1
|
Yang SY, Lin YY, Hao Z, Li ZJ, Peng ZQ, Jin T. Bacterial communities in Asecodes hispinarum (Hymenoptera: Eulophidae) and its host Brontispa longissima (Coleoptera: Chrysomelidae), with comparison of Wolbachia dominance. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2314-2327. [PMID: 39495046 DOI: 10.1093/jee/toae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
The endoparasitoid Asecodes hispinarum (Bouček) (Hymenoptera: Eulophidae) serves as an effective biological control agent against Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), a notorious palm pest. Endosymbionts found in parasitoids and their hosts have attracted significant attention due to their substantial influence on biocontrol efficacy. In this study, we employed 16S rRNA sequencing, polymerase chain reaction, and fluorescence in situ hybridization to assess the symbiotic bacteria composition, diversity, phylogeny, and localization in A. hispinarum and its host B. longissima. Our findings showed significant differences in the richness, diversity, and composition of symbiotic bacteria among different life stages of B. longissima. Notably, the bacterial richness, diversity, and composition of A. hispinarum was similar to that of B. longissima. Firmicutes and Proteobacteria were the dominant phyla, while Wolbachia was the dominant genera across the parasitoid and host. It was discovered for the first time that Wolbachia was present in A. hispinarum with a high infection rate at ≥ 96.67%. Notably, the Wolbachia strain in A. hispinarum was placed in supergroup A, whereas it was categorized under supergroup B in B. longissima. Furthermore, Wolbachia is concentrated in the abdomen of A. hispinarum, with particularly high levels observed in the ovipositors of female adults. These findings highlight the composition and diversity of symbiotic bacteria in both A. hispinarum and its host B. longissima, providing a foundation for the development of population regulation strategies targeting B. longissima.
Collapse
Affiliation(s)
- Sheng-Yuan Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Ying Lin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zheng Hao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zi-Jie Li
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zheng-Qiang Peng
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Jin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Hauert C, Szabó G. Spontaneous symmetry breaking of cooperation between species. PNAS NEXUS 2024; 3:pgae326. [PMID: 39228811 PMCID: PMC11369929 DOI: 10.1093/pnasnexus/pgae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
In mutualistic associations, two species cooperate by exchanging goods or services with members of another species for their mutual benefit. At the same time, competition for reproduction primarily continues with members of their own species. In intra-species interactions, the prisoner's dilemma is the leading mathematical metaphor to study the evolution of cooperation. Here we consider inter-species interactions in the spatial prisoner's dilemma, where members of each species reside on one lattice layer. Cooperators provide benefits to neighbouring members of the other species at a cost to themselves. Hence, interactions occur across layers but competition remains within layers. We show that rich and complex dynamics unfold when varying the cost-to-benefit ratio of cooperation, r. Four distinct dynamical domains emerge that are separated by critical phase transitions, each characterized by diverging fluctuations in the frequency of cooperation: (i) for large r cooperation is too costly and defection dominates; (ii) for lower r cooperators survive at equal frequencies in both species; (iii) lowering r further results in an intriguing, spontaneous symmetry breaking of cooperation between species with increasing asymmetry for decreasing r; (iv) finally, for small r, bursts of mutual defection appear that increase in size with decreasing r and eventually drive the populations into absorbing states. Typically, one species is cooperating and the other defecting and hence establish perfect asymmetry. Intriguingly and despite the symmetrical model set-up, natural selection can nevertheless favour the spontaneous emergence of asymmetric evolutionary outcomes where, on average, one species exploits the other in a dynamical equilibrium.
Collapse
Affiliation(s)
- Christoph Hauert
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, CanadaV6T 1Z2
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, CanadaV6T 1Z4
| | - György Szabó
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest H-1121, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege M. út 29-33, Budapest H-1121, Hungary
| |
Collapse
|
3
|
Yu M, Li Y, Ji J, Lei Y, Sun Y. Gut yeast diversity of Helicoverpa armigera (Lepidoptera: Noctuidae) under different dietary conditions. Front Microbiol 2024; 15:1287083. [PMID: 38756734 PMCID: PMC11098133 DOI: 10.3389/fmicb.2024.1287083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Man Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jingyuan Ji
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi’an, Shaanxi, China
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Pierro R, Moussa A, Mori N, Marcone C, Quaglino F, Romanazzi G. Bois noir management in vineyard: a review on effective and promising control strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1364241. [PMID: 38601314 PMCID: PMC11004249 DOI: 10.3389/fpls.2024.1364241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Among grapevine yellows, Bois noir (BN), associated with 'Candidatus Phytoplasma solani', represents the biggest threat in the main wine-growing areas worldwide, causing significant losses in berry quality and yields. BN epidemiology involves multiple plant hosts and several insect vectors, making considerably complex the development of effective management strategies. Since application of insecticides on the grapevine canopy is not effective to manage vectors, BN management includes an integrated approach based on treatments to the canopy to make the plant more resistant to the pathogen and/or inhibit the vector feeding, and actions on reservoir plants to reduce possibilities that the vector reaches the grapevine and transmit the phytoplasma. Innovative sustainable strategies developed in the last twenty years to improve the BN management are reviewed and discussed.
Collapse
Affiliation(s)
- Roberto Pierro
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Abdelhameed Moussa
- Pests and Plant Protection Department, Agricultural & Biological Research Institute, National Research Centre, Cairo, Egypt
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
5
|
Rao J, Zhang Y, Zhao H, Guo J, Wan F, Xian X, Yang N, Liu W. Projecting the Global Potential Geographical Distribution of Ceratitis capitata (Diptera: Tephritidae) under Current and Future Climates. BIOLOGY 2024; 13:177. [PMID: 38534447 DOI: 10.3390/biology13030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is native to tropical Africa, has invaded more than 100 countries and constitutes a risk to the citrus sector. Studying its potential geographical distribution (PGD) in the context of global climate change is important for prevention and control efforts worldwide. Therefore, we used the CLIMEX model to project and assess the risk of global invasion by C. capitata under current (1981-2010) and future (2040-2059) climates. In the prevailing climatic conditions, the area of PGD for C. capitata was approximately 664.8 × 105 km2 and was concentrated in South America, southern Africa, southern North America, eastern Asia, and southern Europe. Under future climate conditions, the area of PGD for C. capitata is projected to decrease to approximately 544.1 × 105 km2 and shift to higher latitudes. Cold stress was shown to affect distribution at high latitudes, and heat stress was the main factor affecting distribution under current and future climates. According to the predicted results, countries with highly suitable habitats for C. capitata that have not yet been invaded, such as China, Myanmar, and Vietnam, must strengthen quarantine measures to prevent the introduction of this pest.
Collapse
Affiliation(s)
- Jiawei Rao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Zhu Y, Stahl A, Rostás M, Will T. Temporal and species-specific resistance of sugar beet to green peach aphid and black bean aphid: mechanisms and implications for breeding. PEST MANAGEMENT SCIENCE 2024; 80:404-413. [PMID: 37708325 DOI: 10.1002/ps.7770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris ssp. vulgaris), a key crop for sugar production, faces significant yield losses caused by the black bean aphid Aphis fabae (Scop.) and the green peach aphid Myzus persicae (Sulzer), which also transmits viruses. The restriction on neonicotinoid usage in Europe has intensified this problem, emphasizing the urgent need for breeding resistant crop varieties. This study evaluated 26 sugar beet germplasms for resistance against both aphid species by using performance and feeding behavior assays. Additionally, whole plant bioassays and semi-field experiments were carried out with Myzus persicae. RESULTS Our findings demonstrate the presence of temporal resistance against both aphid species in the primary sugar beet gene pool. Beet yellows virus (BYV) carrying aphids showed enhanced performance. Different levels of plant defense mechanisms were involved including resistance against Myzus persicae before reaching the phloem, particularly in sugar beet line G3. In contrast, resistance against Aphis fabae turned out to be predominately phloem-located. Furthermore, a high incidence of black inclusion bodies inside the stomach of Myzus persicae was observed for approximately 85% of the plant genotypes tested, indicating a general and strong incompatibility between sugar beet and Myzus persicae in an initial phase of interaction. CONCLUSION Sugar beet resistance against aphids involved different mechanisms and is species-specific. The identification of these mechanisms and interactions represents a crucial milestone in advancing the breeding of sugar beet varieties with improved resistance. © 2023 Julius Kühn-Institut and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunsheng Zhu
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Andreas Stahl
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
7
|
Cai T, Nadal-Jimenez P, Gao Y, Arai H, Li C, Su C, King KC, He S, Li J, Hurst GDD, Wan H. Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus. THE ISME JOURNAL 2024; 18:wrae194. [PMID: 39375012 PMCID: PMC11491930 DOI: 10.1093/ismejo/wrae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts' phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Furthermore, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.
