1
|
Nakajima T, Harada K, Tomooka Y, Sato T. In silico screening system based on a transcription factors regulatory network only using transcriptomic data. PLoS One 2025; 20:e0319971. [PMID: 40193394 PMCID: PMC11975132 DOI: 10.1371/journal.pone.0319971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/12/2025] [Indexed: 04/09/2025] Open
Abstract
In this study, we developed a method to identify core transcription factors (TFs) involved in differentiation using only comprehensive gene analysis. The theory of in silico screening using TFs regulatory network analysis (ISNA) required the following requirements: (1) estimating promoter regions, (2) constructing TFs regulatory network (TRN) relationships using the nucleotide sequence information in the promoters and score matrices derived from TF consensus sequences, and (3) identifying candidate core TFs by determining dissociation constants (Kd values) within the relationships of TRN. ISNA demonstrated the ability to predict the core TFs involved in the endothelial-to-mesenchymal transition of human umbilical vein endothelial cell (HUVEC) and the differentiation of human embryonic stem cells into mesodermal cells. Using ISNA, we identified HMGA2 as a novel core TF in uterine epithelium. Notably, HMGA2 expression was predominantly detected in uterine epithelium, where it regulated cell proliferation in response to estrogen. These findings highlight ISNA's potential to identify core TFs based on transcriptomic data.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Science, Yokohama City University, Yokohama, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kentaro Harada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tomomi Sato
- Department of Science, Yokohama City University, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
3
|
Kurani H, Slingerland JM. DOT1L Mediates Stem Cell Maintenance and Represents a Therapeutic Vulnerability in Cancer. Cancer Res 2025; 85:838-847. [PMID: 39700409 PMCID: PMC11873724 DOI: 10.1158/0008-5472.can-24-3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Tumor-initiating cancer stem cells (CSC) pose a challenge in human malignancies as they are largely treatment resistant and can seed local recurrence and metastasis. Epigenetic mechanisms governing cell fate decisions in embryonic and adult stem cells are deregulated in CSCs. This review focuses on the methyltransferase disruptor of telomeric silencing protein 1-like (DOT1L), which methylates histone H3 lysine 79 and is a key epigenetic regulator governing embryonic organogenesis and adult tissue stem cell maintenance. DOT1L is overexpressed in many human malignancies, and dysregulated histone H3 lysine 79 methylation is pathogenic in acute myeloid leukemia and several solid tumors. DOT1L regulates core stem cell genes governing CSC self-renewal, tumorigenesis, and multidrug resistance. Recent work has situated DOT1L as an attractive stem cell target in cancer. These reports showed that DOT1L is overexpressed and its protein activated specifically in malignant stem cells compared with bulk tumor cells, making them vulnerable to DOT1L inhibition in vitro and in vivo. Although early DOT1L inhibitor clinical trials were limited by inadequate drug bioavailability, accumulating preclinical data indicate that DOT1L critically regulates CSC self-renewal and might be more effective when given with other anticancer therapies. The appropriate combinations of DOT1L inhibitors with other agents and the sequence and timing of drug delivery for maximum efficacy warrant further investigation.
Collapse
Affiliation(s)
- Hetakshi Kurani
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Joyce M. Slingerland
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
4
|
Liu S, Li J, Zhang Y, Wang C, Zhang L. IL-10: the master immunomodulatory cytokine in allergen immunotherapy. Expert Rev Clin Immunol 2025; 21:17-28. [PMID: 39323099 DOI: 10.1080/1744666x.2024.2406894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Allergen immunotherapy (AIT) is the only disease-modifying treatment for patients with IgE-mediated allergic diseases. Successful AIT can induce long-term immune tolerance to the common allergen, which provides clinical benefits for years after discontinuation. The cytokine interleukin (IL)-10, as a key anti-inflammatory mediator with strong immunoregulatory functions, has drawn increasing attention over the past decades. AREAS COVERED After an extensive search of PubMed, EMBASE, and Web of Science databases, covering articles published from 1989 to 2024, our review aims to emphasize the key common information from previous reviews on the crucial involvement of IL-10 in allergen immunotherapy (AIT) induced immunological tolerance. In this review, we discuss the regulation of IL-10 expression and the molecular pathways associated with IL-10 function. We also further summarize mechanisms of immune tolerance induced by AIT, especially the indispensable role of IL-10 in AIT. EXPERT OPINION IL-10 plays an indispensable role in immune tolerance induced by AIT. Understanding the importance of the role of IL-10 in AIT would help us comprehend the mechanisms thoroughly and develop targeted therapeutics for allergic diseases.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Parag RR, Yamamoto T, Saito K, Zhu D, Yang L, Van Meir EG. Novel Isoforms of Adhesion G Protein-Coupled Receptor B1 (ADGRB1/BAI1) Generated from an Alternative Promoter in Intron 17. Mol Neurobiol 2025; 62:900-917. [PMID: 38941066 PMCID: PMC11711277 DOI: 10.1007/s12035-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Brain-specific angiogenesis inhibitor 1 (BAI1) belongs to the adhesion G-protein-coupled receptors, which exhibit large multi-domain extracellular N termini that mediate cell-cell and cell-matrix interactions. To explore the existence of BAI1 isoforms, we queried genomic datasets for markers of active chromatin and new transcript variants in the ADGRB1 (adhesion G-protein-coupled receptor B1) gene. Two major types of mRNAs were identified in human/mouse brain, those with a start codon in exon 2 encoding a full-length protein of a predicted size of 173.5/173.3 kDa and shorter transcripts starting from alternative exons at the intron 17/exon 18 boundary with new or exon 19 start codons, predicting two shorter isoforms of 76.9/76.4 and 70.8/70.5 kDa, respectively. Immunoblots on wild-type and Adgrb1 exon 2-deleted mice, reverse transcription PCR, and promoter-luciferase reporter assay confirmed that the shorter isoforms originate from an alternative promoter in intron 17. The shorter BAI1 isoforms lack most of the N terminus and are very close in structure to the truncated BAI1 isoform generated through GPS processing from the full-length receptor. The cleaved BAI1 isoform has a 19 amino acid extracellular stalk that may serve as a receptor agonist, while the alternative transcripts generate BAI1 isoforms with extracellular N termini of 5 or 60 amino acids. Further studies are warranted to compare the functions of these isoforms and examine the distinct roles they play in different tissues and cell types.
