1
|
Zhang X, Huang X, Wu Z. Light-induced CsCV triggers chloroplast degradation by destabilizing photosystem proteins in tea plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109926. [PMID: 40258317 DOI: 10.1016/j.plaphy.2025.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
Excess light induces chloroplast degradation in plants, leading to decreased photosynthetic efficiency and an albino leaf phenotype. However, the molecular mechanism underlying this process remains unclear, especially in perennial crops like tea plant. This study investigated the effects of relatively strong light (SL, 240 μmol m-2·s-1) on chloroplast ultrastructure and metabolites in the light-sensitive tea germplasm Nanchuan Dachashu (Camellia nanchuanica). Continuous exposure to SL resulted in abnormal chloroplast structure characterized by extensive vacuolation. SL also significantly decreased the levels of chlorophyll (-60.30 %), carotenoids (-88.29 %), free amino acids (-23.97 %), and caffeine (-41.15 %) compared to relatively weak light (WL, 15 μmol m-2·s-1). Transcriptome analysis and RT-qPCR revealed that the chloroplast vesiculation gene CsCV was significantly up-regulated under SL, with promoter analysis showing more light-responsive elements in CsCV compared to another light-responsive gene, CsNBR1. Overexpression of CsCV in Arabidopsis caused stunted growth and accelerated leaf senescence, with the most affected line showing decreases in chlorophyll and carotenoid contents of 24.97 % and 17.39 %, respectively. Conversely, silencing CsCV in tea plants using antisense oligodeoxynucleotides (asODNs) for 3 days increased chlorophyll and carotenoid levels by 15.98 % and 18.35 %, respectively. Bimolecular fluorescence complementation (BiFC) assays and in protein-protein docking simulations demonstrated that CsCV interacts with the photosystem proteins CsLhca1, CsLhcb4, and CsPsaL through its conserved C-terminal region, suggesting CsCV may trigger chloroplast degradation by destabilizing the photosynthetic apparatus under SL. These findings provide mechanistic insights into light-induced chloroplast degradation in tea plants and highlight CsCV as a potential target for improving crop stress tolerance.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhijun Wu
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Rai S, Lemke MD, Arias AM, Gómez Méndez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BMC PLANT BIOLOGY 2025; 25:747. [PMID: 40457237 PMCID: PMC12131553 DOI: 10.1186/s12870-025-06703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/12/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2, and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. RESULTS To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. CONCLUSIONS Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, 85721-0036, USA
| | - Matthew D Lemke
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, 85721-0036, USA
| | - Anika M Arias
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, 85721-0036, USA
| | - María F Gómez Méndez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
3
|
Di Silvestre D, Jeran N, Domingo G, Vannini C, Marsoni M, Fortunato S, de Pinto MC, Tamborrino A, Negroni YL, Zottini M, Hong LT, Lomagno A, Mauri P, Pesaresi P, Tadini L. A Holistic Investigation of Arabidopsis Proteomes Altered in Chloroplast Biogenesis and Retrograde Signalling Identifies PsbO as a Key Regulator of Chloroplast Quality Control. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40366233 DOI: 10.1111/pce.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Communication between the diverse compartments of plant cells relies on an intricate network of molecular interactions that orchestrate organellar development and adaptation to environmental conditions. Plastid-to-nucleus signalling pathways play a key role in relaying information from developing, mature, and damaged or disintegrating chloroplasts to the nucleus, which serves to coordinate gene expression between the two genomes. To shed light on these mechanisms, we performed a comprehensive analysis of the response of the Arabidopsis thaliana proteomes to perturbation of chloroplast biogenesis by the antibiotic lincomycin (Lin) in the absence of GENOMES UNCOUPLED 1 (GUN1), a key player in plastid-to-nucleus signalling. The topological analysis of protein-protein interactions (PPIs) and co-expression networks enabled the identification of protein hubs in each genotype and condition tested, and highlighted whole-cell adaptive responses to the disruption of chloroplast biogenesis. Our findings reveal a novel role for PsbO, a subunit of the oxygen-evolving complex (OEC), which behaves as an atypical photosynthetic protein upon inhibition of plastid protein synthesis. Notably, and unlike all other subunits of the thylakoid electron transport chain, PsbO accumulates in non-photosynthetic plastids, and is crucial for the breakdown of damaged chloroplasts.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | - Lien Tran Hong
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Lomagno
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Gao Y, Zhou X, Huang H, Wang C, Xiao X, Wen J, Wu J, Zhou S, de Dios VR, Rodríguez LG, Yao Y, Liu J, Deng H. ORANGE proteins mediate adaptation to high light and resistance to Pseudomonas syringae in tomato by regulating chlorophylls and carotenoids accumulation. Int J Biol Macromol 2025; 306:141739. [PMID: 40049490 DOI: 10.1016/j.ijbiomac.2025.