Collapse
Affiliation(s)
- Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| | - Amal Mathai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - John D Brennan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| |
Collapse
|
19
|
Fu Y, Takeuchi N. Evolution of the division of labour between templates and catalysts in spatial replicator models. J Evol Biol 2024; 37:1158-1169. [PMID: 39120521 DOI: 10.1093/jeb/voae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The central dogma of molecular biology can be conceptualised as the division of labour between templates and catalysts, where templates transmit genetic information, catalysts accelerate chemical reactions, and the information flows from templates to catalysts but not from catalysts to templates. How can template-catalyst division evolve in primordial replicating systems? A previous study has shown that even if the template-catalyst division does not provide an immediate fitness benefit, it can evolve through symmetry breaking between replicating molecules when the molecules are compartmentalised into protocells. However, cellular compartmentalisation may have been absent in primordial replicating systems. Here, we investigate whether cellular compartmentalisation is necessary for the evolution of the template-catalyst division via symmetry breaking using an individual-based model of replicators in a two-dimensional space. Our results show that replicators evolve the template-catalyst division via symmetry breaking when their diffusion constant is sufficiently high, a condition that results in low genetic relatedness between replicators. The evolution of the template-catalyst division reduces the risk of invasion by "cheaters," replicators that have no catalytic activities, encode no catalysts, but replicate to the detriment of local population growth. Our results suggest that the evolution of the template-catalyst division via symmetry breaking does not require cellular compartmentalization and is, instead, a general phenomenon in replicators with structured populations.
Collapse
Affiliation(s)
- Yao Fu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nobuto Takeuchi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Research Center for Complex Systems Biology, Universal Biology Institute, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Das MK, Williams EP, Myhre MW, David WM, Kerwin SM. Calcium-Dependent Chemiluminescence Catalyzed by a Truncated c-MYC Promoter G-Triplex DNA. Molecules 2024; 29:4457. [PMID: 39339453 PMCID: PMC11434422 DOI: 10.3390/molecules29184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5'-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.
Collapse
Affiliation(s)
- Malay Kumar Das
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
| | - Elizabeth P. Williams
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Mitchell W. Myhre
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Wendi M. David
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Sean M. Kerwin
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| |
Collapse
|
21
|
Volek M, Kurfürst J, Kožíšek M, Srb P, Veverka V, Curtis E. Apollon: a deoxyribozyme that generates a yellow product. Nucleic Acids Res 2024; 52:9062-9075. [PMID: 38869058 PMCID: PMC11347176 DOI: 10.1093/nar/gkae490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
22
|
Boyd R, Kennebeck M, Miranda A, Liu Z, Silverman S. Site-specific N-alkylation of DNA oligonucleotide nucleobases by DNAzyme-catalyzed reductive amination. Nucleic Acids Res 2024; 52:8702-8716. [PMID: 39051544 PMCID: PMC11347174 DOI: 10.1093/nar/gkae639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
DNA and RNA nucleobase modifications are biologically relevant and valuable in fundamental biochemical and biophysical investigations of nucleic acids. However, directly introducing site-specific nucleobase modifications into long unprotected oligonucleotides is a substantial challenge. In this study, we used in vitro selection to identify DNAzymes that site-specifically N-alkylate the exocyclic nucleobase amines of particular cytidine, guanosine, and adenosine (C, G and A) nucleotides in DNA substrates, by reductive amination using a 5'-benzaldehyde oligonucleotide as the reaction partner. The new DNAzymes each require one or more of Mg2+, Mn2+, and Zn2+ as metal ion cofactors and have kobs from 0.04 to 0.3 h-1, with rate enhancement as high as ∼104 above the splinted background reaction. Several of the new DNAzymes are catalytically active when an RNA substrate is provided in place of DNA. Similarly, several new DNAzymes function when a small-molecule benzaldehyde compound replaces the 5'-benzaldehyde oligonucleotide. These findings expand the scope of DNAzyme catalysis to include nucleobase N-alkylation by reductive amination. Further development of this new class of DNAzymes is anticipated to facilitate practical covalent modification and labeling of DNA and RNA substrates.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Morgan M Kennebeck
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Aurora A Miranda
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Zehui Liu
