1
|
Belda H, Bradley D, Christodoulou E, Nofal SD, Broncel M, Jones D, Davies H, Bertran MT, Purkiss AG, Ogrodowicz RW, Joshi D, O'Reilly N, Walport L, Powell A, House D, Kjaer S, Claessens A, Landry CR, Treeck M. The fast-evolving FIKK kinase family of Plasmodium falciparum can be inhibited by a single compound. Nat Microbiol 2025:10.1038/s41564-025-02017-4. [PMID: 40389650 DOI: 10.1038/s41564-025-02017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
Of 250 Plasmodium species, 6 infect humans, with P. falciparum causing over 95% of 600,000 annual malaria-related deaths. Its pathology arises from host cell remodelling driven by over 400 exported parasite proteins, including the FIKK kinase family. About one million years ago, a bird-infecting Plasmodium species crossed into great apes and a single non-exported FIKK kinase gained an export element. This led to a rapid expansion into 15-21 atypical, exported Ser/Thr effector kinases. Here, using genomic and proteomic analyses, we demonstrate FIKK differentiation via changes in subcellular localization, expression timing and substrate motifs, which supports an individual important role in host-pathogen interactions. Structural data and AlphaFold2 predictions reveal fast-evolving loops in the kinase domain that probably enabled rapid functional diversification for substrate preferences. One FIKK evolved exclusive tyrosine phosphorylation, previously thought absent in Plasmodium. Despite divergence of substrate preferences, the atypical ATP binding pocket is conserved and we identified a single compound that inhibits all FIKKs. A pan-specific inhibitor could reduce resistance development and improve malaria control strategies.
Collapse
Affiliation(s)
- Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - David Bradley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Quebec, Canada
- Institut de Biologie Intégrative et des Systems, Université Laval, Québec, Quebec, Canada
- PROTEO, Le Groupement Québécois de Recherche sur la Function, l'Ingénierie et les Applications des Proteins, Université Laval, Québec, Quebec, Canada
| | | | - Stephanie D Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - David Jones
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Roksana W Ogrodowicz
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Dhira Joshi
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola O'Reilly
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Louise Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
| | | | - David House
- CrickGSK Biomedical LinkLabs, GSK, Stevenage, UK
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Antoine Claessens
- LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Quebec, Canada
- Institut de Biologie Intégrative et des Systems, Université Laval, Québec, Quebec, Canada
- PROTEO, Le Groupement Québécois de Recherche sur la Function, l'Ingénierie et les Applications des Proteins, Université Laval, Québec, Quebec, Canada
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Lee YH, Lim H, Kim G, Jang G, Kuk MU, Park JH, Yoon JH, Lee YJ, Kim D, So B, Kim M, Kwon HW, Byun Y, Park JT. Elucidating the Role and Mechanism of Alpha-Enolase in Senescent Amelioration via Metabolic Reprogramming. Cell Prolif 2025:e70049. [PMID: 40289552 DOI: 10.1111/cpr.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Senescent cells are characterised by increased glycolysis dependence. Normalisation of glycolysis metabolism is essential for senescence amelioration. However, the mechanism of proteins involved in cellular glycolysis metabolism has not been fully elucidated. Here, we identified a candidate compound, an oxazole analogue (KB2764), that can improve senescence. To elucidate the mechanism of the KB2764, we investigated the interacting proteins. KB2764 interacted with alpha-enolase (ENO1) and pyruvate kinase M (PKM), ultimately allowing PKM to phosphorylate ENO1. KB2764 consequently increased mitochondrial ATP production and reduced reliance on glycolysis. Knockdown of the ENO1 experiment in senescent cells demonstrates that regulation of ENO1 activity is a prerequisite for recovery of mitochondrial function. Furthermore, the action of KB2764 extends its application to extend the lifespan of Caenorhabditis elegans. Taken together, our findings reveal a novel mechanism by which senescence is ameliorated through metabolic reprogramming and mitochondrial functional recovery via KB2764-mediated regulation of ENO1 protein activity.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyunwoong Lim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Gyungmin Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Geonhee Jang
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Duyeol Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Byeonghyeon So
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Minseon Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Campeanu IJ, Jiang Y, Afisllari H, Dzinic S, Polin L, Yang ZQ. Multi-omics analysis reveals CMTR1 upregulation in cancer and roles in ribosomal protein gene expression and tumor growth. Cell Commun Signal 2025; 23:197. [PMID: 40275371 PMCID: PMC12023683 DOI: 10.1186/s12964-025-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND CMTR1 (cap methyltransferase 1), a key nuclear mRNA cap methyltransferase, catalyzes 2'-O-methylation of the first transcribed nucleotide, a critical step in mRNA cap formation. Previous studies have implicated CMTR1 in embryonic stem cell differentiation and immune responses during viral infection; however, its role in cancer biology remains largely unexplored. This study aims to elucidate CMTR1's function in cancer progression and evaluate its potential as a novel therapeutic target in certain cancer types. METHODS We conducted a comprehensive multi-omics analysis of CMTR1 across various human cancers using TCGA and CPTAC datasets. Functional studies were performed using CRISPR-mediated knockout and siRNA knockdown in human and mouse basal-like breast cancer models. Transcriptomic and pathway enrichment analyses were carried out in CMTR1 knockout/knockdown models to identify CMTR1-regulated genes. In silico screening and biochemical assays were employed to identify novel CMTR1 inhibitors. RESULTS Multi-omics analysis revealed that CMTR1 is significantly upregulated at the mRNA, protein, and phosphoprotein levels across multiple cancer types in the TCGA and CPTAC datasets. Functional studies demonstrated that CMTR1 depletion significantly inhibits tumor growth both in vitro and in vivo. Transcriptomic analysis of CMTR1 knockout cells revealed that CMTR1 primarily regulates ribosomal protein genes and other transcripts containing 5' Terminal Oligopyrimidine (TOP) motifs. Additionally, CMTR1 affects the expression of snoRNA host genes and snoRNAs, suggesting a broader role in RNA metabolism. Mechanistic studies indicated that CMTR1's target specificity is partly determined by mRNA structure, particularly the presence of 5'TOP motifs. Finally, through in silico screening and biochemical assays, we identified several novel CMTR1 inhibitors, including N97911, which demonstrated in vitro growth inhibition activity in breast cancer cells. CONCLUSIONS Our findings establish CMTR1 as an important player in cancer biology, regulating critical aspects of RNA metabolism and ribosome biogenesis. The study highlights CMTR1's potential as a therapeutic target in certain cancer types and provides a foundation for developing novel cancer treatments targeting mRNA cap methylation.