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Chlorophylls and carotenoids are crucial for photosynthesis and plant survival, with ORANGE (OR) protein being pivotal in pigment accumulation. Despite tomato being rich in carotenoids, the roles of OR proteins in tomato have been overlooked. Herein, we characterized two OR genes in tomato, SlOR and SlOR-like, which are highly expressed in stems, leaves, and flowers, with their proteins being localized to chloroplasts. Overexpression of SlOR in transgenic plants conferred enhanced growth and height, whereas co-silencing of SlOR and SlOR-like resulted in stunted growth, pale-green leaves due to diminished chlorophylls and carotenoids, and fewer thylakoid lamellae and layers. Under normal light, SlOR/SlOR-like-Ri transgenic plants exhibited compromised electron transport and photosynthetic rates; furthermore, high-light exposure exacerbated these effects, resulting in photooxidative stress, elevated reactive oxygen species (ROS) and reduced photosynthetic rates in SlOR/SlOR-like-Ri plants. Transcriptome analysis revealed that photosynthesis-related genes were up-regulated, while defense-related genes were significantly down-regulated in SlOR/SlOR-like-Ri lines relative to wild-type plants. Additionally, SlOR/SlOR-like-Ri plants also displayed enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000. Overall, our study highlights SlOR as a critical protein modulating the accumulation of chlorophylls and carotenoids in tomato, playing a crucial role in adaptation to high light conditions and pathogen resistance.
Collapse
Affiliation(s)
- Yongfeng Gao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xue Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Haitao Huang
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Cheng Wang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiangxia Xiao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jing Wen
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Jiamin Wu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shan Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Víctor Resco de Dios
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Lucas Gutiérrez Rodríguez
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yinan Yao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jikai Liu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Heng Deng
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
5
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
6
|
Hao TB, Lai PY, Shu Z, Liang R, Chen ZY, Huang RL, Lu Y, Alimujiang A. Physiological and metabolic fluctuations of the diatom Phaeodactylum tricornutum under water scarcity. Front Microbiol 2025; 16:1555989. [PMID: 40177482 PMCID: PMC11962624 DOI: 10.3389/fmicb.2025.1555989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Water scarcity is an escalating environmental concern. The model diatom, Phaeodactylum tricornutum, holds promise as a potential cell factory for the production of high-value natural compounds. However, its dependence on saline water cultivation restricts its use in areas facing water shortages. Although numerous studies have delved into the metabolic mechanisms of plants under water stress, there is a limited understanding when it comes to microalgae. In our study, we employed polyethylene glycol (PEG) to simulate water scarcity conditions, and assessed a range of parameters to elucidate the metabolic responses of P. tricornutum. Water stress induced the generation of reactive oxygen species (ROS), curtailed the photosynthetic growth rate, and amplified lipid content. Our insights shed light on the physiology of P. tricornutum when subjected to water stress, setting the stage for potential applications of microalgae biotechnology in regions grappling with water scarcity.
Collapse
Affiliation(s)
- Ting-Bin Hao
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Synthetic Biology, Shanxi University, Taiyuan, China
| | - Peng-Yu Lai
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhan Shu
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ran Liang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Yun Chen
- Guangzhou Zhixin High School, Ersha Campus, Guangzhou, China
| | - Ren-Long Huang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Lu
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Adili Alimujiang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Kiboi D, Sá JM, Nayak A, Micchelli CE, Amin SN, Burbelo AG, Abielmona SA, Xi B, Mulei LA, Onchieku NM, Percopo CM, Mu J, Wellems TE. Isolation and characterization of Plasmodium falciparum blood-stage persisters by improved selection protocols using dihydroartemisinin alone. Antimicrob Agents Chemother 2025; 69:e0005324. [PMID: 39927767 PMCID: PMC11881564 DOI: 10.1128/aac.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Artemisinin-based combination therapies (ACTs) are vital for malaria treatment, but these are threatened by blood-stage persisters-dormant forms of Plasmodium parasites that can survive drug exposure and cause recrudescent infections. Here, we present improved protocols for efficient preparation of pure Plasmodium falciparum persister populations without the need for magnetically activated columns, sorbitol exposure, or prolonged manipulations. Our protocols transformed actively replicating parasites into persister populations by exposing mixed blood-stage parasites to three or four consecutive daily 6 h pulses of 700 nM or 200 nM dihydroartemisinin (DHA). In micrographs of Giemsa-stained cells, we observed different persister morphologies: Type I persisters containing a rounded magenta-stained nucleus accompanied by a local region of blue-stained cytoplasm; and the more-prevalent Type II persisters characterized by a dark round or irregular-appearing nucleus and faded or no detectable cytoplasm. We also observed cells with disorganized nuclear and cytoplasmic structure, suggesting possible autophagic processes of destruction and remodeling. Recrudescence of actively replicating parasites to starting parasitemia or higher occurred around 17-22 days after initial DHA exposure. Differential expression patterns of the acetyl CoA carboxylase (acc) and skeleton binding protein 1 (sbp1) genes during DHA treatment, dormancy, and recrudescence highlighted the evolution of physiologic states and metabolic changes underlying persister formation and recovery. Our findings suggest hypotheses and questions for further research to understand the cellular pathways of dormancy and uncover strategies to thwart parasite survival after drug exposure.