Collapse
Affiliation(s)
- Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pol Nadal-Jimenez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Yuanyuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Arai
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Su
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kayla C King
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Mondal S, Somani J, Roy S, Babu A, Pandey AK. Insect Microbial Symbionts: Ecology, Interactions, and Biological Significance. Microorganisms 2023; 11:2665. [PMID: 38004678 PMCID: PMC10672782 DOI: 10.3390/microorganisms11112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 11/26/2023] Open
Abstract
The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population. The number of microbial communities inside the gastrointestinal system differs owing to the varying shape and chemical composition of digestive tracts. Due to their short generation times and rapid evolutionary rates, insect gut bacteria can develop numerous metabolic pathways and can adapt to diverse ecological niches. In addition, despite hindering insecticide management programs, they still have several biotechnological uses, including industrial, clinical, and environmental uses. This review discusses the prevalent bacterial species associated with insect guts, their mode of symbiotic interaction, their role in insecticide resistance, and various other biological significance, along with knowledge gaps and future perspectives. The practical consequences of the gut microbiome and its interaction with the insect host may lead to encountering the mechanisms behind the evolution of pesticide resistance in insects.
Collapse
Affiliation(s)
- Sankhadeep Mondal
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Jigyasa Somani
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Somnath Roy
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Azariah Babu
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Abhay K. Pandey
- Deparment of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri 735225, West Bengal, India
| |
Collapse
|
9
|
Liu YC, Chen TH, Huang YF, Chen CL, Nai YS. Investigation of the fall armyworm (Spodoptera frugiperda) gut microbiome and entomopathogenic fungus-induced pathobiome. J Invertebr Pathol 2023; 200:107976. [PMID: 37541570 DOI: 10.1016/j.jip.2023.107976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
The gut microflora plays an important role in insect development and physiology. The gut bacterial microbiome of the fall armyworm (FAW), Spodoptera frugiperda, in both cornfield and laboratory-reared populations was investigated using a 16S metagenomic approach. The alpha- and beta-diversity of the cornfield FAW populations varied among sampling sites and were higher than those of the laboratory-reared FAW population, indicating that different diets and environments influence the gut bacterial composition. To better understand the interaction between the microbiome and entomopathogenic fungi (EPF), FAWs from organic and conventionally managed corn fields and from the laboratory-reared colony were inoculated with Beauveria bassiana NCHU-153 (Bb-NCHU-153). A longer median lethal time (LT50) was observed in the Bb-NCHU-153-infected cornfield FAW population than in the laboratory-reared FAWs. In terms of the microbiome, three Bb-NCHU-153-infected FAW groups showed different gut bacterial compositions compared to noninfected FAW. Further investigation of the cooccurrence network and linear discriminant analysis (LDA) of effect size (LEfSe) revealed that the enriched bacterial genera, such as Enterococcus, Serratia, Achromobacter, and Tsukamurella, in the gut might play the role of opportunistic pathogens after fungal infection; in contrast, some gut bacteria of Methylobacterium, Marinomonas, Paenochrobactrum, Pseudomonas, Acinetobacter, Delftia, Dietzia, Gordonia, Leucobacter, Paracoccus, and Stenotrophomonas might be probiotics against EPF infection. These results indicated that EPF infection can change the gut bacterial composition and lead to a pathobiome in the FAW and that some bacterial species might protect the FAW from EPF infection. These findings could be applied to the design of pathobiome-inducing biocontrol strategies.
Collapse
Affiliation(s)
- Yao-Chia Liu
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan; Department of Computer Science and Engineering, Yuan-Ze University, Tao-Yuan City 32003, Taiwan
| | - Chang-Lin Chen
- Department of Horticulture, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
10
|
Gu X, Ross PA, Gill A, Yang Q, Ansermin E, Sharma S, Soleimannejad S, Sharma K, Callahan A, Brown C, Umina PA, Kristensen TN, Hoffmann AA. A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission. Proc Natl Acad Sci U S A 2023; 120:e2217278120. [PMID: 37094148 PMCID: PMC10161079 DOI: 10.1073/pnas.2217278120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eloïse Ansermin
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Safieh Soleimannejad
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kanav Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Courtney Brown
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul A. Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Cesar Australia, Brunswick, VIC 3052, Australia
| | - Torsten N. Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| |
Collapse
|
11
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
12
|
Ren Z, Zhang Y, Cai T, Mao K, Xu Y, Li C, He S, Li J, Wan H. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). MICROBIAL ECOLOGY 2022; 83:1049-1058. [PMID: 34302509 DOI: 10.1007/s00248-021-01820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding the composition of microorganismal communities hosted by insect pests is an important prerequisite for revealing their functions and developing new pest control strategies. Although studies of the structure of the microbiome of Nilaparvata lugens have been published, little is known about the dynamic changes in this microbiome across different developmental stages, and an understanding of the core microbiota is still lacking. In this study, we investigated the dynamic changes in bacteria and fungi in different developmental stages of N. lugens using high-throughput sequencing technology. We observed that the microbial diversity in eggs and mated adults was higher than that in nymphs and unmated adults. We also observed a notable strong correlation between fungal and bacterial α-diversity, which suggests that fungi and bacteria are closely linked and may perform functions collaboratively during the whole developmental period. Arsenophonus and Hirsutella were the predominant bacterial and fungal taxa, respectively. Bacteria were more conserved than fungi during the transmission of the microbiota between developmental stages. Compared with that in the nymph and unmated adult stages of N. lugens, the correlation between bacterial and fungal communities in the mated adult and egg stages was stronger. Moreover, the core microbiota across all developmental stages in N. lugens was identified, and there were more bacterial genera than fungal genera; notably, the core microbiota of eggs, nymphs, and mated and unmated adults showed distinctive functional enrichment. These findings highlight the potential value of further exploring microbial functions during different developmental stages and developing new pest management strategies.