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Volek M, Kurfürst J, Drexler M, Svoboda M, Srb P, Veverka V, Curtis E. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res 2024; 52:9049-9061. [PMID: 38860424 PMCID: PMC11347150 DOI: 10.1093/nar/gkae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Matúš Drexler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Michal Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
24
|
Wang S, Guang J, Gao Y, Fan B, Liang Y, Pan J, Li L, Meng W, Hu F. Fluorescent DNA tetrahedral probe with catalytic hairpin self-assembly reaction for imaging of miR-21 and miR-155 in living cells. Mikrochim Acta 2024; 191:462. [PMID: 38990374 DOI: 10.1007/s00604-024-06529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
A CHA-based fluorescent DNA tetrahedral probe (FDTp) has been designed to detect the microRNAs miR-21 and miR-155 sensitively and specifically in living cells. The design consisted of functional elements (H1, H2, and Protector) connected to a DNA tetrahedron modified with two pairs of fluorophores and quenching groups. In the presence of miR-21, the chain displacement effect was triggered and Cy3 fluorescence was emitted. In the presence of miR-155, the signal of the catalytic hairpin assembly (CHA) between H1 and H2 on FDTp was amplified, making the fluorescence of FAM sensitive to miR-155. Using this method, the detection limit for miR-155 was 5 pM. The FDTp successfully imaged miR-21 and miR-155 in living cells and distinguished a variety of cell lines based on their expression levels of miR-21 and miR-155. The detection and imaging of dual targets in this design ensured the accuracy of tumor diagnosis and provided a new method for early tumor diagnosis.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Guang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
- Pharmacy Department, Huangshan City People's Hospital, Liyuan Road, Tunxi District, Huangshan, 245000, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Hu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
25
|
Cao G, Yang N, Yang J, Li J, Wang L, Nie F, Huo D, Hou C. Label-Free and DNAzyme-Mediated Biosensor with a High Signal-to-Noise Ratio for a Lumpy Skin Disease Virus Assay. Anal Chem 2024; 96:10927-10934. [PMID: 38934225 DOI: 10.1021/acs.analchem.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·μL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jun Yang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jiali Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
26
|
Sun J, Chen X, Lin Y, Cai X. MicroRNA-29c-tetrahedral framework nucleic acids: Towards osteogenic differentiation of mesenchymal stem cells and bone regeneration in critical-sized calvarial defects. Cell Prolif 2024; 57:e13624. [PMID: 38414296 PMCID: PMC11216942 DOI: 10.1111/cpr.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Certain miRNAs, notably miR29c, demonstrate a remarkable capacity to regulate cellular osteogenic differentiation. However, their application in tissue regeneration is hampered by their inherent instability and susceptibility to degradation. In this study, we developed a novel miR29c delivery system utilising tetrahedral framework nucleic acids (tFNAs), aiming to enhance its stability and endocytosis capability, augment the efficacy of miR29c, foster osteogenesis in bone marrow mesenchymal stem cells (BMSCs), and significantly improve the repair of critical-sized bone defects (CSBDs). We confirmed the successful synthesis and biocompatibility of sticky ends-modified tFNAs (stFNAs) and miR29c-modified stFNAs (stFNAs-miR29c) through polyacrylamide gel electrophoresis, microscopy scanning, a cell counting kit-8 assay and so on. The mechanism and osteogenesis effects of stFNAs-miR29c were explored using immunofluorescence staining, western blotting, and reserve transcription quantitative real-time polymerase chain reaction. Additionally, the impact of stFNAs-miR29c on CSBD repair was assessed via micro-CT and histological staining. The nano-carrier, stFNAs-miR29c was successfully synthesised and exhibited exemplary biocompatibility. This nano-nucleic acid material significantly upregulated osteogenic differentiation-related markers in BMSCs. After 2 months, stFNAs-miR29c demonstrated significant bone regeneration and reconstruction in CSBDs. Mechanistically, stFNAs-miR29c enhanced osteogenesis of BMSCs by upregulating the Wnt signalling pathway, contributing to improved bone tissue regeneration. The development of this novel nucleic acid nano-carrier, stFNAs-miR29c, presents a potential new avenue for guided bone regeneration and bone tissue engineering research.
Collapse
Affiliation(s)
- Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| |
Collapse
|
27
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
28
|
Wieruszewska J, Pawłowicz A, Połomska E, Pasternak K, Gdaniec Z, Andrałojć W. The 8-17 DNAzyme can operate in a single active structure regardless of metal ion cofactor. Nat Commun 2024; 15:4218. [PMID: 38760331 PMCID: PMC11101458 DOI: 10.1038/s41467-024-48638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.
