1
|
Park B, Wi S, Chung H, Lee H. Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops. SENSORS (BASEL, SWITZERLAND) 2024; 24:1442. [PMID: 38474977 DOI: 10.3390/s24051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The field of plant phenotype is used to analyze the shape and physiological characteristics of crops in multiple dimensions. Imaging, using non-destructive optical characteristics of plants, analyzes growth characteristics through spectral data. Among these, fluorescence imaging technology is a method of evaluating the physiological characteristics of crops by inducing plant excitation using a specific light source. Through this, we investigate how fluorescence imaging responds sensitively to environmental stress in garlic and can provide important information on future stress management. In this study, near UV LED (405 nm) was used to induce the fluorescence phenomenon of garlic, and fluorescence images were obtained to classify and evaluate crops exposed to abiotic environmental stress. Physiological characteristics related to environmental stress were developed from fluorescence sample images using the Chlorophyll ratio method, and classification performance was evaluated by developing a classification model based on partial least squares discrimination analysis from the image spectrum for stress identification. The environmental stress classification performance identified from the Chlorophyll ratio was 14.9% in F673/F717, 25.6% in F685/F730, and 0.209% in F690/F735. The spectrum-developed PLS-DA showed classification accuracy of 39.6%, 56.2% and 70.7% in Smoothing, MSV, and SNV, respectively. Spectrum pretreatment-based PLS-DA showed higher discrimination performance than the existing image-based Chlorophyll ratio.
Collapse
Affiliation(s)
- Beomjin Park
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Seunghwan Wi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Wanju 55365, Republic of Korea
| | - Hwanjo Chung
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Hoonsoo Lee
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
2
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
3
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
4
|
Generation of Transgenic Fluorescent Reporter Lines for Studying Hematopoietic Development in the Mouse. Methods Mol Biol 2021; 2224:153-182. [PMID: 33606214 DOI: 10.1007/978-1-0716-1008-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hematopoiesis in the mouse and other mammals occurs in several waves and arises from distinct anatomic sites. Transgenic mice expressing fluorescent reporter proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to more restricted progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and describe methods for confirming and analyzing transgene expression in the hematopoietic tissues of the embryo, fetus, and postnatal/adult animal.
Collapse
|
5
|
Microfabricated Device for High-Resolution Imaging of Preimplantation Embryos. Methods Mol Biol 2020. [PMID: 32944900 DOI: 10.1007/978-1-0716-0958-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mouse preimplantation embryo is an excellent system for studying how mammalian cells organize dynamically into increasingly complex structures. Accessible to experimental and genetic manipulations, its normal or perturbed development can be scrutinized ex vivo by real-time imaging from fertilization to late blastocyst stage. High-resolution imaging of multiple embryos at the same time can be compromised by embryos displacement during imaging. We have developed an inexpensive and easy-to-produce imaging device that facilitates greatly the imaging of preimplantation embryo. In this chapter, we describe the different steps of production and storage of the imaging device as well as its use for live imaging of mouse preimplantation embryos expressing fluorescent reporters from genetically modified alleles or after in vitro transcribed mRNA transfer by microinjection or electroporation.