Collapse
Affiliation(s)
- Ion John Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hilda Afisllari
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
4
|
Lemke MC, Avala NR, Rader MT, Hargett SR, Lank DS, Seltzer BD, Harris TE. MAST Kinases' Function and Regulation: Insights from Structural Modeling and Disease Mutations. Biomedicines 2025; 13:925. [PMID: 40299535 PMCID: PMC12024977 DOI: 10.3390/biomedicines13040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: The MAST kinases are ancient AGC kinases associated with many human diseases, such as cancer, diabetes, and neurodevelopmental disorders. We set out to describe the origins and diversification of MAST kinases from a structural and bioinformatic perspective to inform future research directions. Methods: We investigated MAST-lineage kinases using database and sequence analysis. We also estimate the functional consequences of disease point mutations on protein stability by integrating predictive algorithms and AlphaFold. Results: Higher-order organisms often have multiple MASTs and a single MASTL kinase. MAST proteins conserve an AGC kinase domain, a domain of unknown function 1908 (DUF), and a PDZ binding domain. D. discoideum contains MAST kinase-like proteins that exhibit a characteristic insertion within the T-loop but do not conserve DUF or PDZ domains. While the DUF domain is conserved in plants, the PDZ domain is not. The four mammalian MASTs demonstrate tissue expression heterogeneity by mRNA and protein. MAST1-4 are likely regulated by 14-3-3 proteins based on interactome data and in silico predictions. Comparative ΔΔG estimation identified that MAST1-L232P and G522E mutations are likely destabilizing. Conclusions: We conclude that MAST and MASTL kinases diverged from the primordial MAST, which likely operated in both biological niches. The number of MAST paralogs then expanded to the heterogeneous subfamily seen in mammals that are all likely regulated by 14-3-3 protein interaction. The reported pathogenic mutations in MASTs primarily represent alterations to post-translational modification topology in the DUF and kinase domains. Our report outlines a computational basis for future work in MAST kinase regulation and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; (M.C.L.)
| |
Collapse
|
5
|
Earl CP, Cobbaut M, Barros-Carvalho A, Ivanova ME, Briggs DC, Morais-de-Sá E, Parker PJ, McDonald NQ. Capture, mutual inhibition and release mechanism for aPKC-Par6 and its multisite polarity substrate Lgl. Nat Struct Mol Biol 2025; 32:729-739. [PMID: 39762628 PMCID: PMC11996676 DOI: 10.1038/s41594-024-01425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 02/23/2025]
Abstract
The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6PDZ contact. This complex traps a phospho-S663 Llgl1 intermediate bridging between aPKC and Par6, impeding phosphorylation progression. Thus, aPKCι is effectively inhibited by Llgl1pS663 while Llgl1 is captured by aPKCι-Par6. Mutational disruption of the Lgl-aPKC interaction impedes complex assembly and Lgl phosphorylation, whereas disrupting the Lgl-Par6PDZ contact promotes complex dissociation and Lgl phosphorylation. We demonstrate a Par6PDZ-regulated substrate capture-and-release model requiring binding by active Cdc42 and the apical partner Crumbs to drive complex disassembly. Our results suggest a mechanism for mutual regulation and spatial control of aPKC-Par6 and Lgl activities.
Collapse
Affiliation(s)
- Christopher P Earl
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK.
| | - André Barros-Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Marina E Ivanova
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
- Imperial College, London, UK
| | - David C Briggs
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, London, UK.
| |
Collapse
|
6
|
Abdo EL, Ajib I, El Mounzer J, Husseini M, Kalaoun G, Matta TM, Mosleh R, Nasr F, Richani N, Khalil A, Shayya A, Ghanem H, Faour WH. Molecular biology of the novel anticancer medications: a focus on kinases inhibitors, biologics and CAR T-cell therapy. Inflamm Res 2025; 74:41. [PMID: 39960501 DOI: 10.1007/s00011-025-02008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Cancer treatment underwent significant changes in the last few years with the introduction of novel treatments targeting the immune system. OBJECTIVES The objective of this review is to discuss novel anticancer drugs including kinase inhibitors, biologics and cellular therapy with CAR-T cells. METHODS Most recent research articles were extracted from PubMed using keywords such as "kinases inhibitors", "CAR-T cell therapy". RESULTS AND DISCUSSION The number of kinase inhibitors is significantly increasing due to their demonstrated effectiveness in combination with biologics. CAR-T represented a major breakthrough in the field. Also, it focused on their mechanisms of action and the rational of their use either alone or in combination in relation to their modes of action.