Collapse
Affiliation(s)
- Julia Wieruszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Aleksandra Pawłowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Ewa Połomska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland.
| |
Collapse
|
29
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
30
|
Wang B, Pan X, Teng IT, Li X, Kobeissy F, Wu ZY, Zhu J, Cai G, Yan H, Yan X, Liang M, Yu F, Lu J, Yang Z, Biondi E, Haskins W, Cao YC, Benner SA, Tan W, Wang KK. Functional Selection of Tau Oligomerization-Inhibiting Aptamers. Angew Chem Int Ed Engl 2024; 63:e202402007. [PMID: 38407551 DOI: 10.1002/anie.202402007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6 nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3β-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, No. 7, Alachua, FL 32615, USA
| | - Xiaoshu Pan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - I-Ting Teng
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Xiaowei Li
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310-1458, (USA). Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Zo-Yu Wu
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310-1458, (USA). Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310-1458, (USA). Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Guangzheng Cai
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310-1458, (USA). Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - He Yan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Xin Yan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Mingwei Liang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Fahong Yu
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, No. 7, Alachua, FL 32615, USA
| | - Elisa Biondi
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, No. 7, Alachua, FL 32615, USA
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080-7066, USA
| | - Y Charles Cao
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, No. 7, Alachua, FL 32615, USA
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Kevin K Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310-1458, (USA). Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080-7066, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA
| |
Collapse
|
31
|
Kotammagari TK, Saleh LY, Lönnberg T. Organometallic modification confers oligonucleotides new functionalities. Chem Commun (Camb) 2024; 60:3118-3128. [PMID: 38385213 DOI: 10.1039/d4cc00305e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To improve their properties or to introduce entirely new functionalities, the intriguing scaffolds of nucleic acids have been decorated with various modifications, most recently also organometallic ones. While challenging to introduce, organometallic modifications offer the potential of expanding the field of application of metal-dependent functionalities to metal-deficient conditions, notably those of biological media. So far, organometallic moieties have been utilized as probes, labels and catalysts. This Feature Article summarizes recent efforts and predicts likely future developments in each of these lines of research.
Collapse
Affiliation(s)
- Tharun K Kotammagari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Lange Yakubu Saleh
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
32
|
Smirnov VV, Drozd VS, Patra CK, Hussein Z, Rybalko DS, Kozlova AV, Nour MAY, Zemerova TP, Kolosova OS, Kalnin AY, El-Deeb AA. Towards the development of a DNA automaton: modular RNA-cleaving deoxyribozyme logic gates regulated by miRNAs. Analyst 2024; 149:1947-1957. [PMID: 38385166 DOI: 10.1039/d3an02178e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.
Collapse
Affiliation(s)
- Viktor V Smirnov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Valerya S Drozd
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Christina K Patra
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Zain Hussein
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Daria S Rybalko
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Anastasia V Kozlova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Tatiana P Zemerova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Olga S Kolosova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Faculty of Industrial Drug Technology, Saint Petersburg State Chemical and Pharmaceutical University, 14, lit. A, st. Professor Popov, 197022, St. Petersburg, Russian Federation
| | - Arseniy Y Kalnin
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Institute of Chemistry, Saint Petersburg University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russian Federation
| | - Ahmed A El-Deeb
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| |
Collapse
|
33
|
Takezawa Y, Zhang H, Mori K, Hu L, Shionoya M. Ligase-mediated synthesis of Cu II-responsive allosteric DNAzyme with bifacial 5-carboxyuracil nucleobases. Chem Sci 2024; 15:2365-2370. [PMID: 38362437 PMCID: PMC10866359 DOI: 10.1039/d3sc05042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
A CuII-responsive allosteric DNAzyme has been developed by introducing bifacial 5-carboxyuracil (caU) nucleobases, which form both hydrogen-bonded caU-A and metal-mediated caU-CuII-caU base pairs. The base sequence was logically designed based on a known RNA-cleaving DNAzyme so that the caU-modified DNAzyme (caU-DNAzyme) can form a catalytically inactive structure containing three caU-A base pairs and an active form with three caU-CuII-caU pairs. The caU-DNAzyme was synthesized by joining short caU-containing fragments with a standard DNA ligase. The activity of caU-DNAzyme was suppressed without CuII, but enhanced 21-fold with the addition of CuII. Furthermore, the DNAzyme activity was turned on and off during the reaction by the addition and removal of CuII ions. Both ligase-mediated synthesis and CuII-dependent allosteric regulation were achieved by the bifacial base pairing properties of caU. This study provides a new strategy for designing stimuli-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hanci Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