Collapse
Affiliation(s)
- Daniel Kiboi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Akshaykumar Nayak
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alexander G. Burbelo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sasha A. Abielmona
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Xi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lucia A. Mulei
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Noah M. Onchieku
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Caroline M. Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Li Q, An W, Ma J, Zhang H, Luo M, Qi Y, Meurer J, Ji D, Chi W. The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70060. [PMID: 40026239 DOI: 10.1111/tpj.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1. BCM1 is distributed in both grana cores (GC) and stroma lamellae of thylakoids. However, heat stress induced its accumulation in grana cores but not stroma lamellae. Deficiency of BCM1 leads to the decline of plant resilience to heat stress, which results from the accelerated degradation of CP24 and CP29 in vivo. Heat stress induces a redistribution of CP24 and CP29 from the grana cores to the stroma lamellae, a shift that is exacerbated in bcm1 mutants, suggesting that migration of detached antennae proteins between thylakoid subcompartments may contribute to their degradation during heat acclimation. As an integral thylakoid protein, BCM1 physically interacts with CP24 and CP29. We propose that BCM1 serves as a stabilizing "anchor", effectively sequestering CP24 and CP29 within the grana cores thereby reducing their exposure to degradation in the stroma lamellae.
Collapse
Affiliation(s)
- Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing An
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongmei Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152, Planegg-Martinsried, Germany
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Lemke MD, Abate AN, Woodson JD. Investigating the mechanism of chloroplast singlet oxygen signaling in the Arabidopsis thaliana accelerated cell death 2 mutant. PLANT SIGNALING & BEHAVIOR 2024; 19:2347783. [PMID: 38699898 PMCID: PMC11073415 DOI: 10.1080/15592324.2024.2347783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alexa N. Abate
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Rai S, Lemke MD, Arias AM, Gomez Mendez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593788. [PMID: 38798329 PMCID: PMC11118471 DOI: 10.1101/2024.05.13.593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2 and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. Results To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. Conclusions Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Anika M. Arias
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | - Maria F. Gomez Mendez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | | |
Collapse
|
11
|
Yuan B, van Wijk KJ. The chloroplast protease system degrades stromal DUF760-1 and DUF760-2 domain-containing proteins at different rates. PLANT PHYSIOLOGY 2024; 196:1788-1801. [PMID: 39155062 DOI: 10.1093/plphys/kiae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
The chloroplast chaperone CLPC1 aids to select, unfold, and deliver hundreds of proteins to the CLP protease for degradation. Through in vivo CLPC1, trapping we previously identified dozens of proteins that are (potential) substrate adaptors or substrates for the CLP chaperone-protease system. In this study, we show that two of these highly trapped proteins, DUF760-1 and DUF760-2, are substrates for the CLP protease in Arabidopsis (Arabidopsis thaliana). Loss-of-function mutants and transgenic plants were created for phenotyping, protein expression, and localization using immunoblotting and confocal microscopy. In planta BiFC, cycloheximide chase assays, and yeast 2-hybrid analyses were conducted to determine protein interactions and protein half-life. Both DUF760 proteins directly interacted with the N-domain of CLPC1 and both were highly enriched in clpc1-1 and clpr2-1 mutants. Accordingly, in vivo cycloheximide chase assays demonstrated that both DUF760 proteins are degraded by the CLP protease. The half-life of DUF760-1 was 4 to 6 h, whereas DUF760-2 was highly unstable and difficult to detect unless CLP proteolysis was inhibited. Null mutants for DUF760-1 and DUF760-2 showed weak but differential pigment phenotypes and differential sensitivity to protein translation inhibitors. This study demonstrates that DUF760-1 and DUF760-2 are substrates of the CLP chaperone-protease system and excellent candidates for the determination of CLP substrate degrons.