Collapse
Affiliation(s)
- Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yao Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyue Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Checchia I, Perin C, Mori N, Mazzon L. Oviposition Deterrent Activity of Fungicides and Low-Risk Substances for the Integrated Management of the Olive Fruit Fly Bactrocera oleae (Diptera, Tephritidae). INSECTS 2022; 13:insects13040363. [PMID: 35447804 PMCID: PMC9028197 DOI: 10.3390/insects13040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The olive fruit fly Bactrocera oleae is a very common pest infesting olive orchards wherever they are cultivated, representing the greatest threat to olive production and oil quality. Although broad-spectrum insecticides are often used to protect olive crops against B. oleae, there is increasing concern about their effects on the environment and human health. An important tool in integrated olive fly management could be the use of products with a repellency and oviposition deterrence effect. This research yielded experimental evidence of significant oviposition deterrent activity on the olive fly as side effects of substances used in olive growing such as fungicides or plant biostimulants, highlighting the potential use of these products in B. oleae management. Abstract The control of Bactrocera oleae is fundamental to decreasing the significant production loss in olive cultivation. However, traditional containment based on the use of synthetic insecticides has been encountering serious limitations due to their negative effect on human health and the environment. Within the scope of integrated olive fly management, the use of products with repellency and oviposition deterrent activity might represent a more eco-friendly solution. In this study, we tested the oviposition deterrent activity of some commercial formulations already used in olive tree crops as fungicides (copper oxychloride, dodine, mancozeb, pyraclostrobin and difeconazole) and plant bio-stimulants (tannins, clay, flavonoids and a zinc-copper-citric acid biocomplex). The trials were conducted testing the oviposition behavior of mated olive fly females in both choice and no-choice assays. Our results showed that most of the substances have affected the ovipositional activity of the olive fly, except for difeconazole. Moreover, some products (copper oxychloride, flavonoids and tannins) have proven to differently influence the flies’ oviposition comparing the two tests. The repellent effect of these commercial products should be further studied to prove whether the repellency was due either to the active ingredient or to the co-formulants, and to assess their effect in the open field.
Collapse
Affiliation(s)
- Ilaria Checchia
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy; (I.C.); (C.P.); (N.M.)
| | - Corrado Perin
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy; (I.C.); (C.P.); (N.M.)
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy; (I.C.); (C.P.); (N.M.)
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
14
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Acevedo TS, Fricker GP, Garcia JR, Alcaide T, Berasategui A, Stoy KS, Gerardo NM. The Importance of Environmentally Acquired Bacterial Symbionts for the Squash Bug ( Anasa tristis), a Significant Agricultural Pest. Front Microbiol 2021; 12:719112. [PMID: 34671328 PMCID: PMC8521078 DOI: 10.3389/fmicb.2021.719112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen. Here, we demonstrate that complete understanding of these insects requires consideration of their association with bacterial symbionts in the family Burkholderiaceae. Isolation and sequencing of bacteria housed in the insects’ midgut crypts indicates that these bacteria are consistent and dominant members of the crypt-associated bacterial communities. These symbionts are closely related to Caballeronia spp. associated with other true bugs in the superfamilies Lygaeoidea and Coreoidea. Fitness assays with representative Burkholderiaceae strains indicate that the association can significantly increase survival and decrease development time, though strains do vary in the benefits that they confer to their hosts, with Caballeronia spp. providing the greatest benefit. Experiments designed to assess transmission mode indicate that, unlike many other beneficial insect symbionts, the bacteria are not acquired from parents before or after hatching but are instead acquired from the environment after molting to a later developmental stage. The bacteria do, however, have the capacity to escape adults to be transmitted to later generations, leaving the possibility for a combination of indirect vertical and horizontal transmission.
Collapse
Affiliation(s)
- Tarik S Acevedo
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Justine R Garcia
- Department of Biology, Emory University, Atlanta, GA, United States.,Department of Biology, New Mexico Highlands University, Las Vegas, NM, United States
| | - Tiffanie Alcaide
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
16
|
Competitive exclusion of phytopathogenic Serratia marcescens from squash bug vectors by the gut endosymbiont Caballeronia. Appl Environ Microbiol 2021; 88:e0155021. [PMID: 34669447 DOI: 10.1128/aem.01550-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many insects harbor microbial symbiotic partners that offer protection against pathogens, parasitoids, and other natural enemies. Mounting evidence suggests that these symbiotic microbes can play key roles in determining infection outcomes in insect vectors, making them important players in the quest to develop novel vector control strategies. Using the squash bug Anasa tristis, we investigated how the presence of Caballeronia symbionts affected the persistence and intensity of phytopathogenic Serratia marcescens within the insect vector. We reared insects aposymbiotically and with different Caballeronia isolates, infected them with S. marcescens, then sampled the insects periodically to assess the intensity and persistence of pathogen infection. Squash bugs harboring Caballeronia consistently had much lower-intensity infections and cleared S. marcescens significantly faster than their aposymbiotic counterparts. These patterns held even when we reversed the timing of exposure to symbiont and pathogen. Taken together, these results indicate that Caballeronia symbionts play an essential role in S. marcescens infection outcomes in squash bugs and could be used to alter vector competence to enhance agricultural productivity in the future. Importance Insect-microbe symbioses have repeatedly been shown to profoundly impact an insect's ability to vector pathogens to other hosts. The use of symbiotic microbes to control insect vector populations is of growing interest in agricultural settings. Our study examines how symbiotic microbes affect the dynamics of a plant pathogen infection within the squash bug vector Anasa tristis-a well-documented pest of squash and other cucurbit plants and vector of Serratia marcescens, causative agent of Cucurbit Yellow Vine Disease. We provide evidence that the symbiont Caballeronia prevents successful, long-term establishment of S. marcescens in the squash bug. These findings give us insight into symbiont-pathogen dynamics within the squash bug that could ultimately determine its ability to transmit pathogens and be leveraged to interrupt disease transmission in this system.
Collapse
|
17
|
Wielkopolan B, Krawczyk K, Szabelska-Beręsewicz A, Obrępalska-Stęplowska A. The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin. Sci Rep 2021; 11:20496. [PMID: 34650106 PMCID: PMC8516949 DOI: 10.1038/s41598-021-99411-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Cereal leaf beetle (CLB, Oulema melanopus, Coleoptera, Chrysomelidae) is a serious agricultural pest that causes considerable damages to agricultural production. The aim of this study was to characterize the bacterial communities associated with larvae and imagoes of CLB collected from various cereal host species and locations. The bacterial profile was characterized by 16S rRNA gene sequencing at the V3-V4 hypervariable region. Using taxonomy-based analysis, the bacterial community of CLB containing 16 phyla, 26 classes, 49 orders, 78 families, 94 genera, and 63 species of bacteria was identified. The abundance of Wolbachia, Rickettsia, and Lactococcus genus was significantly higher in CLB imagoes than in larvae. Statistical analysis confirmed that the bacterial community of the larvae is more diverse in comparison to imagoes and that insects collected from spring barley and wheat are characterized by a much higher biodiversity level of bacterial genera and species than insects collected from other cereals. Obtained results indicated that the developmental stage, the host plant, and the insect's sampling location affected the CLB's microbiome. Additionally, the CLB core microbiome was determined. It consists of 2 genera (Wolbachia and Rickettsia) shared by at least 90% tested CLB insects, regardless of the variables analysed.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Monitoring and Signaling of Agrophages, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland
| | - Krzysztof Krawczyk
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland
| | - Alicja Szabelska-Beręsewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St, 60-624, Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland.
| |
Collapse
|
18
|
Stec K, Kordan B, Gabryś B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. INSECTS 2021; 12:756. [PMID: 34442322 PMCID: PMC8396875 DOI: 10.3390/insects12080756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Flavonoids detected in soybean Glycine max (L.) Merr. (Fabaceae) cause various alterations in the metabolism, behavior, and development of insect herbivores. The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) poses potential threat to soybeans, but the effect of individual flavonoids on its feeding-associated behavior is relatively unknown. We monitored probing behavior (stylet penetration activities) of A. pisum on its preferred host plant, Pisum sativum L. untreated (control) and treated with 0.1% ethanolic solutions of flavonoids apigenin, daidzein, genistein, and kaempferol. We applied the electrical penetration graph (electropenetrography, EPG) technique, which visualizes the movements of aphid stylets within plant tissues. None of the applied flavonoids affected the propensity to probe the plants by A. pisum. However, apigenin enhanced the duration of probes in non-phloem tissues, which caused an increase in the frequency and duration of stylet mechanics derailment and xylem sap ingestion but limited the ingestion of phloem sap. Daidzein caused a delay in reaching phloem vessels and limited sap ingestion. Kaempferol caused a reduction in the frequency and duration of the phloem phase. Genistein did not affect aphid probing behavior. Our findings provide information for selective breeding programs of resistant plant cultivars to A. pisum.
