1
|
Denis JA, Rochon-Beaucourt C, Champon B, Pietu G. Global Transcriptional Profiling of Neural and Mesenchymal Progenitors Derived from Human Embryonic Stem Cells Reveals Alternative Developmental Signaling Pathways. Stem Cells Dev 2011; 20:1395-409. [DOI: 10.1089/scd.2010.0331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jérôme Alexandre Denis
- INSERM/UEVE U-861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Christelle Rochon-Beaucourt
- INSERM/UEVE U-861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Benoite Champon
- CECS/AFM, I-STEM, Centre d'Etude des Cellules Souches, Evry Cedex, France
| | - Geneviève Pietu
- INSERM/UEVE U-861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| |
Collapse
|
2
|
Ben-Yehudah A, Navara CS, Redinger CJ, Mich-Basso JD, Castro CA, Oliver S, Chensny LJ, Richards TJ, Kaminski N, Schatten G. Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X. Stem Cell Res 2009; 4:25-37. [PMID: 19854689 DOI: 10.1016/j.scr.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/02/2023] Open
Abstract
While human embryonic stem cells (hESCs) are predisposed toward chromosomal aneploidities on 12, 17, 20, and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes overexpressed in pluripotent rhesus ESCs (nhpESCs) and comparing them both to their genetically identical differentiated progeny (teratoma fibroblasts) and to genetically related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those overexpressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20, and X, homologues of human chromosomes 17, 19, 16, and X, respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over- and underexpressed pluripotency modulators, some implicated in neurogenesis, have been identified. The overexpression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.
Collapse
Affiliation(s)
- Ahmi Ben-Yehudah
- Pittsburgh Development Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Player A, Wang Y, Rao M, Kawasaki E. Gene expression analysis of RNA purified from embryonic stem cells and embryoid body-derived cells using a high-throughput microarray platform. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2008; Chapter 1:Unit 1B.2. [PMID: 18785160 DOI: 10.1002/9780470151808.sc01b02s2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this unit, starting with purified RNA, experimental protocols for performing microarray expression analysis of embryonic stem cell lines compared to their corresponding differentiated embryocidal bodies are described. Methods for data analysis are suggested, with the goal of determining which genes are differentially expressed between the preparations. As an example, the use of the Affymetrix microarray expression platform is described, but alternative experimental options for analysis of RNA transcript levels are also summarized. This unit suggests quality control metrics, summarizes the critical parameters necessary for obtaining reproducible experimental results, and outlines quantitative PCR methods for validating microarray results.
Collapse
|
4
|
Ylöstalo J, Pochampally R, Prockop DJ. Assays of MSCs with microarrays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 449:133-51. [PMID: 18370089 DOI: 10.1007/978-1-60327-169-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The rapid development of microarray technology during the last decade has greatly expanded the ability to define the genes expressed in cells. This chapter will focus on describing the steps required for conducting successful microarray experiments with multipotential stromal cells (MSCs). A complete microarray experiment, using the Affymetrix system, will be described starting from experimental design and ending with examples of data analysis using the dChip program.
Collapse
Affiliation(s)
- Joni Ylöstalo
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
5
|
Graumann J, Hubner NC, Kim JB, Ko K, Moser M, Kumar C, Cox J, Schöler H, Mann M. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Mol Cell Proteomics 2008; 7:672-83. [DOI: 10.1074/mcp.m700460-mcp200] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Sveshnikova AN, Ivanov PS. Biotechnology. Gene expression and microchips: Problems of the quantitative analysis. RUSS J GEN CHEM+ 2007. [DOI: 10.1134/s1070363207110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Assou S, Le Carrour T, Tondeur S, Ström S, Gabelle A, Marty S, Nadal L, Pantesco V, Réme T, Hugnot JP, Gasca S, Hovatta O, Hamamah S, Klein B, De Vos J. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007; 25:961-73. [PMID: 17204602 PMCID: PMC1906587 DOI: 10.1634/stemcells.2006-0352] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microarray technology provides a unique opportunity to examine gene expression patterns in human embryonic stem cells (hESCs). We performed a meta-analysis of 38 original studies reporting on the transcriptome of hESCs. We determined that 1,076 genes were found to be overexpressed in hESCs by at least three studies when compared to differentiated cell types, thus composing a "consensus hESC gene list." Only one gene was reported by all studies: the homeodomain transcription factor POU5F1/OCT3/4. The list comprised other genes critical for pluripotency such as the transcription factors NANOG and SOX2, and the growth factors TDGF1/CRIPTO and Galanin. We show that CD24 and SEMA6A, two cell surface protein-coding genes from the top of the consensus hESC gene list, display a strong and specific membrane protein expression on hESCs. Moreover, CD24 labeling permits the purification by flow cytometry of hESCs cocultured on human fibroblasts. The consensus hESC gene list also included the FZD7 WNT receptor, the G protein-coupled receptor GPR19, and the HELLS helicase, which could play an important role in hESCs biology. Conversely, we identified 783 genes downregulated in hESCs and reported in at least three studies. This "consensus differentiation gene list" included the IL6ST/GP130 LIF receptor. We created an online hESC expression atlas, http://amazonia.montp.inserm.fr, to provide an easy access to this public transcriptome dataset. Expression histograms comparing hESCs to a broad collection of fetal and adult tissues can be retrieved with this web tool for more than 15,000 genes.
Collapse
Affiliation(s)
- Said Assou
- Centre Hospitalier Universitaire de Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC DEVELOPMENTAL BIOLOGY 2007; 7:12. [PMID: 17335568 PMCID: PMC1829156 DOI: 10.1186/1471-213x-7-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 03/02/2007] [Indexed: 11/16/2022]
Abstract
Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.
