1
|
Dai Z, Xie X, Chen X, Lv H, Xie Y, Liu Y, Wang F, Li M, Fan C, Li Q. Robust Accessibility of Addressable Sites in Defective DNA Origami. JACS AU 2025; 5:2237-2245. [PMID: 40443884 PMCID: PMC12117441 DOI: 10.1021/jacsau.5c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 06/02/2025]
Abstract
Owing to its unique programmability and addressability, DNA origami-based nanofabrication has been widely utilized in fields such as nanomedicine and nanophotonics. The accessibility of addressable sites on DNA origami structures is crucial for their use as nanofabrication platforms. In this study, we systematically investigated the impact of structural defects on accessibility using a classic six-helix bundle (6HB) DNA origami and two variants with subsets of DNA staple strands deleted, introducing programmable defects in 6HB nanostructures. DNA point accumulation for imaging in nanoscale topography super-resolution microscopy was employed to monitor hybridization and dehybridization at each addressable site and analyze corresponding localizations and kinetics. Statistical analysis revealed that addressable sites on 6HB nanostructures retained significant accessibility robustness despite structural defects, which was further supported by molecular dynamics simulations. These results provide valuable insights into the design principles and applications of DNA origami.
Collapse
Affiliation(s)
- Zheze Dai
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaodong Xie
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaoliang Chen
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hui Lv
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yao Xie
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yongjun Liu
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fei Wang
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Mingqiang Li
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Chunhai Fan
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry
and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
| | - Qian Li
- State
Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry
and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers
Science Center for Transformative Molecules, National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
2
|
Sharrocks KL, Swaih AM, Hanyaloglu AC. Single-molecule localization microscopy as a tool to quantify di/oligomerization of receptor tyrosine kinases and G protein-coupled receptors. Mol Pharmacol 2025; 107:100033. [PMID: 40228395 DOI: 10.1016/j.molpha.2025.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Dimerization and oligomerization of membrane receptors, including G protein-coupled receptors and receptor tyrosine kinases, are fundamental for regulating cell signaling and diversifying downstream responses to mediate a range of physiological processes. Receptor di/oligomers play roles in diverse facets of receptor function. Changes in receptor di/oligomers have been implicated in a range of diseases; therefore, better understanding of the specific composition and interactions between receptors in complexes is essential, especially for the development of di/oligomer-specific drugs. Previously, different optical microscopy approaches and proximity-based biophysical assays have been used to demonstrate di/oligomerization of membrane receptors. However, in recent years, single-molecule super-resolution microscopy techniques have allowed researchers to quantify and uncover the precise dynamics and stoichiometry of specific receptor complexes. This allows the organization of membrane protein receptors to be mapped across the plasma membrane to explore the effects of factors such as ligands, effectors, membrane environment, and therapeutic agents. Quantification of receptor complexes is required to better understand the intricate balance of distinct receptor complexes in cells. In this brief review, we provide an overview of single-molecule approaches for the quantification of receptor di/oligomerization. We will discuss the techniques commonly employed to study membrane receptor di/oligomerization and their relative advantages and limitations. SIGNIFICANCE STATEMENT: Receptor di/oligomerization plays an important role in their function. For some receptors, di/oligomerization is essential for functional signaling, whereas for others, it acts as a mechanism to achieve signaling pleiotropy. Aberrant receptor di/oligomerization has been implicated in a wide range of diseases. Single-molecule super-resolution microscopy techniques provide convincing methods to precisely quantify receptor complexes at the plasma membrane. Understanding receptor complex organization in disease models can also influence the targeting of specific monomeric or oligomeric complexes in therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Aylin C Hanyaloglu
- The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2025; 298:219-231. [PMID: 38661499 PMCID: PMC11987580 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| |
Collapse
|
4
|
Filius M, Fasching L, van Wee R, Rwei AY, Joo C. Decoding aptamer-protein binding kinetics for continuous biosensing using single-molecule techniques. SCIENCE ADVANCES 2025; 11:eads9687. [PMID: 39951531 PMCID: PMC11827629 DOI: 10.1126/sciadv.ads9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Continuous biosensing provides real-time information about biochemical processes and holds great potential for health monitoring. Aptamers have emerged as promising alternatives over traditional biorecognition elements. However, the underlying aptamer-target binding interactions are often poorly understood. Here, we present a technique that can decode aptamer-protein binding interactions at the single-molecule level. We demonstrate that our single-molecule assay is able to decode the underlying binding kinetics of aptamers despite their similar binding affinity. Guided by computational simulations and validated with quartz crystal microbalance experiments, we show that the quantitative insights generated by this single-molecule technique enabled the rational understanding of biosensor performance (i.e., the sensitivity and limit of detection). This capability was demonstrated with thrombin as the analyte and the structurally similar aptamers HD1, RE31, and NU172 as the biorecognition elements. This work decodes aptamer-protein interactions with high temporal resolution, paving the way for the rational design of aptamer-based biosensors.