Collapse
|
6
|
Gim GM, Kwon DH, Lee WW, Jung DJ, Kim DH, Yi JK, Jang G. Transgenic F2 bovine embryos show stable germline transmission and maintenance of transgene expression through two generations. Biol Reprod 2020; 103:1148-1151. [PMID: 32915208 DOI: 10.1093/biolre/ioaa165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gyeong-Min Gim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Dae-Jin Jung
- Gyeongsangbukdo Livestock Research Institute, Yeongju, GyeongSang Buk-Do, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongsangbukdo Livestock Research Institute, Yeongju, GyeongSang Buk-Do, Republic of Korea.,Department of Biotechnology, College of Agriculture & Life Science, Hankyong National University, Anseong, Gyeonggi, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, GyeongSang Buk-Do, Republic of Korea
| | - Goo Jang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,LARTBio Inc., Seoul, Republic of Korea
| |
Collapse
|
7
|
Kiyonari H, Kaneko M, Abe T, Shioi G, Aizawa S, Furuta Y, Fujimori T. Dynamic organelle localization and cytoskeletal reorganization during preimplantation mouse embryo development revealed by live imaging of genetically encoded fluorescent fusion proteins. Genesis 2019; 57:e23277. [PMID: 30597711 PMCID: PMC6590263 DOI: 10.1002/dvg.23277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/29/2023]
Abstract
Live imaging is one of the most powerful technologies for studying the behaviors of cells and molecules in living embryos. Previously, we established a series of reporter mouse lines in which specific organelles are labeled with various fluorescent proteins. In this study, we examined the localizations of fluorescent signals during preimplantation development of these mouse lines, as well as a newly established one, by time‐lapse imaging. Each organelle was specifically marked with fluorescent fusion proteins; fluorescent signals were clearly visible during the whole period of time‐lapse observation, and the expression of the reporters did not affect embryonic development. We found that some organelles dramatically change their sub‐cellular distributions during preimplantation stages. In addition, by crossing mouse lines carrying reporters of two distinct colors, we could simultaneously visualize two types of organelles. These results confirm that our reporter mouse lines can be valuable genetic tools for live imaging of embryonic development.
Collapse
Affiliation(s)
- Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mari Kaneko
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Go Shioi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshihiko Fujimori
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| |
Collapse
|
8
|
Abstract
Mouse genetic approaches when combined with live imaging tools are revolutionizing our current understanding of mammalian developmental biology. The availability and improvement of a wide variety of genetically encoded fluorescent proteins have provided indispensable tools to visualize cells and subcellular features in living organisms. It is now possible to generate genetically modified mouse lines expressing several spectrally distinct fluorescent proteins in a tissue-specific or -inducible manner. Such reporter-expressing lines make it possible to image dynamic cellular behaviors in the context of living embryos undergoing normal or aberrant development. As with all viviparous mammals, mouse embryos develop within the uterus, and so live imaging experiments require culture conditions that closely mimic the in vivo environment. Over the past decades, significant advances have been made in developing conditions for culturing both pre- and postimplantation-stage mouse embryos. In this chapter, we discuss routine methods for ex utero culture of preimplantation- and postimplantation-stage mouse embryos. In particular, we describe protocols for collecting mouse embryos of various stages, setting up culture conditions for their ex utero culture and imaging, and using laser scanning confocal microscopy to visualize live processes in mouse embryos expressing fluorescent reporters.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Investigating Mitophagy and Mitochondrial Morphology In Vivo Using mito-QC: A Comprehensive Guide. Methods Mol Biol 2019; 1880:621-642. [PMID: 30610727 DOI: 10.1007/978-1-4939-8873-0_41] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy evolved as a mechanism to sustain cellular homeostasis during instances of nutrient deprivation. Mounting evidence has also clarified that under basal and stress conditions, selective autophagy pathways can target the destruction of specific organelles. Mitochondrial autophagy, or mitophagy, has emerged as a key quality control (QC) mechanism to sustain the integrity of eukaryotic mitochondrial networks. We recently reported the development of mito-QC, a novel reporter mouse model that enables the high-resolution study of mammalian mitophagy with precision, in fixed and live preparations. This model holds significant potential to transform our understanding of mammalian mitophagy pathways in vivo, in a variety of physiological contexts. We outline a detailed protocol for use of our recently described mito-QC mouse model, including tips and troubleshooting advice for those interested in monitoring mitophagy in vitro and in vivo.