Collapse
Affiliation(s)
- Elia-Luna Abdo
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Imad Ajib
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Jason El Mounzer
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Mohammad Husseini
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Gharam Kalaoun
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Tatiana-Maria Matta
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Reine Mosleh
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Fidel Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Nour Richani
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Anwar Shayya
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Hady Ghanem
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
7
|
Clark LK, Cullati SN. Activation is only the beginning: mechanisms that tune kinase substrate specificity. Biochem Soc Trans 2025:BST20241420. [PMID: 39907081 DOI: 10.1042/bst20241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 02/06/2025]
Abstract
Kinases are master coordinators of cellular processes, but to appropriately respond to the changing cellular environment, each kinase must recognize its substrates, target only those proteins on the correct amino acids, and in many cases, only phosphorylate a subset of potential substrates at any given time. Therefore, regulation of kinase substrate specificity is paramount to proper cellular function, and multiple mechanisms can be employed to achieve specificity. At the smallest scale, characteristics of the substrate such as its linear peptide motif and three-dimensional structure must be complementary to the substrate binding surface of the kinase. This surface is dynamically shaped by the activation loop and surrounding region of the substrate binding groove, which can adopt multiple conformations, often influenced by post-translational modifications. Domain-scale conformational changes can also occur, such as the interaction with pseudosubstrate domains or other regulatory domains in the kinase. Kinases may multimerize or form complexes with other proteins that influence their structure, function, and/or subcellular localization at different times and in response to different signals. This review will illustrate these mechanisms by examining recent work on four serine/threonine kinases: Aurora B, CaMKII, GSK3β, and CK1δ. We find that these mechanisms are often shared by this diverse set of kinases in diverse cellular contexts, so they may represent common strategies that cells use to regulate cell signaling, and it will be enlightening to continue to learn about the depth and robustness of kinase substrate specificity in additional systems.
Collapse
Affiliation(s)
- Landon K Clark
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| | - Sierra N Cullati
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| |
Collapse
|
8
|
Kokot T, Zimmermann JP, Chand Y, Krier F, Reimann L, Scheinost L, Höfflin N, Esch A, Höhfeld J, Warscheid B, Köhn M. Identification of phosphatases that dephosphorylate the co-chaperone BAG3. Life Sci Alliance 2025; 8:e202402734. [PMID: 39562141 PMCID: PMC11576475 DOI: 10.26508/lsa.202402734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The co-chaperone BAG3 plays critical roles in maintaining cellular proteostasis. It associates with 14-3-3 proteins during the trafficking of aggregation-prone proteins and facilitates their degradation through chaperone-assisted selective autophagy in cooperation with small heat shock proteins. Although reversible phosphorylation regulates BAG3 function, the involved phosphatases remain unknown. Here, we used affinity purification mass spectrometry to identify phosphatases that target BAG3. Of the hits, we evaluated the involvement of protein phosphatase-1 (PP1) using chemical inhibitors and activators in in vitro and cellular approaches. Our results demonstrate that PP1 can dephosphorylate BAG3-pS136 in cells and counteract 14-3-3γ association with BAG3 at this motif. Furthermore, protein phosphatase-5 (PP5) co-enriched with proteostasis-related proteins, and it has the capacity to dephosphorylate a BAG3 phosphorylation-site cluster regulating the interaction of BAG3 with small heat shock proteins and BAG3-mediated protein degradation. Our findings provide new insights into the regulation of BAG3 by phosphatases. This paves the way for future research focused on the precise control of BAG3 function through its regulatory proteins, potentially holding therapeutic promise for diseases characterized by disrupted proteostasis.
Collapse
Affiliation(s)
- Thomas Kokot
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Yamini Chand
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabrice Krier
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Scheinost
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Höfflin
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alessandra Esch
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
11
|
Stauberová V, Kubeša B, Joseph M, Benedet M, Furlan B, Buriánková K, Ulrych A, Kupčík R, Vomastek T, Massidda O, Tsui HCT, Winkler ME, Branny P, Doubravová L. GpsB Coordinates StkP Signaling as a PASTA Kinase Adaptor in Streptococcus pneumoniae Cell Division. J Mol Biol 2024; 436:168797. [PMID: 39303764 PMCID: PMC11563889 DOI: 10.1016/j.jmb.2024.168797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.
Collapse
Affiliation(s)
- Václava Stauberová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohumil Kubeša
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Merrin Joseph
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Berenice Furlan
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Karolína Buriánková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aleš Ulrych
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Rudolf Kupčík
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Pavel Branny
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
12
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 PMCID: PMC11573500 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
13
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
14
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. EMBO J 2024; 43:4720-4751. [PMID: 39256561 PMCID: PMC11480408 DOI: 10.1038/s44318-024-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada.
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada.
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada.