Collapse
Affiliation(s)
- Rashed Rezwan Parag
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Takahiro Yamamoto
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Department of Neurosurgery, Kumamoto University, Kumamoto, Japan
| | - Kiyotaka Saito
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Liquan Yang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
6
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Perez AA, Goronzy IN, Blanco MR, Yeh BT, Guo JK, Lopes CS, Ettlin O, Burr A, Guttman M. ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements. Nat Genet 2024; 56:2827-2841. [PMID: 39587360 DOI: 10.1038/s41588-024-02000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA-protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
Collapse
Affiliation(s)
- Andrew A Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mario R Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin T Yeh
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carolina S Lopes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olivia Ettlin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Alex Burr
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
10
|
Chen A, Kim BJ, Mitra A, Vollert CT, Lei JT, Fandino D, Anurag M, Holt MV, Gou X, Pilcher JB, Goetz MP, Northfelt DW, Hilsenbeck SG, Marshall CG, Hyer ML, Papp R, Yin SY, De Angelis C, Schiff R, Fuqua SAW, Ma CX, Foulds CE, Ellis MJ. PKMYT1 Is a Marker of Treatment Response and a Therapeutic Target for CDK4/6 Inhibitor-Resistance in ER+ Breast Cancer. Mol Cancer Ther 2024; 23:1494-1510. [PMID: 38781103 PMCID: PMC11443213 DOI: 10.1158/1535-7163.mct-23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.
Collapse
Affiliation(s)
- Anran Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas
- Repare Therapeutics, Cambridge, Massachusetts
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aparna Mitra
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jacob B Pilcher
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | | | - Donald W Northfelt
- Division of Hematology and Medical Oncology at Mayo Clinic, Phoenix, Arizona
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Marc L Hyer
- Repare Therapeutics, Cambridge, Massachusetts
| | - Robert Papp
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Shou-Yun Yin
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol 2024; 979:176823. [PMID: 39032763 DOI: 10.1016/j.ejphar.2024.176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Wilson
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Kubra S, Sun M, Dion W, Catak A, Luong H, Wang H, Pan Y, Liu JJ, Ponna A, Sipula I, Jurczak MJ, Liu S, Zhu B. Epigenetic regulation of global proteostasis dynamics by RBBP5 ensures mammalian organismal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612812. [PMID: 39314427 PMCID: PMC11419162 DOI: 10.1101/2024.09.13.612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Proteostasis is vital for cellular health, with disruptions leading to pathologies including aging, neurodegeneration and metabolic disorders. Traditionally, proteotoxic stress responses were studied as acute reactions to various noxious factors; however, recent evidence reveals that many proteostasis stress-response genes exhibit ~12-hour ultradian rhythms under physiological conditions in mammals. These rhythms, driven by an XBP1s-dependent 12h oscillator, are crucial for managing proteostasis. By exploring the chromatin landscape of the murine 12h hepatic oscillator, we identified RBBP5, a key subunit of the COMPASS complex writing H3K4me3, as an essential epigenetic regulator of proteostasis. RBBP5 is indispensable for regulating both the hepatic 12h oscillator and transcriptional response to acute proteotoxic stress, acting as a co-activator for proteostasis transcription factor XBP1s. RBBP5 ablation leads to increased sensitivity to proteotoxic stress, chronic inflammation, and hepatic steatosis in mice, along with impaired autophagy and reduced cell survival in vitro. In humans, lower RBBP5 expression is associated with reduced adaptive stress-response gene expression and hepatic steatosis. Our findings establish RBBP5 as a central regulator of proteostasis, essential for maintaining mammalian organismal health.
Collapse
Affiliation(s)
- Syeda Kubra
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ahmet Catak
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Hannah Luong
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Haokun Wang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | | | - Jia-Jun Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Aishwarya Ponna
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ian Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
13
|
Lai K, Dilger K, Cunningham R, Lam KT, Boquiren R, Truong K, Louie MC, Rava R, Abdueva D. Extracting regulatory active chromatin footprint from cell-free DNA. Commun Biol 2024; 7:1086. [PMID: 39232115 PMCID: PMC11375110 DOI: 10.1038/s42003-024-06769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Cell-free DNA (cfDNA) has emerged as a pivotal player in precision medicine, revolutionizing the diagnostic and therapeutic landscape. While its clinical applications have significantly increased in recent years, current cfDNA assays have limited ability to identify the active transcriptional programs that govern complex disease phenotypes and capture the heterogeneity of the disease. To address these limitations, we have developed a non-invasive platform to enrich and examine the active chromatin fragments (cfDNAac) in peripheral blood. The deconvolution of the cfDNAac signal from traditional nucleosomal chromatin fragments (cfDNAnuc) yields a catalog of features linking these circulating chromatin signals in blood to specific regulatory elements across the genome, including enhancers, promoters, and highly transcribed genes, mirroring the epigenetic data from the ENCODE project. Notably, these cfDNAac counts correlate strongly with RNA polymerase II activity and exhibit distinct expression patterns for known circadian genes. Additionally, cfDNAac signals across gene bodies and promoters show strong correlations with whole blood gene expression levels defined by GTEx. This study illustrates the utility of cfDNAac analysis for investigating epigenomics and gene expression, underscoring its potential for a wide range of clinical applications in precision medicine.