34
|
Kennebeck MM, Kaminsky CK, Massa MA, Das PK, Boyd RD, Bishka M, Tricarico JT, Silverman SK. DNAzyme-Catalyzed Site-Specific N-Acylation of DNA Oligonucleotide Nucleobases. Angew Chem Int Ed Engl 2024; 63:e202317565. [PMID: 38157448 PMCID: PMC10873475 DOI: 10.1002/anie.202317565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
We used in vitro selection to identify DNAzymes that acylate the exocyclic nucleobase amines of cytidine, guanosine, and adenosine in DNA oligonucleotides. The acyl donor was the 2,3,5,6-tetrafluorophenyl ester (TFPE) of a 5'-carboxyl oligonucleotide. Yields are as high as >95 % in 6 h. Several of the N-acylation DNAzymes are catalytically active with RNA rather than DNA oligonucleotide substrates, and eight of nine DNAzymes for modifying C are site-specific (>95 %) for one particular substrate nucleotide. These findings expand the catalytic ability of DNA to include site-specific N-acylation of oligonucleotide nucleobases. Future efforts will investigate the DNA and RNA substrate sequence generality of DNAzymes for oligonucleotide nucleobase N-acylation, toward a universal approach for site-specific oligonucleotide modification.
Collapse
Affiliation(s)
- Morgan M Kennebeck
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Caroline K Kaminsky
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Maria A Massa
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Prakriti K Das
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Robert D Boyd
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Michelle Bishka
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - J Tomas Tricarico
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| |
Collapse
|
35
|
Rath WH, Göstl R, Herrmann A. Mechanochemical Activation of DNAzyme by Ultrasound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306236. [PMID: 38308193 PMCID: PMC10885644 DOI: 10.1002/advs.202306236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Controlling the activity of DNAzymes by external triggers is an important task. Here a temporal control over DNAzyme activity through a mechanochemical pathway with the help of ultrasound (US) is demonstrated. The deactivation of the DNAzyme is achieved by hybridization to a complementary strand generated through rolling circle amplification (RCA), an enzymatic polymerization process. Due to the high molar mass of the resulting polynucleic acids, shear force can be applied on the RCA strand through inertial cavitation induced by US. This exerts mechanical force and leads to the cleavage of the base pairing between RCA strand and DNAzyme, resulting in the recovery of DNAzyme activity. This is the first time that this release mechanism is applied for the activation of catalytic nucleic acids, and it has multiple advantages over other stimuli. US has higher penetration depth into tissues compared to light, and it offers a more specific stimulus than heat, which has also limited use in biological systems due to cell damage caused by hyperthermia. This approach is envisioned to improve the control over DNAzyme activity for the development of reliable and specific sensing applications.
Collapse
Affiliation(s)
- Wolfgang H. Rath
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Robert Göstl
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
36
|
Wang X, Yu B, Sakurabayashi S, Paz-Villatoro JM, Iwahara J. Robust Enzymatic Production of DNA G-Quadruplex, Aptamer, DNAzyme, and Other Oligonucleotides: Applications for NMR. J Am Chem Soc 2024; 146:1748-1752. [PMID: 38191993 PMCID: PMC10926321 DOI: 10.1021/jacs.3c11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Single-stranded DNA (ssDNA) oligonucleotides are widely used in biological research, therapeutics, biotechnology, and nanomachines. Large-scale enzymatic production of ssDNA oligonucleotides forming noncanonical structures has been difficult. Here, we present a simple and robust method named "palindrome-nicking-dependent amplification" (PaNDA) for enzymatic production of a large amount of ssDNA oligonucleotides. It utilizes a strand-displacing DNA polymerase and a nicking enzyme together with input DNA and deoxynucleotide triphosphates at 55 °C. Scaling up of PaNDA is straightforward due to its isothermal nature. The ssDNA products can easily be isolated through anion-exchange chromatography under nondenaturing conditions. We demonstrate applications of PaNDA to 13C/15N-labeling of various DNA strands, including a 22-nt telomere repeat G-quadruplex, a 26-nt therapeutic aptamer, and a 33-nt DNAzyme. The 13C/15N-labeling by PaNDA greatly facilitates the characterization of noncanonical DNA by nuclear magnetic resonance (NMR) spectroscopy. For example, the behavior of therapeutic DNA aptamers in human serum can be investigated.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Shuhei Sakurabayashi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Jonathan M Paz-Villatoro
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
37
|