Collapse
Affiliation(s)
- Bingjian Yuan
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in Plasmodium falciparum persister blood stages after drug treatment. PNAS NEXUS 2024; 3:pgae424. [PMID: 39381646 PMCID: PMC11460358 DOI: 10.1093/pnasnexus/pgae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a fraction of the blood-stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring-stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuchi N Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean T Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Jarvis RP, Li J, Lin R, Ling Q, Lyu Y, Sun Y, Yao Z. Reply: Does the polyubiquitination pathway operate inside intact chloroplasts to remove proteins? THE PLANT CELL 2024; 36:2990-2996. [PMID: 38738499 PMCID: PMC11371133 DOI: 10.1093/plcell/koae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Affiliation(s)
- R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuping Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yi Sun
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Zujie Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
14
|
van Wijk KJ. Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis. THE PLANT CELL 2024; 36:3116-3130. [PMID: 38884601 PMCID: PMC11371162 DOI: 10.1093/plcell/koae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Different proteases and peptidases are present within chloroplasts and nonphotosynthetic plastids to process precursor proteins and to degrade cleaved chloroplast transit peptides and damaged, misfolded, or otherwise unwanted proteins. Collectively, these proteases and peptidases form a proteolysis network, with complementary activities and hierarchies, and build-in redundancies. Furthermore, this network is distributed across the different intra-chloroplast compartments (lumen, thylakoid, stroma, envelope). The challenge is to determine the contributions of each peptidase (system) to this network in chloroplasts and nonphotosynthetic plastids. This will require an understanding of substrate recognition mechanisms, degrons, substrate, and product size limitations, as well as the capacity and degradation kinetics of each protease. Multiple extra-plastidial degradation pathways complement these intra-chloroplast proteases. This review summarizes our current understanding of these intra-chloroplast proteases in Arabidopsis and crop plants with an emphasis on considerations for building a qualitative and quantitative network view.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Hu Q, Wu J, Fan C, Luo Y, Liu J, Deng Z, Li Q. Comparative analysis of codon usage bias in the chloroplast genomes of eighteen Ampelopsideae species (Vitaceae). BMC Genom Data 2024; 25:80. [PMID: 39223463 PMCID: PMC11370015 DOI: 10.1186/s12863-024-01260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The tribe Ampelopsideae plants are important garden plants with both medicinal and ornamental values. The study of codon usage bias (CUB) facilitates a deeper comprehension of the molecular genetic evolution of species and their adaptive strategies. The joint analysis of CUB in chloroplast genomes (cpDNA) offers valuable insights for in-depth research on molecular genetic evolution, biological resource conservation, and elite breeding within this plant family. RESULTS The base composition and codon usage preferences of the eighteen chloroplast genomes were highly similar, with the GC content of bases at all positions of their codons being less than 50%. This indicates that they preferred A/T bases. Their effective codon numbers were all in the range of 35-61, which indicates that the codon preferences of the chloroplast genomes of the 18 Ampelopsideae plants were relatively weak. A series of analyses indicated that the codon preference of the chloroplast genomes of the 18 Ampelopsideae plants was influenced by a combination of multiple factors, with natural selection being the primary influence. The clustering tree generated based on the relative usage of synonymous codons is consistent with some of the results obtained from the phylogenetic tree of chloroplast genomes, which indicates that the clustering tree based on the relative usage of synonymous codons can be an important supplement to the results of the sequence-based phylogenetic analysis. Eventually, 10 shared best codons were screened on the basis of the chloroplast genomes of 18 species. CONCLUSION The codon preferences of the chloroplast genome in Ampelopsideae plants are relatively weak and are primarily influenced by natural selection. The codon composition of the chloroplast genomes of the eighteen Ampelopsideae plants and their usage preferences were sufficiently similar to demonstrate that the chloroplast genomes of Ampelopsideae plants are highly conserved. This study provides a scientific basis for the genetic evolution of chloroplast genes in Ampelopsideae species and their suitable strategies.
Collapse
Affiliation(s)
- Qun Hu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jiaqi Wu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Chengcheng Fan
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Yongjian Luo
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China.
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China.