Collapse
Affiliation(s)
- Kevin Lai
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | | | | | - Kathy T Lam
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Rhea Boquiren
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Khiet Truong
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Maggie C Louie
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Richard Rava
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Diana Abdueva
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA.
| |
Collapse
|
14
|
Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, Mazo-Vargas A, Kamrava K, Carter A, van der Heijden ESM, Reed RD, Papa R, Jiggins CD, Martin A. A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies. Proc Natl Acad Sci U S A 2024; 121:e2403326121. [PMID: 39213180 PMCID: PMC11388343 DOI: 10.1073/pnas.2403326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The cortex locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name ivory, transcribed from the cortex locus, in modulating color patterning in butterflies. Strikingly, ivory expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that ivory mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of Vanessa cardui germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of ivory. In contrast, cortex germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
| | - Charlotte J. Wright
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
| | - Kiana Kamrava
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Alexander Carter
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Eva S. M. van der Heijden
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Robert D. Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan00925, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan00926, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma43124, Italy
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| |
Collapse
|
15
|
Nakamura T, Yoshihara T, Tanegashima C, Kadota M, Kobayashi Y, Honda K, Ishiwata M, Ueda J, Hara T, Nakanishi M, Takumi T, Itohara S, Kuraku S, Asano M, Kasahara T, Nakajima K, Tsuboi T, Takata A, Kato T. Transcriptomic dysregulation and autistic-like behaviors in Kmt2c haploinsufficient mice rescued by an LSD1 inhibitor. Mol Psychiatry 2024; 29:2888-2904. [PMID: 38528071 PMCID: PMC11420081 DOI: 10.1038/s41380-024-02479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Recent studies have consistently demonstrated that the regulation of chromatin and gene transcription plays a pivotal role in the pathogenesis of neurodevelopmental disorders. Among many genes involved in these pathways, KMT2C, encoding one of the six known histone H3 lysine 4 (H3K4) methyltransferases in humans and rodents, was identified as a gene whose heterozygous loss-of-function variants are causally associated with autism spectrum disorder (ASD) and the Kleefstra syndrome phenotypic spectrum. However, little is known about how KMT2C haploinsufficiency causes neurodevelopmental deficits and how these conditions can be treated. To address this, we developed and analyzed genetically engineered mice with a heterozygous frameshift mutation of Kmt2c (Kmt2c+/fs mice) as a disease model with high etiological validity. In a series of behavioral analyses, the mutant mice exhibit autistic-like behaviors such as impairments in sociality, flexibility, and working memory, demonstrating their face validity as an ASD model. To investigate the molecular basis of the observed abnormalities, we performed a transcriptomic analysis of their bulk adult brains and found that ASD risk genes were specifically enriched in the upregulated differentially expressed genes (DEGs), whereas KMT2C peaks detected by ChIP-seq were significantly co-localized with the downregulated genes, suggesting an important role of putative indirect effects of Kmt2c haploinsufficiency. We further performed single-cell RNA sequencing of newborn mouse brains to obtain cell type-resolved insights at an earlier stage. By integrating findings from ASD exome sequencing, genome-wide association, and postmortem brain studies to characterize DEGs in each cell cluster, we found strong ASD-associated transcriptomic changes in radial glia and immature neurons with no obvious bias toward upregulated or downregulated DEGs. On the other hand, there was no significant gross change in the cellular composition. Lastly, we explored potential therapeutic agents and demonstrate that vafidemstat, a lysine-specific histone demethylase 1 (LSD1) inhibitor that was effective in other models of neuropsychiatric/neurodevelopmental disorders, ameliorates impairments in sociality but not working memory in adult Kmt2c+/fs mice. Intriguingly, the administration of vafidemstat was shown to alter the vast majority of DEGs in the direction to normalize the transcriptomic abnormalities in the mutant mice (94.3 and 82.5% of the significant upregulated and downregulated DEGs, respectively, P < 2.2 × 10-16, binomial test), which could be the molecular mechanism underlying the behavioral rescuing. In summary, our study expands the repertoire of ASD models with high etiological and face validity, elucidates the cell-type resolved molecular alterations due to Kmt2c haploinsufficiency, and demonstrates the efficacy of an LSD1 inhibitor that might be generalizable to multiple categories of psychiatric disorders along with a better understanding of its presumed mechanisms of action.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kurara Honda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Mizuho Ishiwata
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Junko Ueda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomonori Hara
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Moe Nakanishi
- Laboratory for Mental Biology, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Mechanism of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Hyogo, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kazuo Nakajima
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
16
|
Pan H, Huang M, Zhu C, Lin S, He L, Shen R, Chen Y, Fang F, Qiu Y, Qin M, Bao P, Tan Y, Xu J, Ding J, Chen S. A novel compound alleviates oxidative stress via PKA/CREB1-mediated DJ-1 upregulation. J Neurochem 2024; 168:3034-3049. [PMID: 38994800 DOI: 10.1111/jnc.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Oxidative stress is one of the major culprits causing dopaminergic neuron loss in Parkinson's disease (PD). DJ-1 is a protein with multiple actions against oxidative stress, apoptosis, neuroinflammation, etc. DJ-1 expression is decreased in sporadic PD, therefore increasing DJ-1 expression might be beneficial in PD treatment. However, drugs known to upregulate DJ-1 are still lacking. In this study, we identified a novel DJ-1-elevating compound called ChemJ through luciferase assay-based high-throughput compound screening in SH-SY5Y cells and confirmed that ChemJ upregulated DJ-1 in SH-SY5Y cell line and primary cortical neurons. DJ-1 upregulation by ChemJ alleviated MPP+-induced oxidative stress. In exploring the underlying mechanisms, we found that the transcription factor CREB1 bound to DJ-1 promoter and positively regulated its expression under both unstressed and 1-methyl-4-phenylpyridinium-induced oxidative stress conditions and that ChemJ promoted DJ-1 expression via activating PKA/CREB1 pathway in SH-SY5Y cells. Our results demonstrated that ChemJ alleviated the MPP+-induced oxidative stress through a PKA/CREB1-mediated regulation of DJ-1 expression, thus offering a novel and promising avenue for PD treatment.