- Department of Biology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
15
|
Hayashi SY, Craddock BP, Miller WT. Effects of heterologous kinase domains on growth factor receptor specificity. Cell Signal 2024; 122:111307. [PMID: 39048037 PMCID: PMC11707674 DOI: 10.1016/j.cellsig.2024.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The kinase domains of receptor tyrosine kinases (RTKs) are highly conserved, yet they are able to discriminate among potential substrates to selectively activate downstream signaling pathways. In this study, we tested the importance of catalytic domain specificity by creating two series of chimeric RTKs. In one set, the kinase domain of insulin-like growth factor I receptor (IGF1R) was replaced by the kinase domains from insulin receptor (IR), macrophage stimulating protein 1 receptor/Ron (Ron) or Src. In the other set of chimeras, the kinase domain of epidermal growth factor receptor (EGFR) was similarly replaced by the kinase domains of IR, Ron, or Src. We expressed the wild-type and chimeric forms of the receptors in mammalian cells. For some signaling events, such as recognition of IRS1, the identity of the tyrosine kinase catalytic domain did not appear to be crucial. In contrast, recognition of some sites, such as the C-terminal autophosphorylation sites on EGFR, did depend on the identity of the kinase domain. Our data also showed that ligand dependence was lost when the native kinase domains were replaced by Src, suggesting that the identity of the kinase domains could be important for proper receptor regulation. Overall, the results are consistent with the idea that the fidelity of RTK signaling depends on co-localization and targeting with substrates, as well as on the intrinsic specificity of the kinase domain.
Collapse
Affiliation(s)
- Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA 11794; Department of Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
16
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. Genetics 2024; 228:iyae106. [PMID: 38979911 PMCID: PMC11373509 DOI: 10.1093/genetics/iyae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
17
|
Li C, Moro S, Shostak K, O'Reilly FJ, Donzeau M, Graziadei A, McEwen AG, Desplancq D, Poussin-Courmontagne P, Bachelart T, Fiskin M, Berrodier N, Pichard S, Brillet K, Orfanoudakis G, Poterszman A, Torbeev V, Rappsilber J, Davey NE, Chariot A, Zanier K. Molecular mechanism of IKK catalytic dimer docking to NF-κB substrates. Nat Commun 2024; 15:7692. [PMID: 39227404 PMCID: PMC11371828 DOI: 10.1038/s41467-024-52076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
The inhibitor of κB (IκB) kinase (IKK) is a central regulator of NF-κB signaling. All IKK complexes contain hetero- or homodimers of the catalytic IKKβ and/or IKKα subunits. Here, we identify a YDDΦxΦ motif, which is conserved in substrates of canonical (IκBα, IκBβ) and alternative (p100) NF-κB pathways, and which mediates docking to catalytic IKK dimers. We demonstrate a quantitative correlation between docking affinity and IKK activity related to IκBα phosphorylation/degradation. Furthermore, we show that phosphorylation of the motif's conserved tyrosine, an event previously reported to promote IκBα accumulation and inhibition of NF-κB gene expression, suppresses the docking interaction. Results from integrated structural analyzes indicate that the motif binds to a groove at the IKK dimer interface. Consistently, suppression of IKK dimerization also abolishes IκBα substrate binding. Finally, we show that an optimized bivalent motif peptide inhibits NF-κB signaling. This work unveils a function for IKKα/β dimerization in substrate motif recognition.
Collapse
Affiliation(s)
- Changqing Li
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Stefano Moro
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Kateryna Shostak
- Laboratory of Cancer Biology, GIGA Cancer, University of Liege, CHU, Sart-Tilman, 4000, Liege, Belgium
| | - Francis J O'Reilly
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Mariel Donzeau
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Andrea Graziadei
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Dominique Desplancq
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Thomas Bachelart
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Mert Fiskin
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Nicolas Berrodier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Karl Brillet
- Institut Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR9002, 2 allée Konrad Roentgen, 67000, Strasbourg, France
| | - Georges Orfanoudakis
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Vladimir Torbeev
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Alain Chariot
- Laboratory of Cancer Biology, GIGA Cancer, University of Liege, CHU, Sart-Tilman, 4000, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France.
| |
Collapse
|
18
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
19
|
Bradley D, Garand C, Belda H, Gagnon-Arsenault I, Treeck M, Elowe S, Landry CR. The substrate quality of CK2 target sites has a determinant role on their function and evolution. Cell Syst 2024; 15:544-562.e8. [PMID: 38861992 DOI: 10.1016/j.cels.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Most biological processes are regulated by signaling modules that bind to short linear motifs. For protein kinases, substrates may have full or only partial matches to the kinase recognition motif, a property known as "substrate quality." However, it is not clear whether differences in substrate quality represent neutral variation or if they have functional consequences. We examine this question for the kinase CK2, which has many fundamental functions. We show that optimal CK2 sites are phosphorylated at maximal stoichiometries and found in many conditions, whereas minimal substrates are more weakly phosphorylated and have regulatory functions. Optimal CK2 sites tend to be more conserved, and substrate quality is often tuned by selection. For intermediate sites, increases or decreases in substrate quality may be deleterious, as we demonstrate for a CK2 substrate at the kinetochore. The results together suggest a strong role for substrate quality in phosphosite function and evolution. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- David Bradley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Chantal Garand
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Hugo Belda
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK
| | - Isabelle Gagnon-Arsenault
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Moritz Treeck
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, The Gulbenkian Institute of Science, Oeiras 2780-156, Portugal
| | - Sabine Elowe
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; Centre de Recherche sur le Cancer, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
20
|
HosseinAbadi M, Abbas Rafati A, Ghasemian Lemraski E. Electrochemical detection of regorafenib using a graphite sheet electrode modified with nitrogen-doped reduced graphene oxide nanocomposite. MATERIALS SCIENCE AND ENGINEERING: B 2024; 304:117375. [DOI: 10.1016/j.mseb.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the FHA domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595751. [PMID: 38826409 PMCID: PMC11142242 DOI: 10.1101/2024.05.24.595751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C. Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tom. D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