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
16
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in P. falciparum persister blood stages after drug treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574077. [PMID: 38410435 PMCID: PMC10896342 DOI: 10.1101/2024.01.03.574077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a small fraction of the blood stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean T. Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland, USA
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Wu Z, Liu K, Zhang X, Tang Q, Zeng L. CsNYC1a Mediates Chlorophyll Degradation and Albino Trait Formation in the Arbor-Type Tea Plant Camellia nanchuanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848450 DOI: 10.1021/acs.jafc.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Albino germplasms are prized tea plant mutants with yellow/white leaves. However, understanding of the albino mechanisms in non-Camellia sinensis tea species remains limited. This study elucidated the albino trait formation in Nanchuan Dachashu (C. nanchuanica), an arbor-type tea species, and its association with tea quality. The yellow-leaved albino individual NH1 exhibited abnormal chloroplast ultrastructure and reduced chlorophyll/carotenoid levels compared to green-leaved NL1. Integrating transcriptomics, metabolomics, yeast one-hybrid, and transgenic approaches identified the chlorophyll b reductase gene CsNYC1a as a key regulator, which was significantly up-regulated in NH1, and its overexpression in Arabidopsis recapitulated the albino phenotype. In yeast, histone CsH1.2 binds to the CsNYC1a promoter. These findings suggest that CsH1.2-CsNYC1a-mediated chlorophyll degradation may be a key mechanism underlying albino formation in Nanchuan Dachashu. In addition, as a germplasm with higher polyphenol-to-amino acid ratio than NL1, NH1 offers more possibilities for breeding and application.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Chen Q, Li Z, Li Y, Liu M, Wu Y, Chen Z, Zhu B. Biodegradation of benzo[a]pyrene by a marine Chlorella vulgaris LH-1 with heterotrophic ability. MARINE POLLUTION BULLETIN 2024; 198:115848. [PMID: 38029673 DOI: 10.1016/j.marpolbul.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
In this study, a microalga, Chlorella vulgaris LH-1, with heterotrophic ability to degrade BaP was explored. The effect of BaP concentration on microalga growth was investigated, and the possible biodegradation mechanism of BaP was proposed. Results showed that low BaP concentration (<5 mg/L) had less negative influence on the growth of this microalga under mixotrophic condition, but high BaP concentration (>5 mg/L) had a significant inhibitory effect on its growth. During heterotrophic cultivation, low BaP concentration (<20 mg/L) promoted the growth of C. vulgaris LH-1, whereas high BaP concentration (>20 mg/L) inhibited its growth significantly. The degradation rates of mixotrophic and heterotrophic C. vulgaris LH-1 were 62.56 %-74.13 % and 52.07 %-71.67 %, respectively, when the BaP concentration ranged from 0.5 mg/L to 2 mg/L. The expression of functional enzyme genes of C. vulgaris LH-1 such as phenol 2-monooxygenase activity, protocatechuate 3,4-dioxygenase activity, catechol 1,2-dioxygenase activity, styrene degradation, and benzoate degradation were upregulated in the process of BaP degradation. C. vulgaris LH-1 may degrade BaP by monooxygenase and dioxygenase simultaneously. The degradation of BaP by this microalga under mixotrophic condition goes through the degradation pathway of phthalic acid, whereas it goes through the degradation pathway of benzoic acid under heterotrophic condition.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenzhen Li
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Yijing Li
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yingqi Wu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
20
|
Barros JAS, Cavalcanti JHF, Pimentel KG, Magen S, Soroka Y, Weiss S, Medeiros DB, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL. The interplay between autophagy and chloroplast vesiculation pathways under dark-induced senescence. PLANT, CELL & ENVIRONMENT 2023; 46:3721-3736. [PMID: 37615309 DOI: 10.1111/pce.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In cellular circumstances where carbohydrates are scarce, plants can use alternative substrates for cellular energetic maintenance. In plants, the main protein reserve is present in the chloroplast, which contains most of the total leaf proteins and represents a rich source of nitrogen and amino acids. Autophagy plays a key role in chloroplast breakdown, a well-recognised symptom of both natural and stress-induced plant senescence. Remarkably, an autophagic-independent route of chloroplast degradation associated with chloroplast vesiculation (CV) gene was previously demonstrated. During extended darkness, CV is highly induced in the absence of autophagy, contributing to the early senescence phenotype of atg mutants. To further investigate the role of CV under dark-induced senescence conditions, mutants with low expression of CV (amircv) and double mutants amircv1xatg5 were characterised. Following darkness treatment, no aberrant phenotypes were observed in amircv single mutants; however, amircv1xatg5 double mutants displayed early senescence and altered dismantling of chloroplast and membrane structures under these conditions. Metabolic characterisation revealed that the functional lack of both CV and autophagy leads to higher impairment of amino acid release and differential organic acid accumulation during starvation conditions. The data obtained are discussed in the context of the role of CV and autophagy, both in terms of cellular metabolism and the regulation of chloroplast degradation.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Karla G Pimentel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sahar Magen