Collapse
Affiliation(s)
- Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxiang Zhu
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Xu
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| |
Collapse
|
17
|
Bittner N, Shi C, Zhao D, Ding J, Southam L, Swift D, Kreitmaier P, Tutino M, Stergiou O, Cheung JTS, Katsoula G, Hankinson J, Wilkinson JM, Orozco G, Zeggini E. Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes. Ann Rheum Dis 2024; 83:1048-1059. [PMID: 38479789 PMCID: PMC11287644 DOI: 10.1136/ard-2023-224945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES Osteoarthritis is a complex disease with a huge public health burden. Genome-wide association studies (GWAS) have identified hundreds of osteoarthritis-associated sequence variants, but the effector genes underpinning these signals remain largely elusive. Understanding chromosome organisation in three-dimensional (3D) space is essential for identifying long-range contacts between distant genomic features (e.g., between genes and regulatory elements), in a tissue-specific manner. Here, we generate the first whole genome chromosome conformation analysis (Hi-C) map of primary osteoarthritis chondrocytes and identify novel candidate effector genes for the disease. METHODS Primary chondrocytes collected from 8 patients with knee osteoarthritis underwent Hi-C analysis to link chromosomal structure to genomic sequence. The identified loops were then combined with osteoarthritis GWAS results and epigenomic data from primary knee osteoarthritis chondrocytes to identify variants involved in gene regulation via enhancer-promoter interactions. RESULTS We identified 345 genetic variants residing within chromatin loop anchors that are associated with 77 osteoarthritis GWAS signals. Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer-promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA (pregnancy-associated plasma protein A) as well as further support for the gene SLC44A2 known to be involved in osteoarthritis. For example, PAPPA is directly associated with the turnover of insulin-like growth factor 1 (IGF-1) proteins, and IGF-1 is an important factor in the repair of damaged chondrocytes. CONCLUSIONS We have constructed the first Hi-C map of primary human chondrocytes and have made it available as a resource for the scientific community. By integrating 3D genomics with large-scale genetic association and epigenetic data, we identify novel candidate effector genes for osteoarthritis, which enhance our understanding of disease and can serve as putative high-value novel drug targets.
Collapse
Affiliation(s)
- Norbert Bittner
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Danyun Zhao
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Graduate School of Experimental Medicine, Technical University of Munich, München, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| | - Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Odysseas Stergiou
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Graduate School of Experimental Medicine, Technical University of Munich, München, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, München, Germany
| |
Collapse
|
18
|
Xu F, Suyama R, Inada T, Kawaguchi S, Kai T. HemK2 functions for sufficient protein synthesis and RNA stability through eRF1 methylation during Drosophila oogenesis. Development 2024; 151:dev202795. [PMID: 38881530 DOI: 10.1242/dev.202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
HemK2 is a highly conserved methyltransferase, but the identification of its genuine substrates has been controversial, and its biological importance in higher organisms remains unclear. We elucidate the role of HemK2 in the methylation of eukaryotic Release Factor 1 (eRF1), a process that is essential for female germline development in Drosophila melanogaster. Knockdown of hemK2 in the germline cells (hemK2-GLKD) induces apoptosis, accompanied by a pronounced decrease in both eRF1 methylation and protein synthesis. Overexpression of a methylation-deficient eRF1 variant recapitulates the defects observed in hemK2-GLKD, suggesting that eRF1 is a primary methylation target of HemK2. Furthermore, hemK2-GLKD leads to a significant reduction in mRNA levels in germline cell. These defects in oogenesis and protein synthesis can be partially restored by inhibiting the No-Go Decay pathway. In addition, hemK2 knockdown is associated with increased disome formation, suggesting that disruptions in eRF1 methylation may provoke ribosomal stalling, which subsequently activates translation-coupled mRNA surveillance mechanisms that degrade actively translated mRNAs. We propose that HemK2-mediated methylation of eRF1 is crucial for ensuring efficient protein production and mRNA stability, which are vital for the generation of high-quality eggs.
Collapse
Affiliation(s)
- Fengmei Xu
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Ritsuko Suyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshifumi Inada
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Hu S, Liu Y, Zhang Q, Bai J, Xu C. A continuum of zinc finger transcription factor retention on native chromatin underlies dynamic genome organization. Mol Syst Biol 2024; 20:799-824. [PMID: 38745107 PMCID: PMC11220090 DOI: 10.1038/s44320-024-00038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factor (TF) residence on chromatin translates into quantitative transcriptional or structural outcomes on genome. Commonly used formaldehyde crosslinking fixes TF-DNA interactions cumulatively and compromises the measured occupancy level. Here we mapped the occupancy level of global or individual zinc finger TFs like CTCF and MAZ, in the form of highly resolved footprints, on native chromatin. By incorporating reinforcing perturbation conditions, we established S-score, a quantitative metric to proxy the continuum of CTCF or MAZ retention across different motifs on native chromatin. The native chromatin-retained CTCF sites harbor sequence features within CTCF motifs better explained by S-score than the metrics obtained from other crosslinking or native assays. CTCF retention on native chromatin correlates with local SUMOylation level, and anti-correlates with transcriptional activity. The S-score successfully delineates the otherwise-masked differential stability of chromatin structures mediated by CTCF, or by MAZ independent of CTCF. Overall, our study established a paradigm continuum of TF retention across binding sites on native chromatin, explaining the dynamic genome organization.
Collapse
Affiliation(s)
- Siling Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce EF, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. Genes Dev 2024; 38:436-454. [PMID: 38866556 PMCID: PMC11216175 DOI: 10.1101/gad.351402.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA;
| |
Collapse
|
21
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
23
|
Woodworth MA, Lakadamyali M. Toward a comprehensive view of gene architecture during transcription. Curr Opin Genet Dev 2024; 85:102154. [PMID: 38309073 PMCID: PMC10989512 DOI: 10.1016/j.gde.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
The activation of genes within the nucleus of eukaryotic cells is a tightly regulated process, orchestrated by a complex interplay of various physical properties and interacting factors. Studying the multitude of components and features that collectively contribute to gene activation has proven challenging due to the complexities of simultaneously visualizing the dynamic and transiently interacting elements that coalesce within the small space occupied by each individual gene. However, various labeling and imaging advances are now starting to overcome this challenge, enabling visualization of gene activation at different lengths and timescales. In this review, we aim to highlight these microscopy-based advances and suggest how they can be combined to provide a comprehensive view of the mechanisms regulating gene activation.