22
|
Veth TS, Nouwen LV, Zwaagstra M, Lyoo H, Wierenga KA, Westendorp B, Altelaar MAFM, Berkers C, van Kuppeveld FJM, Heck AJR. Assessment of Kinome-Wide Activity Remodeling upon Picornavirus Infection. Mol Cell Proteomics 2024; 23:100757. [PMID: 38556169 PMCID: PMC11067349 DOI: 10.1016/j.mcpro.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lonneke V Nouwen
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Kathryn A Wierenga
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bart Westendorp
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Celia Berkers
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Maldonado E, Canobra P, Oyarce M, Urbina F, Miralles VJ, Tapia JC, Castillo C, Solari A. In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes. Microorganisms 2024; 12:907. [PMID: 38792752 PMCID: PMC11124317 DOI: 10.3390/microorganisms12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Paz Canobra
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Matías Oyarce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Vicente J. Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46110 Valencia, Spain;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| |
Collapse
|
24
|
Salveson PJ, Moyer AP, Said MY, Gӧkçe G, Li X, Kang A, Nguyen H, Bera AK, Levine PM, Bhardwaj G, Baker D. Expansive discovery of chemically diverse structured macrocyclic oligoamides. Science 2024; 384:420-428. [PMID: 38662830 DOI: 10.1126/science.adk1687] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Small macrocycles with four or fewer amino acids are among the most potent natural products known, but there is currently no way to systematically generate such compounds. We describe a computational method for identifying ordered macrocycles composed of alpha, beta, gamma, and 17 other amino acid backbone chemistries, which we used to predict 14.9 million closed cycles composed of >42,000 monomer combinations. We chemically synthesized 18 macrocycles predicted to adopt single low-energy states and determined their x-ray or nuclear magnetic resonance structures; 15 of these were very close to the design models. We illustrate the therapeutic potential of these macrocycle designs by developing selective inhibitors of three protein targets of current interest. By opening up a vast space of readily synthesizable drug-like macrocycles, our results should considerably enhance structure-based drug design.
Collapse
Affiliation(s)
- Patrick J Salveson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Meerit Y Said
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gizem Gӧkçe
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Hannah Nguyen
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Paul M Levine
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Jiang Y, Huang S, Zhang L, Zhou Y, Zhang W, Wan T, Gu H, Ouyang Y, Zheng X, Liu P, Pan B, Xiang H, Ju M, Luo R, Jia W, Huang S, Li J, Zheng M. Targeting the Cdc2-like kinase 2 for overcoming platinum resistance in ovarian cancer. MedComm (Beijing) 2024; 5:e537. [PMID: 38617434 PMCID: PMC11016135 DOI: 10.1002/mco2.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalYunnan Cancer CenterKunmingChina
| | - Yun Zhou
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wan
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Haifeng Gu
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yi Ouyang
- Department of Radiation Oncology, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xiaojing Zheng
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Pingping Liu
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Baoyue Pan
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Huiling Xiang
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Mingxiu Ju
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rongzhen Luo
- Department of Pathology, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weihua Jia
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Shenjiao Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jundong Li
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Min Zheng
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
26
|
Tscherrig V, Steinfort M, Haesler V, Surbek D, Schoeberlein A, Joerger-Messerli MS. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration. Cells 2024; 13:543. [PMID: 38534387 PMCID: PMC10969443 DOI: 10.3390/cells13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.
Collapse
Affiliation(s)
- Vera Tscherrig
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Marel Steinfort
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Marianne Simone Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
27
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
28
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nat Commun 2024; 15:1426. [PMID: 38365893 PMCID: PMC10873347 DOI: 10.1038/s41467-024-45878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear. Here, we screen a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and biochemical analysis of individual variants reveal distinct sequence requirements for actin binding and regulation by LIM kinase. LIM kinase recognition only partly explains sequence constraints on phosphoregulation, which are instead driven to a large extent by the capacity for phosphorylation to inactivate cofilin. We find loose sequence requirements for actin binding and phosphoinhibition, but collectively they restrict the N-terminus to sequences found in natural cofilins. Our results illustrate how a phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jeffrey P Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
29
|
Solozabal N, Tapia L, Solà J, Pérez Y, Alfonso I. Molecular Recognition of Tyrosine-Containing Polypeptides with Pseudopeptidic Cages Unraveled by Fluorescence and NMR Spectroscopies. Bioconjug Chem 2023; 34:2345-2357. [PMID: 38078839 PMCID: PMC10859922 DOI: 10.1021/acs.bioconjchem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The molecular recognition of Tyr-containing peptide copolymers with pseudopeptidic cages has been studied using a combination of fluorescence and NMR spectroscopies. Fluorescence titrations rendered a reasonable estimation of the affinities, despite the presence of dynamic quenching masking the unambiguous detection of the supramolecular complexes. Regarding NMR, the effect of polypeptide (PP) binding on relaxation and diffusion parameters of the cages is much more reliable than the corresponding chemical shift perturbations. To that, purification of the commercial PPs is mandatory to obtain biopolymers with lower polydispersity. Thus, the relaxation/diffusion-filtered 1H spectra of the cages in the absence vs presence of the PPs represent a suitable setup for the fast detection of the noncovalent interactions. Additional key intermolecular NOE cross-peaks supported by molecular models allow the proposal of a structure of the supramolecular species, stabilized by the Tyr encapsulation within the cage cavity and additional attractive polar interactions between the side chains of cage and PP, thus defining a binding epitope with a potential for implementing sequence selectivity. Accordingly, the cages bearing positive/negative residues prefer to bind the peptides having complementary negative/positive side chains close to the target Tyr, suggesting an electrostatic contribution to the interaction. Overall, our results show that both techniques represent a powerful and complementary combination for studying cage-to-PP molecular recognition processes.