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Yoram Soroka
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Shahar Weiss
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
21
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
22
|
Yang X, Guan H, Yang Y, Zhang Y, Su W, Song S, Liu H, Chen R, Hao Y. Extra- and intranuclear heat perception and triggering mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1276649. [PMID: 37860244 PMCID: PMC10582638 DOI: 10.3389/fpls.2023.1276649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Yu Y, Hu H, Voytas DF, Doust AN, Kellogg EA. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridis. THE NEW PHYTOLOGIST 2023; 240:846-862. [PMID: 37533135 DOI: 10.1111/nph.19157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Daniel F Voytas
- College of Biological Sciences, University of Minnesota, St Paul, MN, 55108, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
24
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
25
|
Guerra-Guimarães L, Pinheiro C, Oliveira ASF, Mira-Jover A, Valverde J, Guedes FADF, Azevedo H, Várzea V, Muñoz Pajares AJ. The chloroplast protein HCF164 is predicted to be associated with Coffea S H9 resistance factor against Hemileia vastatrix. Sci Rep 2023; 13:16019. [PMID: 37749157 PMCID: PMC10520047 DOI: 10.1038/s41598-023-41950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
To explore the connection between chloroplast and coffee resistance factors, designated as SH1 to SH9, whole genomic DNA of 42 coffee genotypes was sequenced, and entire chloroplast genomes were de novo assembled. The chloroplast phylogenetic haplotype network clustered individuals per species instead of SH factors. However, for the first time, it allowed the molecular validation of Coffea arabica as the maternal parent of the spontaneous hybrid "Híbrido de Timor". Individual reads were also aligned on the C. arabica reference genome to relate SH factors with chloroplast metabolism, and an in-silico analysis of selected nuclear-encoded chloroplast proteins (132 proteins) was performed. The nuclear-encoded thioredoxin-like membrane protein HCF164 enabled the discrimination of individuals with and without the SH9 factor, due to specific DNA variants linked to chromosome 7c (from C. canephora-derived sub-genome). The absence of both the thioredoxin domain and redox-active disulphide center in the HCF164 protein, observed in SH9 individuals, raises the possibility of potential implications on redox regulation. For the first time, the identification of specific DNA variants of chloroplast proteins allows discriminating individuals according to the SH profile. This study introduces an unexplored strategy for identifying protein/genes associated with SH factors and candidate targets of H. vastatrix effectors, thereby creating new perspectives for coffee breeding programs.
Collapse
Affiliation(s)
- Leonor Guerra-Guimarães
- CIFC - Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Carla Pinheiro
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Ana Sofia F Oliveira
- Center for Computational Chemistry, School of Chemistry, University of Bristol, University Walk, Bristol, BS8 1TS, UK
| | - Andrea Mira-Jover
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain
- Área de Ecología, Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, Spain
| | - Javier Valverde
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Fernanda A de F Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, 4099-002, Porto, Portugal
| | - Vitor Várzea
- CIFC - Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Antonio Jesús Muñoz Pajares
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- Research Unit Modeling Nature, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
26
|
Sendra M, Moreno-Garrido I, Blasco J. Single and multispecies microalgae toxicological tests assessing the impact of several BPA analogues used by industry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122073. [PMID: 37331580 DOI: 10.1016/j.envpol.2023.122073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
BPA is a hazard for human and environmental health and recently BPA was added to the Candidate List of substances of very high concern by European Chemical Agency (ECHA). In accordance with this proposal, the authorities have encouraged the replacement of BPA by BPA analogues; however, little is known about the impact of these compounds on the environment. Due to this situation five BPA analogues (BPS, BPAP, BPAF, BPFL and BPC) were chosen in order to study their effects on marine primary producers. Three marine microalgae species (Phaeodactylum tricornutum, Tetraselmis suecica and Nannochloropsis gaditana) were selected for single and multispecies tests concerning the ecotoxicological effects of these BPA analogues. Microalgae were exposed to BPs over 72 h at different dosages (5, 20, 40, 80, 150 and 300 μM). Responses such as: growth, ROS production, cell complexity, cell size, autofluorescence of chlorophyll a, effective quantum yield of PSII and pigment concentrations were assessed at 24, 48 and 72 h. The results revealed that BPS and BPA showed lower toxicity to microalgae in comparison with BPFL > BPAF > BPAP and >BPC for the endpoints studied. N. gaditana was the least sensitive microalgae in comparison to P. tricornutum and T. suecica. However, a different trend was found in the multispecies tests where T. suecica dominated the microalgae community in relation to N. gaditana and P. tricornutum. The results of this work revealed for first time that present day BPA analogues are a threat and not a safe substitute for BPA in terms of the marine phytoplanktonic community. Therefore, the results of their impact on aquatic organisms should be shared.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain; International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), R&D Center, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