Collapse
Affiliation(s)
- Katarzyna Stec
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| | - Bożena Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland;
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| |
Collapse
|
19
|
Mejía-Alvarado FS, Ghneim-Herrera T, Góngora CE, Benavides P, Navarro-Escalante L. Structure and Dynamics of the Gut Bacterial Community Across the Developmental Stages of the Coffee Berry Borer, Hypothenemus hampei. Front Microbiol 2021; 12:639868. [PMID: 34335487 PMCID: PMC8323054 DOI: 10.3389/fmicb.2021.639868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The coffee berry borer (CBB); Hypothenemus hampei (Coleoptera: Curculionidae), is widely recognized as the major insect pest of coffee crops. Like many other arthropods, CBB harbors numerous bacteria species that may have important physiological roles in host nutrition, detoxification, immunity and protection. To date, the structure and dynamics of the gut-associated bacterial community across the CBB life cycle is not yet well understood. A better understanding of the complex relationship between CBB and its bacterial companions may provide new opportunities for insect control. In the current investigation, we analyzed the diversity and abundance of gut microbiota across the CBB developmental stages under field conditions by using high-throughput Illumina sequencing of the 16S ribosomal RNA gene. Overall, 15 bacterial phyla, 38 classes, 61 orders, 101 families and 177 genera were identified across all life stages, including egg, larva 1, larva 2, pupa, and adults (female and male). Proteobacteria and Firmicutes phyla dominated the microbiota along the entire insect life cycle. Among the 177 genera, the 10 most abundant were members of Ochrobactrum (15.1%), Pantoea (6.6%), Erwinia (5.7%), Lactobacillus (4.3%), Acinetobacter (3.4%), Stenotrophomonas (3.1%), Akkermansia (3.0%), Agrobacterium (2.9%), Curtobacterium (2.7%), and Clostridium (2.7%). We found that the overall bacterial composition is diverse, variable within each life stage and appears to vary across development. About 20% of the identified OTUs were shared across all life stages, from which 28 OTUs were consistently found in all life stage replicates. Among these OTUs there are members of genera Pantoea, Erwinia, Agrobacterium, Ochrobactrum, Pseudomonas, Acinetobacter, Brachybacterium, Sphingomonas and Methylobacterium, which can be considered as the gut-associated core microbiota of H. hampei. Our findings bring additional data to enrich the understanding of gut microbiota in CBB and its possible use for development of insect control strategies.
Collapse
Affiliation(s)
- Fernan Santiago Mejía-Alvarado
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia.,Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | | | - Carmenza E Góngora
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | - Pablo Benavides
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | | |
Collapse
|
20
|
Kee SL, Tan MJT. Friend, Not Foe: Unveiling Vector-Bacteria Symbiosis and Its Utility as an Arboviral Intervention Strategy in the Philippines. Front Cell Infect Microbiol 2021; 11:650277. [PMID: 34268130 PMCID: PMC8275988 DOI: 10.3389/fcimb.2021.650277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shaira Limson Kee
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines
| | - Myles Joshua Toledo Tan
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines.,Department of Chemical Engineering, University of St. La Salle, Bacolod, Philippines
| |
Collapse
|
21
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Izraeli Y, Lalzar M, Netanel N, Mozes-Daube N, Steinberg S, Chiel E, Zchori-Fein E. Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio-control agent of mealybugs. PEST MANAGEMENT SCIENCE 2021; 77:1023-1034. [PMID: 33002324 DOI: 10.1002/ps.6117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Like numerous other animals, biocontrol agents (BCAs) of arthropod pests carry various microorganisms that may have diverse effects on the biology of their eukaryote hosts. We postulated that it is possible to improve the efficacy of BCAs by manipulating the composition of their associated microbiota. The parasitoid wasp Anagyrus vladimiri (Hymenoptera: Encyrtidae) from a mass-rearing facility was chosen for testing this hypothesis. RESULTS High-throughput sequencing analysis indicated that fungal abundance in A. vladimiri was low and variable, whereas the bacterial community was dominated by the endosymbiont Wolbachia. Wolbachia was fixed in the mass-rearing population, whereas in field-collected A. vladimiri Wolbachia's prevalence was only approximately 20%. Identification of Wolbachia strains from the two populations by Multi Locus Sequence Typing, revealed two closely related but unique strains. A series of bioassays with the mass-rearing Wolbachia-fixed (W+ ) and a derived antibiotic-treated Wolbachia-free (W- ) lines revealed that: (i) Wolbachia does not induce reproductive manipulations; (ii) W- females have higher fecundity when reared individually, but not when reared with conspecifics; (iii) W+ females outcompete W- when they share hosts for oviposition; (iv) longevity and developmental time were similar in both lines. CONCLUSIONS The findings suggest that W+ A. vladimiri have no clear fitness benefit under mass-rearing conditions and may be disadvantageous under lab-controlled conditions. In a broader view, the results suggest that augmentative biological control can benefit from manipulation of the microbiome of natural enemies.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maya Lalzar
- Bioinformatic Department, University of Haifa, Haifa, Israel
| | - Nir Netanel
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | | | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Kiryat Tiv'on, Israel
| | - Einat Zchori-Fein
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
23
|
|
24
|
Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms 2020; 9:microorganisms9010068. [PMID: 33383851 PMCID: PMC7823435 DOI: 10.3390/microorganisms9010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Differences in the gut microbial content of Lutzomyia (Lu.) ayacuchensis, a primary vector of Andean-type cutaneous leishmaniasis in Ecuador and Peru, may influence the susceptibility of these sand flies to infection by Leishmania. As a first step toward addressing this hypothesis, a comparative analysis of bacterial and fungal compositions from Lu. ayacuchensis populations with differential susceptibilities to Leishmania was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing approaches were used to characterize the bacterial composition in wild-caught populations from the Andean areas of Ecuador and southern Peru at which the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and a population from the northern Peruvian Andes at which the transmission of Leishmania by Lu. ayacuchensis has not been reported. In the present study, 59 genera were identified, 21 of which were widely identified and comprised more than 95% of all bacteria. Of the 21 dominant bacterial genera identified in the sand flies collected, 10 genera had never been detected in field sand flies. The Ecuador and southern Peru populations each comprised individuals of particular genera, while overlap was clearly observed between microbes isolated from different sites, such as the number of soil organisms. Similarly, Corynebacterium and Micrococcus were slightly more dominant bacterial genera in the southern Peru population, while Ochrobactrum was the most frequently isolated from other populations. On the other hand, fungi were only found in the southern Peru population and dominated by the Papiliotrema genus. These results suggest that variation in the insect gut microbiota may be elucidated by the ecological diversity of sand flies in Peru and Ecuador, which may influence susceptibility to Leishmania infection. The present study provides key insights for understanding the role of the microbiota during the course of L. (L.) mexicana and L. (V.) peruviana infections in this important vector.