Collapse
Affiliation(s)
- Naiara Solozabal
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lucía Tapia
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jordi Solà
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Pérez
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ignacio Alfonso
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
30
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
31
|
Xiao D, Lin M, Liu C, Geddes TA, Burchfield J, Parker B, Humphrey SJ, Yang P. SnapKin: a snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data. NAR Genom Bioinform 2023; 5:lqad099. [PMID: 37954574 PMCID: PMC10632189 DOI: 10.1093/nargab/lqad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
A major challenge in mass spectrometry-based phosphoproteomics lies in identifying the substrates of kinases, as currently only a small fraction of substrates identified can be confidently linked with a known kinase. Machine learning techniques are promising approaches for leveraging large-scale phosphoproteomics data to computationally predict substrates of kinases. However, the small number of experimentally validated kinase substrates (true positive) and the high data noise in many phosphoproteomics datasets together limit their applicability and utility. Here, we aim to develop advanced kinase-substrate prediction methods to address these challenges. Using a collection of seven large phosphoproteomics datasets, and both traditional and deep learning models, we first demonstrate that a 'pseudo-positive' learning strategy for alleviating small sample size is effective at improving model predictive performance. We next show that a data resampling-based ensemble learning strategy is useful for improving model stability while further enhancing prediction. Lastly, we introduce an ensemble deep learning model ('SnapKin') by incorporating the above two learning strategies into a 'snapshot' ensemble learning algorithm. We propose SnapKin, an ensemble deep learning method, for predicting substrates of kinases from large-scale phosphoproteomics data. We demonstrate that SnapKin consistently outperforms existing methods in kinase-substrate prediction. SnapKin is freely available at https://github.com/PYangLab/SnapKin.
Collapse
Affiliation(s)
- Di Xiao
- Computational Systems Biology Group, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Michael Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chunlei Liu
- Computational Systems Biology Group, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thomas A Geddes
- Computational Systems Biology Group, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Environmental and Life Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Environmental and Life Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin L Parker
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Melbourne, VIC 3010, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Environmental and Life Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, VIC, 3052, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Hernández-Quiles M, Martinez Campesino L, Morris I, Ilyas Z, Reynolds S, Soon Tan N, Sobrevals Alcaraz P, Stigter ECA, Varga Á, Varga J, van Es R, Vos H, Wilson HL, Kiss-Toth E, Kalkhoven E. The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo. Mol Metab 2023; 78:101829. [PMID: 38445671 PMCID: PMC10663684 DOI: 10.1016/j.molmet.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health. METHODS We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes. RESULTS Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression. CONCLUSIONS Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Laura Martinez Campesino
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Zabran Ilyas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Reynolds
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232 Singapore, Singapore; School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Edwin C A Stigter
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Ákos Varga
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - János Varga
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Heather L Wilson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Endre Kiss-Toth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands.
| |
Collapse
|
33
|
Torres Robles J, Lou HJ, Shi G, Pan PL, Turk BE. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases. Proc Natl Acad Sci U S A 2023; 120:e2316599120. [PMID: 37988460 PMCID: PMC10691213 DOI: 10.1073/pnas.2316599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are essential for eukaryotic cells to integrate and respond to diverse stimuli. Maintaining specificity in signaling through MAPK networks is key to coupling distinct inputs to appropriate cellular responses. Docking sites-short linear motifs found in MAPK substrates, regulators, and scaffolds-can promote signaling specificity through selective interactions, but how they do so remains unresolved. Here, we screened a proteomic library for sequences interacting with the MAPKs extracellular signal-regulated kinase 2 (ERK2) and p38α, identifying selective and promiscuous docking motifs. Sequences specific for p38α had high net charge and lysine content, and selective binding depended on a pair of acidic residues unique to the p38α docking interface. Finally, we validated a set of full-length proteins harboring docking sites selected in our screens to be authentic MAPK interactors and substrates. This study identifies features that help define MAPK signaling networks and explains how specific docking motifs promote signaling integrity.
Collapse
Affiliation(s)
- Jaylissa Torres Robles
- Department of Chemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | | | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| |
Collapse
|
34
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
35
|
Póti ÁL, Dénes L, Papp K, Bató C, Bánóczi Z, Reményi A, Alexa A. Phosphorylation-Assisted Luciferase Complementation Assay Designed to Monitor Kinase Activity and Kinase-Domain-Mediated Protein-Protein Binding. Int J Mol Sci 2023; 24:14854. [PMID: 37834301 PMCID: PMC10573712 DOI: 10.3390/ijms241914854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Protein kinases are key regulators of cell signaling and have been important therapeutic targets for three decades. ATP-competitive drugs directly inhibit the activity of kinases but these enzymes work as part of complex protein networks in which protein-protein interactions (often referred to as kinase docking) may govern a more complex activation pattern. Kinase docking is indispensable for many signaling disease-relevant Ser/Thr kinases and it is mediated by a dedicated surface groove on the kinase domain which is distinct from the substrate-binding pocket. Thus, interfering with kinase docking provides an alternative strategy to control kinases. We describe activity sensors developed for p90 ribosomal S6 kinase (RSK) and mitogen-activated protein kinases (MAPKs: ERK, p38, and JNK) whose substrate phosphorylation is known to depend on kinase-docking-groove-mediated protein-protein binding. The in vitro assays were based on fragment complementation of the NanoBit luciferase, which is facilitated upon substrate motif phosphorylation. The new phosphorylation-assisted luciferase complementation (PhALC) sensors are highly selective and the PhALC assay is a useful tool for the quantitative analysis of kinase activity or kinase docking, and even for high-throughput screening of academic compound collections.