Collapse
Affiliation(s)
- Marcus A Woodworth
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Kramer MC, Swanson R, Slotkin RK. Reading banned regions of genomes. NATURE PLANTS 2024; 10:7-8. [PMID: 38225351 DOI: 10.1038/s41477-023-01600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
| | - Ryan Swanson
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
25
|
Perez AA, Goronzy IN, Blanco MR, Guo JK, Guttman M. ChIP-DIP: A multiplexed method for mapping hundreds of proteins to DNA uncovers diverse regulatory elements controlling gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571730. [PMID: 38187704 PMCID: PMC10769186 DOI: 10.1101/2023.12.14.571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gene expression is controlled by the dynamic localization of thousands of distinct regulatory proteins to precise regions of DNA. Understanding this cell-type specific process has been a goal of molecular biology for decades yet remains challenging because most current DNA-protein mapping methods study one protein at a time. To overcome this, we developed ChIP-DIP (ChIP Done In Parallel), a split-pool based method that enables simultaneous, genome-wide mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate that ChIP-DIP generates highly accurate maps for all classes of DNA-associated proteins, including histone modifications, chromatin regulators, transcription factors, and RNA Polymerases. Using these data, we explore quantitative combinations of protein localization on genomic DNA to define distinct classes of regulatory elements and their functional activity. Our data demonstrate that ChIP-DIP enables the generation of 'consortium level', context-specific protein localization maps within any molecular biology lab.
Collapse
|
26
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
27
|
He S, Gao B, Sabnis R, Sun Q. Nucleic Transformer: Classifying DNA Sequences with Self-Attention and Convolutions. ACS Synth Biol 2023; 12:3205-3214. [PMID: 37916871 PMCID: PMC10863451 DOI: 10.1021/acssynbio.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Much work has been done to apply machine learning and deep learning to genomics tasks, but these applications usually require extensive domain knowledge, and the resulting models provide very limited interpretability. Here, we present the Nucleic Transformer, a conceptually simple but effective and interpretable model architecture that excels in the classification of DNA sequences. The Nucleic Transformer employs self-attention and convolutions on nucleic acid sequences, leveraging two prominent deep learning strategies commonly used in computer vision and natural language analysis. We demonstrate that the Nucleic Transformer can be trained without much domain knowledge to achieve high performance in Escherichia coli promoter classification, viral genome identification, enhancer classification, and chromatin profile predictions.
Collapse
Affiliation(s)
- Shujun He
- Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Baizhen Gao
- Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Rushant Sabnis
- Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Qing Sun
- Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
28
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce E, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567233. [PMID: 38014330 PMCID: PMC10680722 DOI: 10.1101/2023.11.15.567233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ-cell genes during differentiation and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we find that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ-cell genes into a silenced state and activating a group of oocyte genes and Nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, crosstalk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany SUNY, Albany, NY 12202
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
| | - Ankita Chavan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Son C. Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Current address: Biochemistry and Molecular Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Eric Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav Jagannathan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
29
|
Qiu X, Liang G, Zhou W, Sen R, Atchison ML. Multiple lineage-specific epigenetic landscapes at the antigen receptor loci. AGING RESEARCH (HONG KONG, CHINA) 2023; 1:9340010. [PMID: 38770228 PMCID: PMC11103674 DOI: 10.26599/agr.2023.9340010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antigen receptors (AgRs) expressed on B and T cells provide the adaptive immune system with ability to detect numerous foreign antigens. Epigenetic features of B cell receptor (BCR) and T cell receptor (TCR) genes were previously studied in lymphocytes, but little is known about their epigenetic features in other cells. Here, we explored histone modifications and transcription markers at the BCR and TCR loci in lymphocytes (pro-B, DP T cells, and mature CD4+ T cells), compared to embryonic stem (ES) cells and neurons. In B cells, the BCR loci exhibited active histone modifications and transcriptional markers indicative of active loci. Similar results were observed at the TCR loci in T cells. All loci were largely inactive in neurons. Surprisingly, in ES cells all AgR loci displayed a high degree of active histone modifications and markers of active transcription. Locations of these active histone modifications in ES cells were largely distinct from those in pro-B cells, and co-localized at numerous binding locations for transcription factors Oct4, Sox2, and Nanog. ES and pro-B cells also showed distinct binding patterns for the ubiquitous transcription factor YY1 and chromatin remodeler Brg1. On the contrary, there were many overlapping CCCTC-binding factor (CTCF) binding patterns when comparing ES cells, pro-B cells, and neurons. Our study identifies epigenetic features in ES cells and lymphocytes that may be related to ES cell pluripotency and lymphocyte tissue-specific activation at the AgR loci.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Guanxiang Liang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Michael L. Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Zhu W, Li H, Dong P, Ni X, Fan M, Yang Y, Xu S, Xu Y, Qian Y, Chen Z, Lü P. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. PLANT PHYSIOLOGY 2023; 193:855-873. [PMID: 37279567 PMCID: PMC10469544 DOI: 10.1093/plphys/kiad322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.
Collapse
Affiliation(s)
- Wenjun Zhu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Li
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xueting Ni
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minlei Fan
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbing Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangwen Qian
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Zhuo Chen
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
31
|
Bressin A, Jasnovidova O, Arnold M, Altendorfer E, Trajkovski F, Kratz TA, Handzlik JE, Hnisz D, Mayer A. High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription. Nat Commun 2023; 14:4971. [PMID: 37591883 PMCID: PMC10435483 DOI: 10.1038/s41467-023-40633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Gene transcription by RNA polymerase II (Pol II) is under control of promoters and distal regulatory elements known as enhancers. Enhancers are themselves transcribed by Pol II correlating with their activity. How enhancer transcription is regulated and coordinated with transcription at target genes has remained unclear. Here, we developed a high-sensitive native elongating transcript sequencing approach, called HiS-NET-seq, to provide an extended high-resolution view on transcription, especially at lowly transcribed regions such as enhancers. HiS-NET-seq uncovers new transcribed enhancers in human cells. A multi-omics analysis shows that genome-wide enhancer transcription depends on the BET family protein BRD4. Specifically, BRD4 co-localizes to enhancer and promoter-proximal gene regions, and is required for elongation activation at enhancers and their genes. BRD4 keeps a set of enhancers and genes in proximity through long-range contacts. From these studies BRD4 emerges as a general regulator of enhancer transcription that may link transcription at enhancers and genes.