Collapse
|
25
|
Cini A, Meriggi N, Bacci G, Cappa F, Vitali F, Cavalieri D, Cervo R. Gut microbial composition in different castes and developmental stages of the invasive hornet Vespa velutina nigrithorax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140873. [PMID: 32758760 DOI: 10.1016/j.scitotenv.2020.140873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 05/16/2023]
Abstract
Social insects are successful animal invaders. Their survival and success, and in some cases also their impact on invaded ecosystem functioning, is often mediated by symbiosis with microorganisms. Here, we report a comprehensive comparative characterization of the gut microbial communities of different castes and developmental stages of the invasive hornet Vespa velutina nigrithorax. The species recently colonized Europe, becoming a high ecological and economic concern, as it threatens pollinator survival and competes with native hornet species. We used targeted meta-genomics to describe the yeasts and bacteria gut communities of individuals of different reproductive phenotypes (workers and future queens), life stages (larvae, newly emerged individuals and adults) and colony non-living samples (nest paper and larval faeces). Bacilli, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria were the most abundant classes of bacteria, and Saccharomycetes, Dothideomycetes, Tremellomycetes and Eurotiomycetes were the most represented yeast classes. We found that the microbial compositions significantly differ across developmental stages and castes, with yeast and bacterial communities switching in frequency and abundance during ontogeny and according to reproductive phenotype. Moreover, the gut microbial communities poorly mirror those found in the nest, suggesting that hornets possess a specific microbial signature. Our results provide the first metagenomic resource of the microbiome of V. velutina in Europe and suggest the importance of considering life stages, reproductive phenotypes and nest influence in order to obtain a comprehensive picture of social insect microbial communities.
Collapse
Affiliation(s)
- Alessandro Cini
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Francesco Vitali
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy; Institute of Biology and Agrarian Biotechnology, National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy.
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| |
Collapse
|
26
|
Wang ZL, Wang TZ, Zhu HF, Pan HB, Yu XP. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. INSECT SCIENCE 2020; 27:883-894. [PMID: 31612637 DOI: 10.1111/1744-7917.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high-throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender-dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tian-Zhao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hang-Feng Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
27
|
Hu FY, Tsai CW. Nutritional Relationship between Bemisia tabaci and Its Primary Endosymbiont, Portiera aleyrodidarum, during Host Plant Acclimation. INSECTS 2020; 11:insects11080498. [PMID: 32759662 PMCID: PMC7469222 DOI: 10.3390/insects11080498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Plant sap-sucking insects commonly have established mutualistic relationships with bacteria that live within their bodies and often provide nutrients that are lacking in the insect’s diet. The sweet potato whitefly (Bemisia tabaci) harbors one primary and up to seven secondary endosymbiotic bacteria. The primary endosymbiont of B. tabaci is already known to play a critical role in providing necessary nutrients for B. tabaci. Our objective was to study the relationship among B. tabaci, its primary endosymbiont, and the host plant through the effects of host plant shifting and acclimation, that is, physiological adjustments as an insect becomes accustomed to a new host plant over several generations. The results showed that host shifting from Chinese kale to cotton plants led to a decrease in the fecundity of B. tabaci in the first generation, which was restored after 10 generations of acclimation, and that its developmental time was also decreased by the tenth generation. Furthermore, essential amino acid biosynthesis genes of its primary endosymbiont were differentially regulated after B. tabaci had become acclimated to cotton plants. We speculate that the primary endosymbiont has a close nutritional relationship with B. tabaci during host plant acclimation. Abstract Plant sap-sucking insects commonly have established mutualistic relationships with endosymbiotic bacteria that can provide nutrients lacking in their diet. Bemisia tabaci harbors one primary endosymbiont, Portiera aleyrodidarum, and up to seven secondary endosymbionts, including Hamiltonella defensa and Rickettsia sp. Portiera aleyrodidarum is already known to play a critical role in providing necessary nutrients for B. tabaci. In the present study, the relationship among B. tabaci, its primary endosymbiont, and the host plant were examined through the effects of host plant shifting and acclimation. Bemisia tabaci was transferred from Chinese kale to four different host plants, and the effects on both its performance and the expression levels of nutrient-related genes of P. aleyrodidarum were analyzed. The results showed that host shifting from Chinese kale to cotton plants led to a decrease in the performance of B. tabaci in the first generation, which was restored after 10 generations of acclimation. Furthermore, the expression levels of essential amino acid biosynthesis genes of P. aleyrodidarum were found to be differentially regulated after B. tabaci had acclimated to the cotton plants. Host plant shifting and acclimation to cucumber, poinsettia, and tomato plants did not affect the fecundity of B. tabaci and the expression levels of most examined genes. We speculate that P. aleyrodidarum may help B. tabaci improve its performance and acclimate to new hosts and that P. aleyrodidarum has a close nutritional relationship with its host during host plant acclimation.
Collapse
|
28
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Morrow JL, Om N, Beattie GAC, Chambers GA, Donovan NJ, Liefting LW, Riegler M, Holford P. Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing. BMC Microbiol 2020; 20:215. [PMID: 32689950 PMCID: PMC7370496 DOI: 10.1186/s12866-020-01895-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Several plant-pathogenic bacteria are transmitted by insect vector species that often also act as hosts. In this interface, these bacteria encounter plant endophytic, insect endosymbiotic and other microbes. Here, we used high throughput sequencing to examine the bacterial communities of five different psyllids associated with citrus and related plants of Rutaceae in Bhutan: Diaphorina citri, Diaphorina communis, Cornopsylla rotundiconis, Cacopsylla heterogena and an unidentified Cacopsylla sp. Results The microbiomes of the psyllids largely comprised their obligate P-endosymbiont ‘Candidatus Carsonella ruddii’, and one or two S-endosymbionts that are fixed and specific to each lineage. In addition, all contained Wolbachia strains; the Bhutanese accessions of D. citri were dominated by a Wolbachia strain first found in American isolates of D. citri, while D. communis accessions were dominated by the Wolbachia strain, wDi, first detected in D. citri from China. The S-endosymbionts from the five psyllids grouped with those from other psyllid taxa; all D. citri and D. communis individuals contained sequences matching ‘Candidatus Profftella armatura’ that has previously only been reported from other Diaphorina species, and the remaining psyllid species contained OTUs related to unclassified Enterobacteriaceae. The plant pathogenic ‘Candidatus Liberibacter asiaticus’ was found in D. citri but not in D. communis. Furthermore, an unidentified ‘Candidatus Liberibacter sp.’ occurred at low abundance in both Co. rotundiconis and the unidentified Cacopsylla sp. sampled from Zanthoxylum sp.; the status of this new liberibacter as a plant pathogen and its potential plant hosts are currently unknown. The bacterial communities of Co. rotundiconis also contained a range of OTUs with similarities to bacteria previously found in samples taken from various environmental sources. Conclusions The bacterial microbiota detected in these Bhutanese psyllids support the trends that have been seen in previous studies: psyllids have microbiomes largely comprising their obligate P-endosymbiont and one or two S-endosymbionts. In addition, the association with plant pathogens has been demonstrated, with the detection of liberibacters in a known host, D. citri, and identification of a putative new species of liberibacter in Co. rotundiconis and Cacopsylla sp.
Collapse
Affiliation(s)
- Jennifer L Morrow
- Western Sydney University, Hawkesbury Institute for the Environment, LB 1797, Penrith, NSW, 2752, Australia
| | - Namgay Om
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia.,National Plant Protection Centre, Department of Agriculture, Ministry of Agriculture & Forests, P.O. Box 670, Thimphu, Bhutan
| | - George A C Beattie
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia
| | - Grant A Chambers
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Nerida J Donovan
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Lia W Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland, 1140, New Zealand
| | - Markus Riegler
- Western Sydney University, Hawkesbury Institute for the Environment, LB 1797, Penrith, NSW, 2752, Australia
| | - Paul Holford
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia.
| |
Collapse
|
30
|
Guz N, Arshad M, Cagatay NS, Dageri A, Ullah MI. Detection of Wolbachia (Rickettsiales: Anaplasmataceae) and Candidatus Liberibacter asiaticus (Rhizobiales: Rhizobiaceae) Associated With Diaphorina citri (Hemiptera: Liviidae) Collected From Citrus reticulata (Sapindales: Rutaceae) and Alternate Host, Cordia myxa (Boraginales: Boraginaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1486-1492. [PMID: 32207826 DOI: 10.1093/jee/toaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen 'Candidatus Liberibacter asiaticus' (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized.