Liu J, Cui L, Shi X, Yan J, Wang Y, Ni Y, He J, Wang X. Generation of DNAzyme in Bacterial Cells by a Bacterial Retron System. ACS Synth Biol 2024; 13:300-309. [PMID: 38171507 DOI: 10.1021/acssynbio.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the in vivo application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized in vivo, thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA in vivo using ncRNA msr/msd as a template. The objective of this work is to reduce target gene expression using Dz 10-23 generated in vivo by the retron system. In this regard, we successfully generated Dz 10-23 by cloning the Dz 10-23 coding sequence into the retron msd gene and tested its ability to reduce specific gene expression by examining the mRNA levels of cfp encoding cyan fluorescence protein and other functional genes such as mreB and ftsZ. We found that Dz had different repressive effects when targeting different mRNA regions, and in general, the repressive effect was stronger when targeting downstream of mRNAs. Our results also suggested that the reduction effect was due to cleavage of the substrate mRNA by Dz 10-23 rather than the antisense effect of the substrate-binding arm. Therefore, this study not only provided a retron-based method for the intracellular generation of Dz 10-23 but also demonstrated that Dz 10-23 could reduce gene expression by cleaving target mRNAs in cells. We believe that this new strategy would have great potential in the regulation of gene expression.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lina Cui
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahao Yan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yifei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao 334001, PR China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
38
|
Nedorezova DD, Dubovichenko MV, Kalnin AJ, Nour MAY, Eldeeb AA, Ashmarova AI, Kurbanov GF, Kolpashchikov DM. Cleaving Folded RNA with DNAzyme Agents. Chembiochem 2024; 25:e202300637. [PMID: 37870555 DOI: 10.1002/cbic.202300637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Cleavage of biological mRNA by DNAzymes (Dz) has been proposed as a variation of oligonucleotide gene therapy (OGT). The design of Dz-based OGT agents includes computational prediction of two RNA-binding arms with low affinity (melting temperatures (Tm ) close to the reaction temperature of 37 °C) to avoid product inhibition and maintain high specificity. However, RNA cleavage might be limited by the RNA binding step especially if the RNA is folded in secondary structures. This calls for the need for two high-affinity RNA-binding arms. In this study, we optimized 10-23 Dz-based OGT agents for cleavage of three RNA targets with different folding energies under multiple turnover conditions in 2 mM Mg2+ at 37 °C. Unexpectedly, one optimized Dz had each RNA-binding arm with a Tm ≥60 °C, without suffering from product inhibition or low selectivity. This phenomenon was explained by the folding of the RNA cleavage products into stable secondary structures. This result suggests that Dz with long (high affinity) RNA-binding arms should not be excluded from the candidate pool for OGT agents. Rather, analysis of the cleavage products' folding should be included in Dz selection algorithms. The Dz optimization workflow should include testing with folded rather than linear RNA substrates.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Mikhail V Dubovichenko
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Arseniy J Kalnin
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Gabdulla F Kurbanov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
39
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Metal-dependent activity control of a compact-sized 8-17 DNAzyme based on metal-mediated unnatural base pairing. Chem Commun (Camb) 2024; 60:288-291. [PMID: 38063055 DOI: 10.1039/d3cc05520e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A compact 8-17 DNAzyme was modified with a CuII-meditated artificial base pair to develop a metal-responsive allosteric DNAzyme. The base sequence was rationally designed based on the reported three-dimensional structure. The activity of the modified DNAzyme was enhanced 5.1-fold by the addition of one equivalent of CuII ions, showing good metal responsiveness. Since it has been challenging to modify compactly folded DNAzymes without losing their activity, this study demonstrates the utility of the metal-mediated artificial base pairing to create stimuli-responsive functional DNAs.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
40
|
Ma Y, Chen R, Zhang R, Liang J, Ren S, Gao Z. Application of DNA-fueled molecular machines in food safety testing. Compr Rev Food Sci Food Saf 2024; 23:1-22. [PMID: 38284608 DOI: 10.1111/1541-4337.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Food is consumed by humans, which is indispensable to human life. Therefore, considerable attention of the whole society has been paid to food safety. Over the last few years, dramatic social development has brought new challenges to food safety, making developing new and quick methods for on-site food safety testing an important necessity. As a result, DNA-fueled molecular machines, characterized by high efficiency, accuracy, and sensitivity in testing, have come into the spotlight, based on which sensors can be constructed to detect toxic and harmful substances in food products. This study reviewed recent research on several DNA-fueled molecular machines, including DNA tweezers, DNA walkers, and DNA origami, for rapidly detecting toxic and harmful substances. Based on the above studies, the sensitivity and timeliness of several DNA molecular machines were summarized and compared, and the development prospect of DNA fuel molecular machines in the field of food safety detection was prospected.