Collapse
Affiliation(s)
- Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Filip Trajkovski
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thomas A Kratz
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Joanna E Handzlik
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
32
|
Piro MC, Gasperi V, De Stefano A, Anemona L, Cenciarelli CR, Montanaro M, Mauriello A, Catani MV, Terrinoni A, Gambacurta A. In Vivo Identification of H3K9me2/H3K79me3 as an Epigenetic Barrier to Carcinogenesis. Int J Mol Sci 2023; 24:12158. [PMID: 37569534 PMCID: PMC10419041 DOI: 10.3390/ijms241512158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The highly dynamic nature of chromatin's structure, due to the epigenetic alterations of histones and DNA, controls cellular plasticity and allows the rewiring of the epigenetic landscape required for either cell differentiation or cell (re)programming. To dissect the epigenetic switch enabling the programming of a cancer cell, we carried out wide genome analysis of Histone 3 (H3) modifications during osteogenic differentiation of SH-SY5Y neuroblastoma cells. The most significant modifications concerned H3K27me2/3, H3K9me2, H3K79me1/2, and H3K4me1 that specify the process of healthy adult stem cell differentiation. Next, we translated these findings in vivo, assessing H3K27, H3K9, and H3K79 methylation states in biopsies derived from patients affected by basalioma, head and neck carcinoma, and bladder tumors. Interestingly, we found a drastic decrease in H3K9me2 and H3K79me3 in cancer specimens with respect to their healthy counterparts and also a positive correlation between these two epigenetic flags in all three tumors. Therefore, we suggest that elevated global levels of H3K9me2 and H3K79me3, present in normal differentiated cells but lost in malignancy, may reflect an important epigenetic barrier to tumorigenesis. This suggestion is further corroborated, at least in part, by the deranged expression of the most relevant H3 modifier enzymes, as revealed by bioinformatic analysis. Overall, our study indicates that the simultaneous occurrence of H3K9me2 and H3K79me3 is fundamental to ensure the integrity of differentiated tissues and, thus, their combined evaluation may represent a novel diagnostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandro De Stefano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Lucia Anemona
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Claudio Raffaele Cenciarelli
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
33
|
Lin CC, Lee WJ, Zeng CY, Chou MY, Lin TJ, Lin CS, Ho MC, Shih MC. SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice. PNAS NEXUS 2023; 2:pgad229. [PMID: 37492276 PMCID: PMC10364326 DOI: 10.1093/pnasnexus/pgad229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Most rice (Oryza sativa) cultivars cannot survive under prolonged submergence. However, some O. sativa ssp. indica cultivars, such as FR13A, are highly tolerant owing to the SUBMERGENCE 1A-1 (SUB1A-1) allele, which encodes a Group VII ethylene-responsive factor (ERFVII) protein; other submergence-intolerant cultivars contain a SUB1A-2 allele. The two alleles differ only by a single substitution at the 186th amino acid position from serine in SUB1A-1 to proline in SUB1A-2 resulting in only SUB1A-1 being able to be phosphorylated. Two other ERFVIIs, ERF66 and ERF67, function downstream of SUB1A-1 to form a regulatory cascade in response to submergence stress. Here, we show that SUB1A-1, but not SUB1A-2, interacts with ADA2b of the ADA2b-GCN5 acetyltransferase complex, in which GCN5 functions as a histone acetyltransferase. Phosphorylation of SUB1A-1 at serine 186 enhances the interaction of SUB1A-1 with ADA2b. ADA2b and GCN5 expression was induced under submergence, suggesting that these two genes might play roles in response to submergence stress. In transient assays, binding of SUB1A-1 to the ERF67 promoter and ERF67 transcription were highly induced when SUB1A-1 was expressed together with the ADA2b-GCN5 acetyltransferase complex. Taken together, these results suggest that phospho-SUB1A-1 recruits the ADA2-GCN5 acetyltransferase complex to modify the chromatin structure of the ERF66/ERF67 promoter regions and activate gene expression, which in turn enhances rice submergence tolerance.
Collapse
Affiliation(s)
| | | | - Cyong-Yu Zeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jhen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chiao Ho
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| | - Ming-Che Shih
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| |
Collapse
|
34
|
Jia X, Lin W, Wang W. Regulation of chromatin organization during animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:19. [PMID: 37259007 DOI: 10.1186/s13619-023-00162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Activation of regeneration upon tissue damages requires the activation of many developmental genes responsible for cell proliferation, migration, differentiation, and tissue patterning. Ample evidence revealed that the regulation of chromatin organization functions as a crucial mechanism for establishing and maintaining cellular identity through precise control of gene transcription. The alteration of chromatin organization can lead to changes in chromatin accessibility and/or enhancer-promoter interactions. Like embryogenesis, each stage of tissue regeneration is accompanied by dynamic changes of chromatin organization in regeneration-responsive cells. In the past decade, many studies have been conducted to investigate the contribution of chromatin organization during regeneration in various tissues, organs, and organisms. A collection of chromatin regulators were demonstrated to play critical roles in regeneration. In this review, we will summarize the progress in the understanding of chromatin organization during regeneration in different research organisms and discuss potential common mechanisms responsible for the activation of regeneration response program.
Collapse
Affiliation(s)
- Xiaohui Jia
- National Institute of Biological Sciences, Beijing, 102206, China
- China Agricultural University, Beijing, 100083, China
| | - Weifeng Lin
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Wang H, Jin H, Liu Z, Tan C, Wei L, Fu M, Huang Y. Screening and identification of key chromatin regulator biomarkers for ankylosing spondylitis and drug prediction: evidence from bioinformatics analysis. BMC Musculoskelet Disord 2023; 24:389. [PMID: 37193965 DOI: 10.1186/s12891-023-06490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is one of the most common immune-mediated arthritic diseases worldwide. Despite considerable efforts to elucidate its pathogenesis, the molecular mechanisms underlying AS are still not fully understood. METHODS To identify candidate genes involved in AS progression, the researchers downloaded the microarray dataset GSE25101 from the Gene Expression Omnibus (GEO) database. They identified differentially expressed genes (DEGs) and functionally enriched them for analysis. They also constructed a protein-protein interaction network (PPI) using STRING and performed cytoHubba modular analysis, immune cell and immune function analysis, functional analysis and drug prediction.The results showed that DEGs were mainly associated with histone modifications, chromatin organisation, transcriptional coregulator activity, transcriptional co-activator activity, histone acetyltransferase complexes and protein acetyltransferase complexes. RESULTS The researchers analysed the differences in expression between the CONTROL and TREAT groups in terms of immunity to determine their effect on TNF-α secretion. By obtaining hub genes, they predicted two therapeutic agents, AY 11-7082 and myricetin. CONCLUSION The DEGs, hub genes and predicted drugs identified in this study contribute to our understanding of the molecular mechanisms underlying the onset and progression of AS. They also provide candidate targets for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Han Wang
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Hongbo Jin
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Zhiyang Liu
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Chengju Tan
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Lin Wei
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Mingfen Fu
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Yizhuan Huang
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China.