Collapse
Affiliation(s)
- Nurper Guz
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Muhammad Arshad
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Naciye Sena Cagatay
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
| | | |
Collapse
|
31
|
Mendiola SY, Civitello DJ, Gerardo NM. An integrative approach to symbiont-mediated vector control for agricultural pathogens. CURRENT OPINION IN INSECT SCIENCE 2020; 39:57-62. [PMID: 32299043 DOI: 10.1016/j.cois.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Vector-borne pathogens pose significant threats to agricultural productivity. Methods that exploit associations between insects and their symbiotic microbes, dubbed symbiont-mediated vector control, are emerging as viable alternatives to insecticides for the control of vector-borne agricultural plant pathogens. The development of methods for effective microbial manipulation, such as RNA interference and paratransgenesis, may facilitate symbiont-mediated vector control tactics aimed at either suppressing insect populations or at manipulating vector competence, an insect vector's ability to acquire, harbor, and transmit pathogens. As suppression strategies transition from the laboratory to the field, the need for methods to evaluate their viability and predict their outcomes is apparent. Mathematical models of symbiont impact on agricultural disease can inform the development of symbiont-mediated vector control. We propose an integrative approach, combining theoretical and empirical experiments to identify the best practices for achieving meaningful improvements to crop health and productivity.
Collapse
Affiliation(s)
- Sandra Y Mendiola
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA.
| | - David J Civitello
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Sacchetti P, Pastorelli R, Bigiotti G, Guidi R, Ruschioni S, Viti C, Belcari A. Olive fruit fly rearing procedures affect the vertical transmission of the bacterial symbiont Candidatus Erwinia dacicola. BMC Biotechnol 2019; 19:91. [PMID: 31847839 PMCID: PMC6918546 DOI: 10.1186/s12896-019-0582-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The symbiosis between the olive fruit fly, Bactrocera oleae, and Candidatus Erwinia dacicola has been demonstrated as essential for the fly's larval development and adult physiology. The mass rearing of the olive fruit fly has been hindered by several issues, including problems which could be related to the lack of the symbiont, presumably due to preservatives and antibiotics currently used during rearing under laboratory conditions. To better understand the mechanisms underlying symbiont removal or loss during the rearing of lab colonies of the olive fruit fly, we performed experiments that focused on bacterial transfer from wild female flies to their eggs. In this research, eggs laid by wild females were treated with propionic acid solution, which is often used as an antifungal agent, a mixture of sodium hypochlorite and Triton X, or water (as a control). The presence of the bacterial symbiont on eggs was evaluated by real-time PCR and scanning electron microscopy. RESULTS DGGE analysis showed a clear band with the same migration behavior present in all DGGE profiles but with a decreasing intensity. Molecular analyses performed by real-time PCR showed a significant reduction in Ca. E. dacicola abundance in eggs treated with propionic acid solution or a mixture of sodium hypochlorite and Triton X compared to those treated with water. In addition, the removal of bacteria from the surfaces of treated eggs was highlighted by scanning electron microscopy. CONCLUSIONS The results clearly indicate how the first phases of the colony-establishment process are important in maintaining the symbiont load in laboratory populations and suggest that the use of products with antimicrobial activity should be avoided. The results also suggest that alternative rearing procedures for the olive fruit fly should be investigated.
Collapse
Affiliation(s)
- Patrizia Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via Maragliano 77, 50144 Florence, Italy
| | - Roberta Pastorelli
- Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA-AA), via di Lanciola, 12/A, 50125 Florence, Italy
| | - Gaia Bigiotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via Maragliano 77, 50144 Florence, Italy
| | - Roberto Guidi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via Maragliano 77, 50144 Florence, Italy
| | - Sara Ruschioni
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via Maragliano 77, 50144 Florence, Italy
| | - Antonio Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via Maragliano 77, 50144 Florence, Italy
| |
Collapse
|
33
|
Gawande SJ, Anandhan S, Ingle A, Roylawar P, Khandagale K, Gawai T, Jacobson A, Asokan R, Singh M. Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). PLoS One 2019; 14:e0223281. [PMID: 31568480 PMCID: PMC6768462 DOI: 10.1371/journal.pone.0223281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.
Collapse
Affiliation(s)
- Suresh J. Gawande
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | - Ashish Ingle
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Kiran Khandagale
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Tushar Gawai
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Hessarghatta Lake, Bengaluru, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
34
|
Meng L, Li X, Cheng X, Zhang H. 16S rRNA Gene Sequencing Reveals a Shift in the Microbiota of Diaphorina citri During the Psyllid Life Cycle. Front Microbiol 2019; 10:1948. [PMID: 31507561 PMCID: PMC6716071 DOI: 10.3389/fmicb.2019.01948] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
The Asian citrus psyllid (Diaphorina citri) is a major pest of citrus trees as it transmits Candidatus Liberibacter asiaticus (CLas). The composition of a host’s microbiota can affect the evolution and ecological distribution of the host. This study monitored the compositional shifts in the citrus psyllid microbiota through all the life stages (egg, nymph 1–5 stages, and adult) by next-generation sequencing (NGS) and quantitative real-time PCR. There were clear differences in both α- and β-diversity of microbiota through the psyllid life stages. Microbiota diversity was markedly higher in the nymph 2–5 stages than in the adult, egg, and nymph 1 stages. Proteobacteria were dominant in all the life stages of D. citri, representing >97.5% of the total bacterial community, and Candidatus Profftella armature was the dominant genus in all the life stages. Data from the qPCR analysis showed an exponential increase in the populations of three D. citri endosymbionts: Candidatus Profftella armature, Candidatus Carsonella ruddii, and Wolbachia. The gut bacterium Pantoea was present in all the life stages, but it was markedly higher in the nymph 2–5 stages. The microbiota composition substantially differed among the egg–nymph 1, nymphs 2–5, and adult stages. Therefore, we successfully characterized the microbiota dynamics and thus identified a microbiota shift during the life cycle of D. citri by 16S rRNA gene sequencing and quantitative PCR. Moreover, 16S rRNA gene sequencing suggested that D. citri acquired the ability to bear CLas in the nymph 1 stage. This study enhances our understanding of microbial establishment in the developing D. citri and provides a reference resource for the identification of potential biocontrol approaches against this pest.
Collapse
Affiliation(s)
- Lixue Meng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Nobre T. Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management? Microorganisms 2019; 7:E238. [PMID: 31382604 PMCID: PMC6723466 DOI: 10.3390/microorganisms7080238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The applied importance of symbiosis has been gaining recognition. The relevance of symbiosis has been increasing in agriculture, in developing sustainable practices, including pest management. Insect symbiotic microorganisms' taxonomical and functional diversity is high, and so is the potential of manipulation of these microbial partners in suppressing pest populations. These strategies, which rely on functional organisms inhabiting the insect, are intrinsically less susceptible to external environmental variations and hence likely to overcome some of the challenges posed by climate change. Rates of climate change in the Mediterranean Basin are expected to exceed global trends for most variables, and this warming will also affect olive production and impact the interactions of olives and their main pest, the obligate olive fruit fly (Bactrocera oleae). This work summarizes the current knowledge on olive fly symbiotic bacteria towards the potential development of symbiosis-based strategies for olive fruit fly control. Particular emphasis is given to Candidatus Erwinia dacicola, an obligate, vertically transmitted endosymbiont that allows the insect to cope with the olive-plant produced defensive compound oleuropein, as a most promising target for a symbiosis disruption approach.