Collapse
Affiliation(s)
- Yujing Ma
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Rui Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
41
|
Prešern U, Goličnik M. Enzyme Databases in the Era of Omics and Artificial Intelligence. Int J Mol Sci 2023; 24:16918. [PMID: 38069254 PMCID: PMC10707154 DOI: 10.3390/ijms242316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Enzyme research is important for the development of various scientific fields such as medicine and biotechnology. Enzyme databases facilitate this research by providing a wide range of information relevant to research planning and data analysis. Over the years, various databases that cover different aspects of enzyme biology (e.g., kinetic parameters, enzyme occurrence, and reaction mechanisms) have been developed. Most of the databases are curated manually, which improves reliability of the information; however, such curation cannot keep pace with the exponential growth in published data. Lack of data standardization is another obstacle for data extraction and analysis. Improving machine readability of databases is especially important in the light of recent advances in deep learning algorithms that require big training datasets. This review provides information regarding the current state of enzyme databases, especially in relation to the ever-increasing amount of generated research data and recent advancements in artificial intelligence algorithms. Furthermore, it describes several enzyme databases, providing the reader with necessary information for their use.
Collapse
Affiliation(s)
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
42
|
Kuprikova N, Ondruš M, Bednárová L, Riopedre-Fernandez M, Slavětínská L, Sýkorová V, Hocek M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res 2023; 51:11428-11438. [PMID: 37870471 PMCID: PMC10681718 DOI: 10.1093/nar/gkad893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
43
|
Zerbetto M, Saint-Pierre C, Piserchia A, Torrengo S, Gambarelli S, Abergel D, Polimeno A, Gasparutto D, Sicoli G. Intrinsic Flexibility beyond the Highly Ordered DNA Tetrahedron: An Integrative Spectroscopic and Molecular Dynamics Approach. J Phys Chem Lett 2023; 14:10032-10038. [PMID: 37906734 DOI: 10.1021/acs.jpclett.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Since the introduction of DNA-based architectures, in the past decade, DNA tetrahedrons have aroused great interest. Applications of such nanostructures require structural control, especially in the perspective of their possible functionalities. In this work, an integrated approach for structural characterization of a tetrahedron structure is proposed with a focus on the fundamental biophysical aspects driving the assembly process. To address such an issue, spin-labeled DNA sequences are chemically synthesized, self-assembled, and then analyzed by Continuous-Wave (CW) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopy. Interspin distance measurements based on PELDOR/DEER techniques combined with molecular dynamics (MD) thus revealed unexpected dynamic heterogeneity and flexibility of the assembled structures. The observation of flexibility in these ordered 3D structures demonstrates the sensitivity of this approach and its effectiveness in accessing the main dynamic and structural features with unprecedented resolution.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Christine Saint-Pierre
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Andrea Piserchia
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Simona Torrengo
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Daniel Abergel
- Laboratoire des biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Antonino Polimeno
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Giuseppe Sicoli
- CNRS UMRS 8516, LASIRE, University of Lille, Avenue Paul Langevin - C4 building, F-59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
44
|
Duan C, Yao Y, Cheng W, Chen Y, Jiao J, Xiang Y. Split aptazyme-based signal amplification for AβO analysis. Talanta 2023; 268:125351. [PMID: 39491950 DOI: 10.1016/j.talanta.2023.125351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Aptazyme is a chimera of functional nucleic acids, which integrates recognition and amplification elements to simplify the assay process and improve sensing efficiency. However, its application may be limited by signal leakage. In this work, we innovatively integrate the AβO aptamer and an MNAzyme (multicomponent nucleic acid enzyme) for highly efficient detection of AβO. The aptamer and half of the MNAzyme are positioned at one strand, and the other half of the MNAzyme is integrated with a toehold sequence. These two sequences cannot hybridize to activate the MNAzyme until the target is added. The background signal is significantly reduced by the split format and the secondary structure of DNA probes formed in the absence of the target. The proposed aptazyme can not only achieve amplification through enzymatic catalysis but also greatly improve the efficiency of signal transduction and output. We systematically investigated the influence of different DNA probes on the detection performance, and the optimized aptazyme can detect as low as 26.5 pM targets in 1h. The stability of this method was also investigated by detection targets in real biological samples.