| |
Collapse
|
36
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
37
|
Park J, Chung C. Epigenetic and Metabolic Changes in Diffuse Intrinsic Pontine Glioma. Brain Tumor Res Treat 2023; 11:86-93. [PMID: 37151150 PMCID: PMC10172016 DOI: 10.14791/btrt.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG), hitherto known as diffuse intrinsic pontine glioma (DIPG), is a rare and aggressive form of brain cancer that primarily affects children. Although the exact cause of DMG/DIPG is not known, a large proportion of DMG/DIPG tumors harbor mutations in the gene encoding the histone H3 protein, specifically the H3K27M mutation. This mutation decreases the level of H3K27me3, a histone modification that plays a vital role in regulating gene expression through epigenetic regulation. The mutation also alters the function of polycomb repressive complex 2 (PRC2), thereby preventing the repression of genes associated with cancer development. The decrease in H3K27me3 caused by the histone H3 mutation is accompanied by an increase in the level of H3K27ac, a post-translational modification related to active transcription. Dysregulation of histone modification markedly affects gene expression, contributing to cancer development and progression by promoting uncontrolled cell proliferation, tumor growth, and metabolism. DMG/DIPG alters the metabolism of methionine and the tricarboxylic acid cycle, as well as glucose and glutamine uptake. The role of epigenetic and metabolic changes in the development of DMG/DIPG has been studied extensively, and understanding these changes is critical to developing therapies targeting these pathways. Studies are currently underway to identify new therapeutic targets for DMG/DIPG, which may lead to the development of effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Chan Chung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
38
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
39
|
Mühlen D, Li X, Dovgusha O, Jäckle H, Günesdogan U. Recycling of parental histones preserves the epigenetic landscape during embryonic development. SCIENCE ADVANCES 2023; 9:eadd6440. [PMID: 36724233 PMCID: PMC9891698 DOI: 10.1126/sciadv.add6440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 06/16/2023]
Abstract
Epigenetic inheritance during DNA replication requires an orchestrated assembly of nucleosomes from parental and newly synthesized histones. We analyzed Drosophila HisC mutant embryos harboring a deletion of all canonical histone genes, in which nucleosome assembly relies on parental histones from cell cycle 14 onward. Lack of new histone synthesis leads to more accessible chromatin and reduced nucleosome occupancy, since only parental histones are available. This leads to up-regulated and spurious transcription, whereas the control of the developmental transcriptional program is partially maintained. The genomic positions of modified parental histone H2A, H2B, and H3 are largely restored during DNA replication. However, parental histones with active marks become more dispersed within gene bodies, which is linked to transcription. Together, the results suggest that parental histones are recycled to preserve the epigenetic landscape during DNA replication in vivo.
Collapse
Affiliation(s)
- Dominik Mühlen
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Xiaojuan Li
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Oleksandr Dovgusha
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Herbert Jäckle
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ufuk Günesdogan
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Cadavid IC, Balbinott N, Margis R. Beyond transcription factors: more regulatory layers affecting soybean gene expression under abiotic stress. Genet Mol Biol 2023; 46:e20220166. [PMID: 36706026 PMCID: PMC9881580 DOI: 10.1590/1678-4685-gmb-2022-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023] Open
Abstract
Abiotic stresses such as nutritional imbalance, salt, light intensity, and high and low temperatures negatively affect plant growth and development. Through the course of evolution, plants developed multiple mechanisms to cope with environmental variations, such as physiological, morphological, and molecular adaptations. Epigenetic regulation, transcription factor activity, and post-transcriptional regulation operated by RNA molecules are mechanisms associated with gene expression regulation under stress. Epigenetic regulation, including histone and DNA covalent modifications, triggers chromatin remodeling and changes the accessibility of transcription machinery leading to alterations in gene activity and plant homeostasis responses. Soybean is a legume widely produced and whose productivity is deeply affected by abiotic stresses. Many studies explored how soybean faces stress to identify key elements and improve productivity through breeding and genetic engineering. This review summarizes recent progress in soybean gene expression regulation through epigenetic modifications and circRNAs pathways, and points out the knowledge gaps that are important to study by the scientific community. It focuses on epigenetic factors participating in soybean abiotic stress responses, and chromatin modifications in response to stressful environments and draws attention to the regulatory potential of circular RNA in post-transcriptional processing.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
| | - Natalia Balbinott
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Biofisica, Porto Alegre, Brazil
| |
Collapse
|
41
|
Teng M. Statistical Analysis in ChIP-seq-Related Applications. Methods Mol Biol 2023; 2629:169-181. [PMID: 36929078 DOI: 10.1007/978-1-0716-2986-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Chromatin immunoprecipitation sequencing (ChIP-seq) has been widely performed to identify protein binding information along the genome. The sequencing protocol is quite flexible and mature to measure different types of protein binding as long as sequencing parameters are properly tailored to accommodate protein features. Two distinct types of protein binding are point-source-like binding by transcription factors and diffused-distribution binding by histone modifications. Consequently, statistical approaches have been proposed to address ChIP-seq-related questions according to different protein features. In this chapter, we briefly summarize statistical principles, approaches, and tools that are widely implemented in modeling ChIP-seq data, from raw data quality control to final result reporting. We discuss the key solutions in addressing eight routine questions in ChIP-seq applications. We also include discussion on approaches fitting unique data features in different ChIP-seq types. We hope this chapter will serve as a brief guide, especially for ChIP-seq beginners, to provide them with a high-level overview to understand and design processing plans for their ChIP-seq experiments.