Collapse
Affiliation(s)
- Ádám L. Póti
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Laura Dénes
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Kinga Papp
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Reményi
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interactions Research Group, HUN-REN Research Center for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
36
|
Wang Y, Xu Y, Liao F, Li T, Li X, Wu B, Hong SB, Xu K, Zang Y, Zheng W. Genome-wide identification of GH9 gene family and the assessment of its role during fruit abscission zone formation in Vaccinium ashei. PLANT CELL REPORTS 2023; 42:1589-1609. [PMID: 37474780 DOI: 10.1007/s00299-023-03049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE The genomic location and stage-specific expression pattern of GH9 genes reveal their critical roles during fruit abscission zone formation in Vaccinium ashei. Glycosyl hydrolase family 9 (GH9) cellulases play a crucial role in both cellulose synthesis and hydrolysis during plant growth and development. Despite this importance, there is currently no study on the involvement of GH9-encoding genes, specifically VaGH9s, in abscission zone formation of rabbiteye blueberries (Vaccinium ashei). In this study, we identified a total of 61 VaGH9s in the genome, which can be classified into 3 subclasses based on conserved motifs and domains, gene structures, and phylogenetic analyses. Our synteny analysis revealed that VaGH9s are more closely related to the GH9s of Populus L. than to those of Arabidopsis, Vitis vinifera, and Citrus sinensis. In silico structural analysis predicted that most of VaGH9s are hydrophilic, and localized in cell membrane and/or cell wall, and the variable sets of cis-acting regulatory elements and functional diversity with four categories of stress response, hormone regulation, growth and development, and transcription factor-related elements are present in the promoter sequence of VaGH9s genes. Transcriptomic analysis showed that there were 22 differentially expressed VaGH9s in fruit abscission zone tissue at the veraison stage, and the expression of VaGH9B2 and VaGH9C10 was continuously increased during fruit maturation, which were in parallel with the increasing levels of cellulase activity and oxidative stress indicators, suggesting that they are involved in the separation stage of fruit abscission in Vaccinium ashei. Our work identified 22 VaGH9s potentially involved in different stages of fruit abscission and would aid further investigation into the molecular regulation of abscission in rabbiteye blueberries fruit.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yue Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Fangfang Liao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Ting Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Boping Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
37
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
38
|
Nguyen H, Kettenbach AN. Substrate and phosphorylation site selection by phosphoprotein phosphatases. Trends Biochem Sci 2023; 48:713-725. [PMID: 37173206 PMCID: PMC10523993 DOI: 10.1016/j.tibs.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.
Collapse
Affiliation(s)
- Hieu Nguyen
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; Dartmouth Cancer Center, Lebanon, NH 03756, USA.
| |
Collapse
|
39
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
40
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547189. [PMID: 37425676 PMCID: PMC10327202 DOI: 10.1101/2023.06.30.547189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear. Here, we screened a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and subsequent biochemical analysis of individual variants revealed distinct sequence requirements for actin binding and regulation by LIM kinase. While the presence of a serine, rather than threonine, phosphoacceptor residue was essential for phosphorylation by LIM kinase, the native cofilin N-terminus was otherwise a suboptimal LIM kinase substrate. This circumstance was not due to sequence requirements for actin binding and severing, but rather appeared primarily to maintain the capacity for phosphorylation to inactivate cofilin. Overall, the individual sequence requirements for cofilin function and regulation were remarkably loose when examined separately, but collectively restricted the N-terminus to sequences found in natural cofilins. Our results illustrate how a regulatory phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A. Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jeffrey P. Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
41
|
Xiong Z, Yang Y, Li W, Lin Y, Huang W, Zhang S. Exploring Key Biomarkers and Common Pathogenesis of Seven Digestive System Cancers and Their Correlation with COVID-19. Curr Issues Mol Biol 2023; 45:5515-5533. [PMID: 37504265 PMCID: PMC10378662 DOI: 10.3390/cimb45070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Digestive system cancer and COVID-19 significantly affect the digestive system, but the mechanism of interaction between COVID-19 and the digestive system cancers has not been fully elucidated. We downloaded the gene expression of COVID-19 and seven digestive system cancers (oral, esophageal, gastric, colorectal, hepatocellular, bile duct, pancreatic) from GEO and identified hub differentially expressed genes. Multiple verifications, diagnostic efficacy, prognostic analysis, functional enrichment and related transcription factors of hub genes were explored. We identified 23 common DEGs for subsequent analysis. CytoHubba identified nine hub genes (CCNA2, CCNB1, CDKN3, ECT2, KIF14, KIF20A, KIF4A, NEK2, TTK). TCGA and GEO data validated the expression and excellent diagnostic and prognostic ability of hub genes. Functional analysis revealed that the processes of cell division and the cell cycle were essential in COVID-19 and digestive system cancers. Furthermore, six related transcription factors (E2F1, E2F3, E2F4, MYC, TP53, YBX1) were involved in hub gene regulation. Via in vitro experiments, CCNA2, CCNB1, and MYC expression was verified in 25 colorectal cancer tissue pairs. Our study revealed the key biomarks and common pathogenesis of digestive system cancers and COVID-19. These may provide new ideas for further mechanistic research.