Collapse
Affiliation(s)
- Tânia Nobre
- Laboratory of Entomology, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Apartado 94, 7002-554 Évora, Portugal.
| |
Collapse
|
36
|
Couret J, Huynh‐Griffin L, Antolic‐Soban I, Acevedo‐Gonzalez TS, Gerardo NM. Even obligate symbioses show signs of ecological contingency: Impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol Evol 2019; 9:9087-9099. [PMID: 31463006 PMCID: PMC6706230 DOI: 10.1002/ece3.5454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT Many species interactions are dependent on environmental context, yet the benefits of obligate, mutualistic microbial symbioses to their hosts are typically assumed to be universal across environments. We directly tested this assumption, focusing on the symbiosis between the sap-feeding insect Megacopta cribraria and its primary bacterial symbiont Candidatus Ishikawaella capsulata. We assessed host development time, survival, and body size in the presence and absence of the symbiont on two alternative host plants and in the insects' new invasive range. We found that association with the symbiont was critical for host survival to adulthood when reared on either host plant, with few individuals surviving in the absence of symbiosis. Developmental differences between hosts with and without microbial symbionts, however, were mediated by the host plants on which the insects were reared. Our results support the hypothesis that benefits associated with this host-microbe interaction are environmentally contingent, though given that few individuals survive to adulthood without their symbionts, this may have minimal impact on ecological dynamics and current evolutionary trajectories of these partners. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.kg4bc56.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
- Department of BiologyEmory UniversityAtlantaGAUSA
| | | | | | | | | |
Collapse
|
37
|
Cappelli A, Valzano M, Cecarini V, Bozic J, Rossi P, Mensah P, Amantini C, Favia G, Ricci I. Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice. Parasit Vectors 2019; 12:329. [PMID: 31266522 PMCID: PMC6604151 DOI: 10.1186/s13071-019-3587-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Wickerhamomyces anomalus is a yeast associated with different insects including mosquitoes, where it is proposed to be involved in symbiotic relationships with hosts. Different symbiotic strains of W. anomalus display a killer phenotype mediated by protein toxins with broad-spectrum antimicrobial activities. In particular, a killer toxin purified from a W. anomalus strain (WaF17.12), previously isolated from the malaria vector mosquito Anopheles stephensi, has shown strong in vitro anti-plasmodial activity against early sporogonic stages of the murine malaria parasite Plasmodium berghei. RESULTS Here, we provide evidence that WaF17.12 cultures, properly stimulated to induce the expression of the killer toxin, can directly affect in vitro P. berghei early sporogonic stages, causing membrane damage and parasite death. Moreover, we demonstrated by in vivo studies that mosquito dietary supplementation with activated WaF17.12 cells interfere with ookinete development in the midgut of An. stephensi. Besides the anti-sporogonic action of WaF17.12, an inhibitory effect of purified WaF17.12-killer toxin was observed on erythrocytic stages of P. berghei, with a consequent reduction of parasitaemia in mice. The preliminary safety tests on murine cell lines showed no side effects. CONCLUSIONS Our findings demonstrate the anti-plasmodial activity of WaF17.12 against different developmental stages of P. berghei. New studies on P. falciparum are needed to evaluate the use of killer yeasts as innovative tools in the symbiotic control of malaria.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
38
|
Skaljac M, Kirfel P, Grotmann J, Vilcinskas A. Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum. PEST MANAGEMENT SCIENCE 2018; 74:1829-1836. [PMID: 29443436 DOI: 10.1002/ps.4881] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g. by providing essential nutrients or facilitating adaptations to biotic and abiotic stress. RESULTS We investigated the pea aphid (Acyrthosiphon pisum Harris) and its commonly associated secondary bacterial symbiont Serratia symbiotica to study the effect of this symbiont on host fitness and susceptibility to the insecticides imidacloprid, chlorpyrifos methyl, methomyl, cyantraniliprole and spirotetramat. There is emerging evidence that members of the genus Serratia can degrade and/or detoxify diverse insecticides. Therefore, we hypothesized that S. symbiotica may promote resistance to these artificial stress agents in aphids. Our results showed that Serratia-infected aphids were more susceptible to most of the tested insecticides than non-infected aphids. This probably reflects the severe fitness costs associated with S. symbiotica, which negatively affects development, reproduction and body weight. CONCLUSION Our study demonstrates that S. symbiotica plays an important role in the ability of aphid hosts to tolerate insecticides. These results provide insight into the potential changes in tolerance to insecticides in the field because there is a continuous and dynamic process of symbiont acquisition and loss that may directly affect host biology. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Jens Grotmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
39
|
Karimi S, Izadi H, Askari Seyahooei M, Bagheri A, Khodaygan P. Variation in bacterial endosymbionts associated with the date palm hopper, Ommatissus lybicus populations. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:271-281. [PMID: 28807085 DOI: 10.1017/s0007485317000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The date palm hopper, Ommatissus lybicus, is a key pest of the date palm, which is expected to be comprised of many allopatric populations. The current study was carried out to determine bacterial endosymbiont diversity in the different populations of this pest. Ten date palm hopper populations were collected from the main date palm growing regions in Iran and an additional four samples from Pakistan, Oman, Egypt and Tunisia for detection of primary and secondary endosymbionts using polymerase chain reaction (PCR) assay with their specific primers. The PCR products were directly sequenced and edited using SeqMan software. The consensus sequences were subjected to a BLAST similarity search. The results revealed the presence of 'Candidatus Sulcia muelleri' (primary endosymbiont) and Wolbachia, Arsenophonus and Enterobacter (secondary endosymbionts) in all populations. This assay failed to detect 'Candidatus Nasuia deltocephalinicola' and Serratia in these populations. 'Ca. S. muelleri' exhibited a 100% infection frequency in populations and Wolbachia, Arsenophonus and Enterobacter demonstrated 100, 93.04 and 97.39% infection frequencies, respectively. The infection rate of Arsenophonus and Enterobacter ranged from 75 to 100% and 62.5 to 100%, respectively, in different populations of the insect. The results demonstrated multiple infections by 'Ca. Sulcia muelleri', Wolbachia, Arsenophonus and Enterobacter in the populations and may suggest significant roles for these endosymbionts on date palm hopper population fitness. This study provides an insight to endosymbiont variation in the date palm hopper populations; however, further investigation is needed to examine how these endosymbionts may affect host fitness.