Collapse
Affiliation(s)
- Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
42
|
Sreekar N, Shrestha S. Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1. Bioinform Biol Insights 2023; 17:11779322231167971. [PMID: 37124129 PMCID: PMC10134125 DOI: 10.1177/11779322231167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
| | - Smeeta Shrestha
- Smeeta Shrestha, Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore.
| |
Collapse
|
43
|
Handyside B, Ismail AM, Zhang L, Yates B, Xie L, Sihn CR, Murphy R, Bouwman T, Kim CK, De Angelis R, Karim OA, McIntosh NL, Doss MX, Shroff S, Pungor E, Bhat VS, Bullens S, Bunting S, Fong S. Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther 2022; 30:3570-3586. [PMID: 36348622 PMCID: PMC9734079 DOI: 10.1016/j.ymthe.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.
Collapse
Affiliation(s)
- Britta Handyside
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Lening Zhang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Lin Xie
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Choong-Ryoul Sihn
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Ryan Murphy
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Taren Bouwman
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Chan Kyu Kim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Omair A. Karim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | | | - Shilpa Shroff
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Erno Pungor
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Vikas S. Bhat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA,Corresponding author: Sylvia Fong, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
44
|
Yoon JY, Kim JY, Kim HJ, Ka NL, Lee SH, Lee MO. LncRNA Ctcflos modulates glucocorticoid receptor-mediated induction of hepatic phosphoenolpyruvate carboxykinase in mice. Life Sci 2022; 312:121254. [PMID: 36470542 DOI: 10.1016/j.lfs.2022.121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Heon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Bio-MAX institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Maneix L, Iakova P, Moree SE, Hsu JI, Mistry RM, Stossi F, Lulla P, Sun Z, Sahin E, Yellapragada SV, Catic A. Proteasome Inhibitors Silence Oncogenes in Multiple Myeloma through Localized Histone Deacetylase 3 (HDAC3) Stabilization and Chromatin Condensation. CANCER RESEARCH COMMUNICATIONS 2022; 2:1693-1710. [PMID: 36846090 PMCID: PMC9949381 DOI: 10.1158/2767-9764.crc-22-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Polina Iakova
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shannon E. Moree
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ragini M. Mistry
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Premal Lulla
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Zheng Sun
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Sarvari V. Yellapragada
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
46
|
Lefaudeux D, Sen S, Jiang K, Hoffmann A. Kinetics of mRNA nuclear export regulate innate immune response gene expression. Nat Commun 2022; 13:7197. [PMID: 36424375 PMCID: PMC9691726 DOI: 10.1038/s41467-022-34635-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The abundance and stimulus-responsiveness of mature mRNA is thought to be determined by nuclear synthesis, processing, and cytoplasmic decay. However, the rate and efficiency of moving mRNA to the cytoplasm almost certainly contributes, but has rarely been measured. Here, we investigated mRNA export rates for innate immune genes. We generated high spatio-temporal resolution RNA-seq data from endotoxin-stimulated macrophages and parameterized a mathematical model to infer kinetic parameters with confidence intervals. We find that the effective chromatin-to-cytoplasm export rate is gene-specific, varying 100-fold: for some genes, less than 5% of synthesized transcripts arrive in the cytoplasm as mature mRNAs, while others show high export efficiency. Interestingly, effective export rates do not determine temporal gene responsiveness, but complement the wide range of mRNA decay rates; this ensures similar abundances of short- and long-lived mRNAs, which form successive innate immune response expression waves.
Collapse
Affiliation(s)
- Diane Lefaudeux
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
| | - Supriya Sen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kevin Jiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
47
|
Tathe P, Chowdary KVSR, Murmu KC, Prasad P, Maddika S. SHP-1 dephosphorylates histone H2B to facilitate its ubiquitination during transcription. EMBO J 2022; 41:e109720. [PMID: 35938192 PMCID: PMC9531295 DOI: 10.15252/embj.2021109720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of phosphorylation and dephosphorylation of histones is essential for eukaryotic transcription, but the enzymes engaged in histone dephosphorylation are not fully explored. Here, we show that the tyrosine phosphatase SHP-1 dephosphorylates histone H2B and plays a critical role during transition from the initiation to the elongation stage of transcription. Nuclear-localized SHP-1 is associated with the Paf1 complex at chromatin and dephosphorylates H2B at tyrosine 121. Moreover, knockout of SHP-1, or expression of a mutant mimicking constitutive phosphorylation of H2B Y121, leads to a reduction in genome-wide H2B ubiquitination, which subsequently causes defects in RNA polymerase II-dependent transcription. Mechanistically, we demonstrate that Y121 phosphorylation precludes H2B's interaction with the E2 enzyme, indicating that SHP-1-mediated dephosphorylation of this residue may be a prerequisite for efficient H2B ubiquitination. Functionally, we find that SHP-1-mediated H2B dephosphorylation contributes to maintaining basal autophagic flux in cells through the efficient transcription of autophagy and lysosomal genes. Collectively, our study reveals an important modification of histone H2B regulated by SHP-1 that has a role during eukaryotic transcription.
Collapse
Affiliation(s)
- Prajakta Tathe
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - K V S Rammohan Chowdary
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| | | | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| |
Collapse
|
48
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
49
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
50
|
Cooper GW, Hong AL. SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. Cancers (Basel) 2022; 14:3645. [PMID: 35892904 PMCID: PMC9332782 DOI: 10.3390/cancers14153645] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
SMARCB1 is a critical component of the BAF complex that is responsible for global chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, offering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable targets and the high mortality associated with SMARCB1-deficient tumors, a significant research effort has been directed toward understanding the mechanisms of tumor transformation and proliferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and promoter regulation followed by dysfunctional transcriptional control. In this review, we outline key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these mechanisms have been used for the design of targeted therapy.
Collapse
Affiliation(s)
- Garrett W. Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|