27
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
van Wijk KJ, Leppert T, Sun Z, Deutsch EW. Does the Ubiquitination Degradation Pathway Really Reach inside of the Chloroplast? A Re-Evaluation of Mass Spectrometry-Based Assignments of Ubiquitination. J Proteome Res 2023. [PMID: 37092802 DOI: 10.1021/acs.jproteome.3c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A recent paper in Science Advances by Sun et al. claims that intra-chloroplast proteins in the model plant Arabidopsis can be polyubiquitinated and then extracted into the cytosol for subsequent degradation by the proteasome. Most of this conclusion hinges on several sets of mass spectrometry (MS) data. If the proposed results and conclusion are true, this would be a major change in the proteolysis/proteostasis field, breaking the long-standing dogma that there are no polyubiquitination mechanisms within chloroplast organelles (nor in mitochondria). Given its importance, we reanalyzed their raw MS data using both open and closed sequence database searches and encountered many issues not only with the results but also discrepancies between stated methods (e.g., use of alkylating agent iodoacetamide (IAA)) and observed mass modifications. Although there is likely enrichment of ubiquitination signatures in a subset of the data (probably from ubiquitination in the cytosol), we show that runaway alkylation with IAA caused extensive artifactual modifications of N termini and lysines to the point that a large fraction of the desired ubiquitination signatures is indistinguishable from artifactual acetamide signatures, and thus, no intra-chloroplast polyubiquitination conclusions can be drawn from these data. We provide recommendations on how to avoid such perils in future work.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
29
|
Wang J, Zhang Q, Bao Y, Bassham D. Autophagic degradation of membrane-bound organelles in plants. Biosci Rep 2023; 43:BSR20221204. [PMID: 36562332 PMCID: PMC9842949 DOI: 10.1042/bsr20221204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
30
|
Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. PLANT MOLECULAR BIOLOGY 2023; 111:167-187. [PMID: 36266500 DOI: 10.1007/s11103-022-01319-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast singlet oxygen initiates multiple pathways to control chloroplast degradation, cell death, and nuclear gene expression. Chloroplasts can respond to stress and changes in the environment by producing reactive oxygen species (ROS). Aside from being cytotoxic, ROS also have signaling capabilities. For example, the ROS singlet oxygen (1O2) can initiate nuclear gene expression, chloroplast degradation, and cell death. To unveil the signaling mechanisms involved, researchers have used several 1O2-producing Arabidopsis thaliana mutants as genetic model systems, including plastid ferrochelatase two (fc2), fluorescent in blue light (flu), chlorina 1 (ch1), and accelerated cell death 2 (acd2). Here, we compare these 1O2-producing mutants to elucidate if they utilize one or more signaling pathways to control cell death and nuclear gene expression. Using publicly available transcriptomic data, we demonstrate fc2, flu, and ch1 share a core response to 1O2 accumulation, but maintain unique responses, potentially tailored to respond to their specific stresses. Subsequently, we used a genetic approach to determine if these mutants share 1O2 signaling pathways by testing the ability of genetic suppressors of one 1O2 producing mutant to suppress signaling in a different 1O2 producing mutant. Our genetic analyses revealed at least two different chloroplast 1O2 signaling pathways control cellular degradation: one specific to the flu mutant and one shared by fc2, ch1, and acd2 mutants, but with life-stage-specific (seedling vs. adult) features. Overall, this work reveals chloroplast stress signaling involving 1O2 is complex and may allow cells to finely tune their physiology to environmental inputs.
Collapse
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Marta A Kozlowska
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Robert A Easter
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
31
|
Lemke MD, Woodson JD. Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts. PLANT SIGNALING & BEHAVIOR 2022; 17:2084955. [PMID: 35676885 PMCID: PMC9196835 DOI: 10.1080/15592324.2022.2084955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (1O2), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (i.e., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the Arabidopsis thaliana1O2 over-producing plastid ferrochelatase two (fc2) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. 1O2-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for 1O2-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast 1O2. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of 1O2-damaged chloroplasts.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, Sun Q, van Wijk KJ. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:1339-1357. [PMID: 35946374 DOI: 10.1111/nph.18426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.