Collapse
Affiliation(s)
- Zuming Xiong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yongjun Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenxin Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yirong Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
42
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
43
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Mao B, Zhang W, Zheng Y, Li D, Chen MY, Wang YF. Comparative phosphoproteomics reveal new candidates in the regulation of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2022; 29:1703-1720. [PMID: 35271765 DOI: 10.1111/1744-7917.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The most common phenotype induced by the endosymbiont Wolbachia in insects is cytoplasmic incompatibility, where none or fewer progenies can be produced when Wolbachia-infected males mate with uninfected females. This suggests that some modifications are induced in host sperms during spermatogenesis by Wolbachia. To identify the proteins whose phosphorylation states play essential roles in male reproduction in Drosophila melanogaster, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic strategy combined with titanium dioxide (TiO2 ) enrichment to compare the phosphoproteome of Wolbachia-infected with that of uninfected male reproductive systems in D. melanogaster. We identified 182 phosphopeptides, defining 140 phosphoproteins, that have at least a 1.2 fold change in abundance with a P-value of <0.05. Most of the differentially abundant phosphoproteins (DAPPs) were associated with microtubule cytoskeleton organization and spermatid differentiation. The DAPPs included proteins already known to be associated with spermatogenesis, as well as many not previously studied during this process. Six genes coding for DAPPs were knocked down, respectively, in Wolbachia-free fly testes. Among them, Slmap knockdown caused the most severe damage in spermatogenesis, with no mature sperm observed in seminal vesicles. Immunofluorescence staining showed that the formation of individualization complex composed of actin cones was completely disrupted. These results suggest that Wolbachia may induce wide changes in the abundance of phosphorylated proteins which are closely related to male reproduction. By identifying phospho-modulated proteins we also provide a significant candidate set for future studies on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wei Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Dong Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
45
|
Pasquier C, Robichon A. Evolutionary Divergence of Phosphorylation to Regulate Interactive Protein Networks in Lower and Higher Species. Int J Mol Sci 2022; 23:ijms232214429. [PMID: 36430905 PMCID: PMC9697241 DOI: 10.3390/ijms232214429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of proteins affects their functions in extensively documented circumstances. However, the role of phosphorylation in many interactive networks of proteins remains very elusive due to the experimental limits of exploring the transient interaction in a large complex of assembled proteins induced by stimulation. Previous studies have suggested that phosphorylation is a recent evolutionary process that differently regulates ortholog proteins in numerous lineages of living organisms to create new functions. Despite the fact that numerous phospho-proteins have been compared between species, little is known about the organization of the full phospho-proteome, the role of phosphorylation to orchestrate large interactive networks of proteins, and the intertwined phospho-landscape in these networks. In this report, we aimed to investigate the acquired role of phosphate addition in the phenomenon of protein networking in different orders of living organisms. Our data highlighted the acquired status of phosphorylation in organizing large, connected assemblages in Homo sapiens. The protein networking guided by phosphorylation turned out to be prominent in humans, chaotic in yeast, and weak in flies. Furthermore, the molecular functions of GO annotation enrichment regulated by phosphorylation were found to be drastically different between flies, yeast, and humans, suggesting an evolutionary drift specific to each species.
Collapse
Affiliation(s)
- Claude Pasquier
- I3S, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
- Correspondence:
| | - Alain Robichon
- INRAE, ISA, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
| |
Collapse
|
46
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
47
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
48
|
Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Nat Commun 2022; 13:6133. [PMID: 36253406 PMCID: PMC9576782 DOI: 10.1038/s41467-022-33866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-JUN proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-JUN multisite phosphorylation has remained elusive. Here we show that c-JUN phosphorylation by JNK exhibits defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identify the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis reveals three c-JUN phosphorylation states: unphosphorylated c-JUN recruits the MBD3 repressor, serine63/73 doubly-phosphorylated c-JUN binds to the TCF4 co-activator, whereas the fully phosphorylated form disfavours TCF4 binding attenuating JNK signalling. Thus, c-JUN phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, UK
- School of Pharmacy, University College London, London, UK
| | - Saul Alvarez-Teijeiro
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Josue Ruiz
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Simon Suppinger
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Paul R Brown
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College, London, UK
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CR-UK Convergence Science Centre, Imperial College, London, SW7 2BU, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - Anastasia Mylona
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|
49
|
Sang D, Shu T, Pantoja CF, Ibáñez de Opakua A, Zweckstetter M, Holt LJ. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol Cell 2022; 82:3693-3711.e10. [PMID: 36108633 PMCID: PMC10101210 DOI: 10.1016/j.molcel.2022.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Phase separation can concentrate biomolecules and accelerate reactions. However, the mechanisms and principles connecting this mesoscale organization to signaling dynamics are difficult to dissect because of the pleiotropic effects associated with disrupting endogenous condensates. To address this limitation, we engineered new phosphorylation reactions within synthetic condensates. We generally found increased activity and broadened kinase specificity. Phosphorylation dynamics within condensates were rapid and could drive cell-cycle-dependent localization changes. High client concentration within condensates was important but not the main factor for efficient phosphorylation. Rather, the availability of many excess client-binding sites together with a flexible scaffold was crucial. Phosphorylation within condensates was also modulated by changes in macromolecular crowding. Finally, the phosphorylation of the Alzheimer's-disease-associated protein Tau by cyclin-dependent kinase 2 was accelerated within condensates. Thus, condensates enable new signaling connections and can create sensors that respond to the biophysical properties of the cytoplasm.
Collapse
Affiliation(s)
- Dajun Sang
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10010, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10010, USA
| | - Christian F Pantoja
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10010, USA.
| |
Collapse
|
50
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|