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jin Jiao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
45
|
Wang J, Huang H, Hanpanich O, Shimada N, Maruyama A. Cationic copolymer and crowding agent have a cooperative effect on a Na +-dependent DNAzyme. Biomater Sci 2023; 11:7062-7066. [PMID: 37706516 DOI: 10.1039/d3bm01119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
DNAzymes are promising agents for theranostics and biosensors. Sodium dependent DNAzymes have been developed for sensing and imaging of Na+, but these DNAzymes have low catalytic activity. Herein, we demonstrate that a molecular crowded environment containing 10 to 40 wt% PEG enhanced the catalytic activity of a Na+-dependent DNAzyme, EtNa, although dextran did not. The cationic copolymer poly(L-lysine)-graft-poly(ethylene glycol) at 0.03 wt% (0.3 g L-1) enhanced the reaction rate of EtNa by 10-fold, which is similar to the acceleration induced by 15 wt% (150 g L-1) PEG. A cooperative impact of the copolymer and crowding agent was observed: the combination resulted in an impressive 46-fold acceleration effect. Thus, the use of a cationic copolymer and a crowding agent is a promising strategy to improve the activity of Na+-dependent DNAzyme-based nanomachines, biosensors, and theranostics, especially in environments lacking divalent metal ions.
Collapse
Affiliation(s)
- Jun Wang
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan.
| | - He Huang
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan.
| | - Orakan Hanpanich
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan.
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan.
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan.
| |
Collapse
|
46
|
Iwata T, Kurahashi Y, Wijaya IMM, Kandori H. Spectroscopic Investigation of Na +-Dependent Conformational Changes of a Cyclobutane Pyrimidine Dimer-Repairing Deoxyribozyme. ACS OMEGA 2023; 8:37274-37281. [PMID: 37841180 PMCID: PMC10569015 DOI: 10.1021/acsomega.3c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
UV1C is an enzymatically active DNA sequence (deoxyribozyme, DNAzyme) that functions as a cyclobutane pyrimidine dimer (CPD) photolyase. UV1C forms parallel guanine quadruplexes (G-quadruplexes) with a DNA substrate in the presence of 240 mM Na+, the structure of which is important for the enzymatic activity. To investigate the repair mechanism of CPD by UV1C, we designed light-induced Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, circular dichroism (CD) spectroscopy was conducted to determine the Na+ concentration at which the most G-quadruplexes were formed. We found that UV1C also forms a hybrid G-quadruplex structure at over 500 mM Na+. By assuming a concentration equilibrium between G-quadruplexes and Na+, 1.3 and 1.8 Na+ were found to bind to parallel and hybrid G-quadruplexes, respectively. The hybrid G-quadruplex form of UV1C was also suggested to exhibit photolyase activity. Light-induced FTIR spectra recorded upon the photorepair of CPD by UV1C were compared for parallel G-quadruplex-rich and hybrid G-quadruplex-rich samples. Spectral variations were indicative of structural differences in parallel and hybrid G-quadruplexes before and after CPD cleavage. Differences were also observed when compared to the CPD repair spectrum by CPD photolyase. The spectral differences during CPD repair by either protein or DNAzyme suggest the local environment of the substrates, the surrounding protein, or the aqueous solution.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yuhi Kurahashi
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - I Made Mahaputra Wijaya
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
47
|
Montserrat Pagès A, Hertog M, Nicolaï B, Spasic D, Lammertyn J. Unraveling the Kinetics of the 10-23 RNA-Cleaving DNAzyme. Int J Mol Sci 2023; 24:13686. [PMID: 37761982 PMCID: PMC10531344 DOI: 10.3390/ijms241813686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.