Collapse
Affiliation(s)
- Elden Rowland
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Jitae Kim
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
- S-Korea Bioenergy Research Center, Chonnam National University, Gwangju, 61186, South Korea
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Anton Poliakov
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
33
|
Kselíková V, Husarčíková K, Mojzeš P, Zachleder V, Bišová K. Cultivation of the microalgae Chlamydomonas reinhardtii and Desmodesmus quadricauda in highly deuterated media: Balancing the light intensity. Front Bioeng Biotechnol 2022; 10:960862. [PMID: 36131720 PMCID: PMC9483122 DOI: 10.3389/fbioe.2022.960862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The production of organic deuterated compounds in microalgal systems represents a cheaper and more versatile alternative to more complicated chemical synthesis. In the present study, we investigate the autotrophic growth of two microalgae, Chlamydomonas reinhardtii and Desmodesmus quadricauda, in medium containing high doses of deuterated water, D2O. The growth of such cultures was evaluated in the context of the intensity of incident light, since light is a critical factor in the management of autotrophic algal cultures. Deuteration increases the light sensitivity of both model organisms, resulting in increased levels of singlet oxygen and poorer photosynthetic performance. Our results also show a slowdown in growth and cell division processes with increasing D2O concentrations. At the same time, impaired cell division leads to cell enlargement and accumulation of highly deuterated compounds, especially energy-storing molecules. Thus, considering the specifics of highly deuterated cultures and using the growth conditions proposed in this study, it is possible to obtain highly deuterated algal biomass, which could be a valuable source of deuterated organic compounds.
Collapse
Affiliation(s)
- Veronika Kselíková
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kamila Husarčíková
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- *Correspondence: Kateřina Bišová,
| |
Collapse
|
34
|
Hand KA, Shabek N. The Role of E3 Ubiquitin Ligases in Chloroplast Function. Int J Mol Sci 2022; 23:9613. [PMID: 36077009 PMCID: PMC9455731 DOI: 10.3390/ijms23179613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function.
Collapse
Affiliation(s)
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
35
|
Zhang W, Deng R, Shi W, Li Z, Larkin RM, Fan Q, Duanmu D. Heme oxygenase-independent bilin biosynthesis revealed by a hmox1 suppressor screening in Chlamydomonas reinhardtii. Front Microbiol 2022; 13:956554. [PMID: 36003942 PMCID: PMC9393634 DOI: 10.3389/fmicb.2022.956554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bilins are open-chain tetrapyrroles synthesized in phototrophs by successive enzymic reactions catalyzed by heme oxygenases (HMOXs/HOs) and ferredoxin-dependent biliverdin reductases (FDBRs) that typically serve as chromophore cofactors for phytochromes and phycobiliproteins. Chlamydomonas reinhardtii lacks both phycobiliproteins and phytochromes. Nonetheless, the activity and stability of photosystem I (PSI) and the catalytic subunit of magnesium chelatase (MgCh) named CHLH1 are significantly reduced and phototropic growth is significantly attenuated in a hmox1 mutant that is deficient in bilin biosynthesis. Consistent with these findings, previous studies on hmox1 uncovered an essential role for bilins in chloroplast retrograde signaling, maintenance of a functional photosynthetic apparatus, and the direct regulation of chlorophyll biosynthesis. In this study, we generated and screened a collection of insertional mutants in a hmox1 genetic background for suppressor mutants with phototropic growth restored to rates observed in wild-type 4A+ C. reinhardtii cells. Here, we characterized a suppressor of hmox1 named ho1su1 with phototrophic growth rates and levels of CHLH1 and PSI proteins similar to 4A+. Tetrad analysis indicated that a plasmid insertion co-segregated with the suppressor phenotype of ho1su1. Results from TAIL-PCR and plasmid rescue experiments demonstrated that the plasmid insertion was located in exon 1 of the HMOX1 locus. Heterologous expression of the bilin-binding reporter Nostoc punctiforme NpF2164g5 in the chloroplast of ho1su1 indicated that bilin accumulated in the chloroplast of ho1su1 despite the absence of the HMOX1 protein. Collectively, our study reveals the presence of an alternative bilin biosynthetic pathway independent of HMOX1 in the chloroplasts of Chlamydomonas cells.
Collapse
Affiliation(s)
- Weiqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Rui Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Weida Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Zheng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Deqiang Duanmu,
| |
Collapse
|
36
|
Luong AM, Koestel J, Bhati KK, Batoko H. Cargo receptors and adaptors for selective autophagy in plant cells. FEBS Lett 2022; 596:2104-2132. [PMID: 35638898 DOI: 10.1002/1873-3468.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Plant selective (macro)autophagy is a highly regulated process whereby eukaryotic cells spatiotemporally degrade some of their constituents that have become superfluous or harmful. The identification and characterization of the factors determining this selectivity make it possible to integrate selective (macro)autophagy into plant cell physiology and homeostasis. The specific cargo receptors and/or scaffold proteins involved in this pathway are generally not structurally conserved, as are the biochemical mechanisms underlying recognition and integration of a given cargo into the autophagosome in different cell types. This review discusses the few specific cargo receptors described in plant cells to highlight key features of selective autophagy in the plant kingdom and its integration with plant physiology, so as to identify evolutionary convergence and knowledge gaps to be filled by future research.
Collapse
Affiliation(s)
- Ai My Luong
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Jérôme Koestel
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|