Collapse
|
9
|
Stewart R, Stojkovic M, Lako M. Mechanisms of self-renewal in human embryonic stem cells. Eur J Cancer 2006; 42:1257-72. [PMID: 16630716 DOI: 10.1016/j.ejca.2006.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are the pluripotent cell population derived from the inner cell mass of pre-implantation embryos and are characterised by prolonged self-renewal and the potential to differentiate into cells representing all three germ layers both in vitro and in vivo. Preservation of the undifferentiated status of the ESC population requires the maintenance of self-renewal whilst inhibiting differentiation and regulating senescence and apoptosis. In this review, we discuss the intrinsic and extrinsic factors associated with self-renewal process, together with possible signalling pathway interactions and mechanisms of regulation.
Collapse
Affiliation(s)
- Rebecca Stewart
- Centre for Stem Cell Biology and Developmental Genetics, Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle-Upon-Tyne NE1 3BZ, UK.
| | | | | |
Collapse
|
10
|
Cai J, Chen J, Liu Y, Miura T, Luo Y, Loring JF, Freed WJ, Rao MS, Zeng X. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 2005; 24:516-30. [PMID: 16293578 PMCID: PMC1855239 DOI: 10.1634/stemcells.2005-0143] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Like other cell populations, undifferentiated human embryonic stem cells (hESCs) express a characteristic set of proteins and mRNA that is unique to the cells regardless of culture conditions, number of passages, and methods of propagation. We sought to identify a small set of markers that would serve as a reliable indicator of the balance of undifferentiated and differentiated cells in hESC populations. Markers of undifferentiated cells should be rapidly downregulated as the cells differentiate to form embryoid bodies (EBs), whereas markers that are absent or low during the undifferentiated state but that are induced as hESCs differentiate could be used to assess the presence of differentiated cells in the cultures. In this paper, we describe a list of markers that reliably distinguish undifferentiated and differentiated cells. An initial list of approximately 150 genes was generated by scanning published massively parallel signature sequencing, expressed sequence tag scan, and microarray datasets. From this list, a subset of 109 genes was selected that included 55 candidate markers of undifferentiated cells, 46 markers of hESC derivatives, four germ cell markers, and four trophoblast markers. Expression of these candidate marker genes was analyzed in undifferentiated hESCs and differentiating EB populations in four different lines by immunocytochemistry, reverse transcription-polymer-ase chain reaction (RT-PCR), microarray analysis, and quantitative RT-PCR (qPCR). We show that qPCR, with as few as 12 selected genes, can reliably distinguish differentiated cells from undifferentiated hESC populations.
Collapse
Affiliation(s)
- Jingli Cai
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Jia Chen
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
| | - Ying Liu
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Takumi Miura
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Yongquan Luo
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Jeanne F. Loring
- Program in Stem Cells and Regeneration, The Burnham Institute, La Jolla, CA
| | - William J Freed
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
| | - Mahendra S Rao
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Xianmin Zeng
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA
| |
Collapse
|
11
|
Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005. [PMID: 15988017 DOI: 10.1128/mcb.25.14.6031-6046.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent cells that can either self-renew or differentiate into many cell types. Oct4 and Sox2 are transcription factors essential to the pluripotent and self-renewing phenotypes of ESCs. Both factors are upstream in the hierarchy of the transcription regulatory network and are partners in regulating several ESC-specific genes. In ESCs, Sox2 is transcriptionally regulated by an enhancer containing a composite sox-oct element that Oct4 and Sox2 bind in a combinatorial interaction. It has previously been shown that Pou5f1, the Oct4 gene, contains a distal enhancer imparting specific expression in both ESCs and preimplantation embryos. Here, we identify a composite sox-oct element within this enhancer and show that it is involved in Pou5f1 transcriptional activity in ESCs. In vitro experiments with ESC nuclear extracts demonstrate that Oct4 and Sox2 interact specifically with this regulatory element. More importantly, by chromatin immunoprecipitation assay, we establish that both Oct4 and Sox2 bind directly to the composite sox-oct elements in both Pou5f1 and Sox2 in living mouse and human ESCs. Specific knockdown of either Oct4 or Sox2 by RNA interference leads to the reduction of both genes' enhancer activities and endogenous expression levels in addition to ESC differentiation. Our data uncover a positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells.
Collapse
|
12
|
Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25:6031-46. [PMID: 15988017 PMCID: PMC1168830 DOI: 10.1128/mcb.25.14.6031-6046.2005] [Citation(s) in RCA: 521] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent cells that can either self-renew or differentiate into many cell types. Oct4 and Sox2 are transcription factors essential to the pluripotent and self-renewing phenotypes of ESCs. Both factors are upstream in the hierarchy of the transcription regulatory network and are partners in regulating several ESC-specific genes. In ESCs, Sox2 is transcriptionally regulated by an enhancer containing a composite sox-oct element that Oct4 and Sox2 bind in a combinatorial interaction. It has previously been shown that Pou5f1, the Oct4 gene, contains a distal enhancer imparting specific expression in both ESCs and preimplantation embryos. Here, we identify a composite sox-oct element within this enhancer and show that it is involved in Pou5f1 transcriptional activity in ESCs. In vitro experiments with ESC nuclear extracts demonstrate that Oct4 and Sox2 interact specifically with this regulatory element. More importantly, by chromatin immunoprecipitation assay, we establish that both Oct4 and Sox2 bind directly to the composite sox-oct elements in both Pou5f1 and Sox2 in living mouse and human ESCs. Specific knockdown of either Oct4 or Sox2 by RNA interference leads to the reduction of both genes' enhancer activities and endogenous expression levels in addition to ESC differentiation. Our data uncover a positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells.
Collapse
Affiliation(s)
- Joon-Lin Chew
- Department of Biological Sciences, National University of Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447508 DOI: 10.1002/cfg.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|