Collapse
Affiliation(s)
- S Karimi
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| | - H Izadi
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| | - M Askari Seyahooei
- Plant Protection Research Department,Hormozgan Agricultural and Natural Resources Research and Education Center,Agricultural Research Education and Extension Organization (AREEO),Bandar Abbas,Iran
| | - A Bagheri
- Plant Protection Research Department,Hormozgan Agricultural and Natural Resources Research and Education Center,Agricultural Research Education and Extension Organization (AREEO),Bandar Abbas,Iran
| | - P Khodaygan
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| |
Collapse
|
40
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
41
|
Wang Y, Lu J, Beattie GA, Islam MR, Om N, Dao HT, Van Nguyen L, Zaka SM, Guo J, Tian M, Deng X, Tan S, Holford P, He Y, Cen Y. Phylogeography of Diaphorina citri (Hemiptera: Liviidae) and its primary endosymbiont, 'Candidatus Carsonella ruddii': an evolutionary approach to host-endosymbiont interaction. PEST MANAGEMENT SCIENCE 2018; 74:2185-2194. [PMID: 29575777 DOI: 10.1002/ps.4917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In insects, little is known about the co-evolution between their primary endosymbionts and hosts at the intraspecific level. This study examined co-diversification between the notorious agricultural pest Diaphorina citri and its primary endosymbionts (P-endosymbiont), 'Candidatus Carsonella ruddii' at the population level. RESULTS Maximum likelihood, haplotype network, principal components and Bayesian clustering identified three lineages for D. citri and its P-endosymbiont: a Western clade containing individuals from Pakistan, Bhutan (Phuentsholing), Vietnam (Son La), USA, Myanmar and China (Ruili, Yunnan); a Central clade, with accessions originating from Southwest China, Bhutan (Tsirang) and Bangladesh; and an Eastern clade containing individuals from Southeast Asia, and East and South China. A more diverse genetic structure was apparent in the host mitochondrial DNA than their P-endosymbionts; however, the two sets of data were strongly congruent. CONCLUSION This study provides evidence for the co-diversification of D. citri and its P-endosymbiont during the migration from South Asia to East and Southeast Asia. We also suggest that the P-endosymbiont may facilitate investigations into the genealogy and migration history of the host. The biogeography of D. citri and its P-endosymbiont indicated that D. citri colonized and underwent a secondary dispersal from South Asia to East and Southeast Asia. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjing Wang
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Jinming Lu
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - George Ac Beattie
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Mohammad R Islam
- Laboratory of Plant Bacteriology and Biotechnology, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Namgay Om
- National Plant Protection Centre, Department of Agriculture, Ministry of Agriculture and Forests, Thimphu, Bhutan
| | - Hang T Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Syed M Zaka
- Faculty of Agricultural Science and Technology, Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jun Guo
- Ruili Experiment Station, Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Ruili, China
| | - Mingyi Tian
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Shunyun Tan
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Yurong He
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS One 2018. [PMID: 29518170 PMCID: PMC5843337 DOI: 10.1371/journal.pone.0194131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas.
Collapse
|
43
|
A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci Rep 2017; 7:17554. [PMID: 29242567 PMCID: PMC5730597 DOI: 10.1038/s41598-017-17309-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite that causes important economic losses in livestock. Different species of ticks harbor a symbiont bacterium of the genus Coxiella. It was showed that a Coxiella endosymbiont from R. microplus (CERM) is a vertically transmitted mutualist symbiont, comprising 98% of the 16S rRNA sequences in both eggs and larvae. Sequencing of the bacterial genome revealed genes for biosynthetic pathways for several vitamins and key metabolic cofactors that may provide a nutritional complement to the tick host. The CERM was abundant in ovary and Malpighian tubule of fully engorged female. Tetracycline treatment of either the tick or the vertebrate host reduced levels of bacteria in progeny in 74% for eggs and 90% for larvae without major impact neither on the reproductive fitness of the adult female or on embryo development. However, CERM proved to be essential for the tick to reach the adult life stage, as under antibiotic treatment no tick was able to progress beyond the metanymph stage. Data presented here suggest that interference in the symbiotic CERM-R. microplus relationship may be useful to the development of alternative control methods, highlighting the interdependence between ticks and their endosymbionts.
Collapse
|
44
|
Martinez AFC, de Almeida LG, Moraes LAB, Cônsoli FL. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins. BMC Microbiol 2017; 17:143. [PMID: 28655338 PMCID: PMC5488367 DOI: 10.1186/s12866-017-1054-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. RESULTS We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD50 = 37.7 μg.cm-2). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. CONCLUSIONS Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring microbial diversity through mass-spectrometry analyses is a useful approach for isolating and identifying new compounds. Our results showed high insecticidal activity of porphyrin compounds. Applications of different experiments in mass spectrometry allowed the characterization of two new porphyrins.
Collapse
Affiliation(s)
- Ana Flávia Canovas Martinez
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av Pádua Dias 11, 13418–900, Piracicaba, SP Brazil
| | - Luís Gustavo de Almeida
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av Pádua Dias 11, 13418–900, Piracicaba, SP Brazil
| | - Luiz Alberto Beraldo Moraes
- Laboratório de Espectrometria de Massas Aplicada a Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes 3900, 14040–901, Ribeirão Preto, SP Brazil
| | - Fernando Luís Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av Pádua Dias 11, 13418–900, Piracicaba, SP Brazil
| |
Collapse
|
45
|
Efficacy of botanical extracts from Brazilian savannah against Diabrotica speciosa and associated bacteria. Ecol Res 2017. [DOI: 10.1007/s11284-017-1454-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Husseneder C, Park JS, Howells A, Tikhe CV, Davis JA. Bacteria Associated With Piezodorus guildinii (Hemiptera: Pentatomidae), With Special Reference to Those Transmitted by Feeding. ENVIRONMENTAL ENTOMOLOGY 2017; 46:159-166. [PMID: 28025221 DOI: 10.1093/ee/nvw112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Heteroptera: Pentatomidae), is a rapidly growing pest damaging southern US agriculture. Pentatomid stink bugs are known to vector bacterial, fungal, and viral plant diseases. However, bacteria associated with redbanded stink bugs and their vector potential have not yet been assessed. In this study, we 1) cultured and identified bacteria transmitted by feeding of redbanded stink bug and 2) described bacteria from guts of redbanded stink bug individuals using next-generation sequencing of 16S rRNA genes. Nineteen bacteria transmitted by feeding of redbanded stink bug on soybean agar were isolated and identified via Sanger sequencing of near full length 16S RNA genes. The transmitted bacteria belonged to at least a dozen species in eight genera and included potential plant pathogens (Phaseolibacter flectens), plant beneficials (Bacillus atropheus), and possible insect beneficials (Acinetobacter sp. and Citrobacter farmeri). A total of 284,448 reads were captured from Illumina MiSeq sequencing of the uncultured gut bacteria community. Fifty-one putative bacteria species (74% of the estimated total species richness) were identified via matches to NCBI databases. The bacteria metagenome contained potential plant and insect pathogens (Erwinia persicina, E. rhaponici, Brenneria nigrifluens, Ralstonia picketti, and Serratia marcescens) and beneficials (Pantoea dispersa, Klebsiella oxytoca, Clostridium butyricum, and Citrobacter farmeri).
Collapse
Affiliation(s)
- Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (; ; ; ; )
| | - Jong-Seok Park
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (; ; ; ; )
| | - Andrea Howells
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (; ; ; ; )
| | - Chinmay V Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (; ; ; ; )
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (; ; ; ; )
| |
Collapse
|
47
|
|
48
|
van den Bosch TJM, Welte CU. Detoxifying symbionts in agriculturally important pest insects. Microb Biotechnol 2016; 10:531-540. [PMID: 27943632 PMCID: PMC5404199 DOI: 10.1111/1751-7915.12483] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/05/2022] Open
Abstract
Pest insects lead to excessive agricultural and therefore economical losses on crops worldwide. These insects have to withstand toxic molecules that are inherent to plant defences, as well as those that are produced and introduced by humans in the form of insecticides. In recent years, research on insect–microbe symbioses has recognized that microbial symbionts may play a role protecting against these toxins, leading to a form of defensive symbiosis between the pest insect and different types of microorganisms that we term detoxifying symbioses. In this minireview, we will highlight well‐characterized and emerging insect model systems of detoxifying symbioses and assess how the microorganisms influence the host's success.
Collapse
Affiliation(s)
- Tijs J M van den Bosch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| |
Collapse
|
49
|
Li K, Chen H, Jiang J, Li X, Xu J, Ma Y. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep 2016; 6:36406. [PMID: 27819272 PMCID: PMC5098245 DOI: 10.1038/srep36406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome.
Collapse
Affiliation(s)
- Kaili Li
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Huiying Chen
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jinjin Jiang
- Biology Department, Molecular Biology Program, New Mexico State University, Las Cruces NM 88003, USA
| | - Xiangyu Li
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jiannong Xu
- Biology Department, Molecular Biology Program, New Mexico State University, Las Cruces NM 88003, USA
| | - Yajun Ma
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
50
|
|