Collapse
Affiliation(s)
- Aida Montserrat Pagès
- Department of Biosystems, Biosensors Group, KU Leuven—University of Leuven, 3001 Leuven, Belgium
| | - Maarten Hertog
- Department of Biosystems, Postharvest Group, KU Leuven—University of Leuven, 3001 Leuven, Belgium
| | - Bart Nicolaï
- Department of Biosystems, Postharvest Group, KU Leuven—University of Leuven, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven—University of Leuven, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven—University of Leuven, 3001 Leuven, Belgium
| |
Collapse
|
48
|
Su J, Sun C, Du J, Xing X, Wang F, Dong H. RNA-Cleaving DNAzyme-Based Amplification Strategies for Biosensing and Therapy. Adv Healthc Mater 2023; 12:e2300367. [PMID: 37084038 DOI: 10.1002/adhm.202300367] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Since their first discovery in 1994, DNAzymes have been extensively applied in biosensing and therapy that act as recognition elements and signal generators with the outstanding properties of good stability, simple synthesis, and high sensitivity. One subset, RNA-cleaving DNAzymes, is widely employed for diverse applications, including as reporters capable of transmitting detectable signals. In this review, the recent advances of RNA-cleaving DNAzyme-based amplification strategies in scaled-up biosensing are focused, the application in diagnosis and disease treatment are also discussed. Two major types of RNA-cleaving DNAzyme-based amplification strategies are highlighted, namely direct response amplification strategies and combinational response amplification strategies. The direct response amplification strategies refer to those based on novel designed single-stranded DNAzyme, and the combinational response amplification strategies mainly include two-part assembled DNAzyme, cascade reactions, CHA/HCR/RCA, DNA walker, CRISPR-Cas12a and aptamer. Finally, the current status of DNAzymes, the challenges, and the prospects of DNAzyme-based biosensors are presented.
Collapse
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fang Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
49
|
Lee M, Kang S, Kim S, Park N. Advances and Trends in miRNA Analysis Using DNAzyme-Based Biosensors. BIOSENSORS 2023; 13:856. [PMID: 37754090 PMCID: PMC10526965 DOI: 10.3390/bios13090856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
miRNAs are endogenous small, non-coding RNA molecules that function in post-transcriptional regulation of gene expression. Because miRNA plays a pivotal role in maintaining the intracellular environment, and abnormal expression has been found in many cancer diseases, detection of miRNA as a biomarker is important for early diagnosis of disease and study of miRNA function. However, because miRNA is present in extremely low concentrations in cells and many types of miRNAs with similar sequences are mixed, traditional gene detection methods are not suitable for miRNA detection. Therefore, in order to overcome this limitation, a signal amplification process is essential for high sensitivity. In particular, enzyme-free signal amplification systems such as DNAzyme systems have been developed for miRNA analysis with high specificity. DNAzymes have the advantage of being more stable in the physiological environment than enzymes, easy to chemically synthesize, and biocompatible. In this review, we summarize and introduce the methods using DNAzyme-based biosensors, especially with regard to various signal amplification methods for high sensitivity and strategies for improving detection specificity. We also discuss the current challenges and trends of these DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Seungjae Kang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
50
|
Feng Q, Zakaria S, Morrison D, Tram K, Gu J, Salena BJ, Li Y. A Fluorogenic DNAzyme for A Thermally Stable Protein Biomarker from Fusobacterium nucleatum, a Human Bacterial Pathogen. Angew Chem Int Ed Engl 2023; 62:e202306272. [PMID: 37404195 DOI: 10.1002/anie.202306272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Fusobacterium nucleatum has been correlated to many poor human conditions including oral infections, adverse pregnancies and cancer, and thus molecular tools capable of detecting this human pathogen can be used to develop diagnostic tests for them. Using a new selection method targeting thermally stable proteins without a counter-selection step, we derived an fluorogenic RNA-cleaving DNAzyme, named RFD-FN1, that can be activated by a thermally stable protein target that is unique to F. nucleatum subspecies. High thermal stability of protein targets is a very desirable attribute for DNAzyme-based biosensing directly with biological samples because nucleases found inherently in these samples can be heat-inactivated. We further demonstrate that RFD-FN1 can function as a fluorescent sensor in both human saliva and human stool samples. The discovery of RFD-FN1 paired with a highly thermal stable protein target presents opportunities for developing simpler diagnostic tests for this important pathogen.
Collapse
Affiliation(s)
- Qian Feng
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Sandy Zakaria
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Kha Tram
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Jim Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|