Collapse
Affiliation(s)
- Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Lena Fasching
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Alina Y. Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Piantanida L, Dickinson GD, Majikes JM, Clay W, Liddle JA, Andersen T, Hayden EJ, Kuang W, Hughes WL. DNA-PAINT Probe Modifications Support High-Resolution Imaging with Shorter Binding Domains. ACS NANO 2024; 18:22369-22377. [PMID: 39109416 DOI: 10.1021/acsnano.4c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
DNA-based Points Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) is an effective super resolution microscopy technique, and its optimization is key to improve nanoscale detection. The state-of-the-art improvements that are at the base of this optimization have been first routinely validated on DNA nanostructure devices before being tested on biological samples. This allows researchers to finely tune DNA-PAINT imaging features in a more controllable in vitro environment. Dye-labeled oligonucleotide probes with short hybridization domains can expand DNA-PAINT's detection by targeting short nucleotide sequences and improving resolution, speed, and multiplexing. However, developing these probes is challenging as their brief bound state makes them difficult to capture under routine imaging conditions. To extend dwell binding times and promote duplex stability, we introduced structural and chemical modifications to our imager probes. The modifications included mini-hairpins and/or Bridged Nucleic Acids (BNA); both of which increase the thermomechanical stability of a DNA duplex. Using this approach we demonstrate DNA-PAINT imaging with approximately 5 nm resolution using a 4-nucleotide hybridization domain that is 43% shorter than previously reported probes. Imager probes with such short hybridization domains are key for improving detection on DNA nanostructure devices because they have the capability to target a larger number of binding domains per localization unit. This is essential for metrology applications such as Nucleic Acid Memory (NAM) where the information density is dependent on the binding site length. The selected imager probes reported here present imaging resolution equivalent to current state-of-the-art DNA-PAINT probes, creating a strategy to image shorter DNA domains for nanoscience and nanotechnology alike.
Collapse
Affiliation(s)
- Luca Piantanida
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - George D Dickinson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jacob M Majikes
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - William Clay
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - J Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Tim Andersen
- Department of Computer Science, Boise State University, Boise, Idaho 83725, United States
| | - Eric J Hayden
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725, United States
| | - Wan Kuang
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William L Hughes
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
6
|
Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim SH, de Agrela Pinto C, Wu Y, Boons GJ, Pabst M, de Ridder D, Joo C. Full-length single-molecule protein fingerprinting. NATURE NANOTECHNOLOGY 2024; 19:652-659. [PMID: 38351230 DOI: 10.1038/s41565-023-01598-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.
Collapse
Affiliation(s)
- Mike Filius
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Carlos de Lannoy
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zeshi Li
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sung Hyun Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Abstract
Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon that has been repurposed as a biophysical tool to measure nanometer distances. With FRET by DNA eXchange, or FRET X, many points of interest (POIs) in a single object can be probed, overcoming a major limitation of conventional single-molecule FRET. In FRET X, short fluorescently labeled DNA imager strands specifically and transiently bind their complementary docking strands on a target molecule, such that at most a single FRET pair is formed at each point in time and multiple POIs on a single molecule can be readily probed. Here, we describe the sample preparation, image acquisition, and data analysis for structural analysis of DNA nanostructures with FRET X.
Collapse
Affiliation(s)
- Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
9
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
11
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. Angew Chem Int Ed Engl 2023; 62:e202216231. [PMID: 36412996 PMCID: PMC10108274 DOI: 10.1002/anie.202216231] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
14
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216231. [PMID: 38515539 PMCID: PMC10952862 DOI: 10.1002/ange.202216231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
15
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
17
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
18
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
19
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
20
|
Filbrun SL, Zhao F, Chen K, Huang TX, Yang M, Cheng X, Dong B, Fang N. Imaging Dynamic Processes in Multiple Dimensions and Length Scales. Annu Rev Phys Chem 2022; 73:377-402. [PMID: 35119943 DOI: 10.1146/annurev-physchem-090519-034100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.,Imaging Core Facility, Georgia State University, Atlanta, Georgia, USA
| | - Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Xiaodong Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Ning Fang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| |
Collapse
|
21
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|