Collapse
|
10
|
Hartman BH, Bӧscke R, Ellwanger DC, Keymeulen S, Scheibinger M, Heller S. Fbxo2 VHC mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Dev Biol 2018; 443:64-77. [PMID: 30179592 DOI: 10.1016/j.ydbio.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
While the mouse has been a productive model for inner ear studies, a lack of highly specific genes and tools has presented challenges. The absence of definitive otic lineage markers and tools is limiting in vitro studies of otic development, where innate cellular heterogeneity and disorganization increase the reliance on lineage-specific markers. To address this challenge in mice and embryonic stem (ES) cells, we targeted the lineage-specific otic gene Fbxo2 with a multicistronic reporter cassette (Venus/Hygro/CreER = VHC). In otic organoids derived from ES cells, Fbxo2VHC specifically delineates otic progenitors and inner ear sensory epithelia. In mice, Venus expression and CreER activity reveal a cochlear developmental gradient, label the prosensory lineage, show enrichment in a subset of type I vestibular hair cells, and expose strong expression in adult cerebellar granule cells. We provide a toolbox of multiple spectrally distinct reporter combinations for studies that require use of fluorescent reporters, hygromycin selection, and conditional Cre-mediated recombination.
Collapse
Affiliation(s)
- Byron H Hartman
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Robert Bӧscke
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Otolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Sawa Keymeulen
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Program in Human Biology, Stanford University School of Humanities and Sciences, Stanford, CA 94305, United States
| | - Mirko Scheibinger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Stefan Heller
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
11
|
Wu T, Hadjantonakis AK, Nowotschin S. Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 2017; 6:678-687. [PMID: 28288969 PMCID: PMC5450328 DOI: 10.1242/bio.024638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live imaging is the requisite tool for studying cell behaviors driving embryonic development and tissue formation. Genetically encoded reporters expressed under cell type-specific cis-regulatory elements that drive fluorescent protein expression at sufficient levels for visualization in living specimens have become indispensable for these studies. Increasingly dual-color (red-green) imaging is used for studying the coordinate behaviors of two cell populations of interest, identifying and characterizing subsets within broader cell populations or subcellular features. Many reporters have been generated using green fluorescent protein (GFP) due to its brightness and developmental neutrality. To compliment the large cohort of available GFP reporters that label cellular populations in early mouse embryos, we have generated a red fluorescent protein (RFP)-based transgenic reporter using the red fluorescent tdTomato protein driven by cis-regulatory elements from the mouse Hex locus. The Hex-tdTomato reporter predominantly labels endodermal cells. It is a bright RFP-based reporter of the distal visceral endoderm (DVE)/anterior visceral endoderm (AVE), a migratory population within the early post-implantation embryo. It also labels cells of the definitive endoderm (DE), which emerges at gastrulation. Dual-color visualization of these different early endodermal populations will provide a detailed understanding of the cellular behaviors driving key morphogenetic events involving the endoderm. Summary: A red fluorescent reporter under the regulatory control of the mouse Hex gene permits identification of different endodermal populations and visualization of dynamic cellular behaviors driving endoderm specification and morphogenesis.
Collapse
Affiliation(s)
- Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
12
|
Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, Kabashima K, Watanabe T, Furuki M, Tomura M. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A 2015. [PMID: 26217952 PMCID: PMC5132038 DOI: 10.1002/cyto.a.22725] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full-spectral flow cytometer (spectral-FCM). Unlike conventional flow cytometer, this spectral-FCM acquires the emitted fluorescence for all probes across the full-spectrum from each cell with 32 channels sequential PMT unit after dispersion with prism, and extracts the signals of each fluoroprobe based on the spectral shape of each fluoroprobe using unique algorithm in high speed, high sensitive, accurate, automatic and real-time. The spectral-FCM detects the continuous changes in emission spectra from green to red of the photoconvertible protein, KikGR with high-spectral resolution and separates spectrally-adjacent fluoroprobes, such as FITC (Emission peak (Em) 519 nm) and EGFP (Em 507 nm). Moreover, the spectral-FCM can measure and subtract autofluorescence of each cell providing increased signal-to-noise ratios and improved resolution of dim samples, which leads to a transformative technology for investigation of single cell state and function. These advances make it possible to perform 11-color fluorescence analysis to visualize movement of multilinage immune cells by using KikGR-expressing mice. Thus, the novel spectral flow cytometry improves the combinational use of spectrally-adjacent various FPs and multicolor fluorochromes in metabolically active cell for the investigation of not only the immune system but also other research and clinical fields of use.
Collapse
Affiliation(s)
- Koji Futamura
- FCM Business Department, Life Science Business Division, Medical Business Unit, Sony Corporation, Minato-Ku, Tokyo, 108-0075, Japan
| | - Masashi Sekino
- Concept Development Department, Application Technology Development Division, System R&D Group, RDS Platform, Sony Corporation, Shinagawa-Ku, Tokyo, 141-0001, Japan
| | - Akihiro Hata
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto, 606-8501, Japan
| | - Ryoyo Ikebuchi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto, 606-8501, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiorikita, Tondabayashi-City, Osaka Prefecture, 584-8540, Japan
| | - Yasutaka Nakanishi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto, 606-8501, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Takeshi Watanabe
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto, 606-8501, Japan.,The Tazuke-Kofukai Medical Research Institute/Kitano Hospital, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan
| | - Motohiro Furuki
- FCM Business Department, Life Science Business Division, Medical Business Unit, Sony Corporation, Minato-Ku, Tokyo, 108-0075, Japan
| | - Michio Tomura
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto, 606-8501, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiorikita, Tondabayashi-City, Osaka Prefecture, 584-8540, Japan
| |
Collapse
|
13
|
Raulf A, Horder H, Tarnawski L, Geisen C, Ottersbach A, Röll W, Jovinge S, Fleischmann BK, Hesse M. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res Cardiol 2015; 110:33. [PMID: 25925989 PMCID: PMC4414935 DOI: 10.1007/s00395-015-0489-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/20/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022]
Abstract
Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific αMHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.
Collapse
Affiliation(s)
- Alexandra Raulf
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Hannes Horder
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Laura Tarnawski
- />Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- />DeVos Cardiovascular Research Program, Van Andel Institute/Spectrum Health, Grand Rapids, USA
| | - Caroline Geisen
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Annika Ottersbach
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Wilhelm Röll
- />Department of Cardiac Surgery, University of Bonn, Bonn, Germany
| | - Stefan Jovinge
- />Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- />DeVos Cardiovascular Research Program, Van Andel Institute/Spectrum Health, Grand Rapids, USA
| | - Bernd K. Fleischmann
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
- />Pharma Center Bonn, Bonn, Germany
| | - Michael Hesse
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| |
Collapse
|
14
|
Owens GC, Edelman DB. Photoconvertible fluorescent protein-based live imaging of mitochondrial fusion. Methods Mol Biol 2015; 1313:237-46. [PMID: 25947670 DOI: 10.1007/978-1-4939-2703-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitochondria are highly dynamic organelles that undergo fusion and fission on a relatively fast time scale. Here, a straightforward method is described for capturing mitochondrial fusion events in real time using a photoconvertible fluorescent protein and a far-field fluorescence microscope equipped with appropriate image acquisition and analysis software. The Kaede photoconvertible fluorescent protein is tagged with a mitochondrial targeting sequence and delivered to primary neurons by lentiviral transduction, which ensures efficient low copy number transgene insertion, as well as stable transgene expression.
Collapse
Affiliation(s)
- Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
15
|
Lou X, Kang M, Xenopoulos P, Muñoz-Descalzo S, Hadjantonakis AK. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports 2014; 2:382-97. [PMID: 24672759 PMCID: PMC3964288 DOI: 10.1016/j.stemcr.2014.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/17/2022] Open
Abstract
Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.
Collapse
Affiliation(s)
- Xinghua Lou
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA ; Department of Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
16
|
Vacaru AM, Vitale J, Nieves J, Baron MH. Generation of transgenic mouse fluorescent reporter lines for studying hematopoietic development. Methods Mol Biol 2014; 1194:289-312. [PMID: 25064110 PMCID: PMC4418647 DOI: 10.1007/978-1-4939-1215-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
During the development of the hematopoietic system, at least eight distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene and survey available fluorescent probes and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal.
Collapse
Affiliation(s)
- Andrei M. Vacaru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Vitale
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnathan Nieves
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H. Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Huang P, Chiu YT, Chen C, Wang Y, Liu-Chen LY. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells. J Pharmacol Toxicol Methods 2013; 68:340-5. [PMID: 23856011 PMCID: PMC3954113 DOI: 10.1016/j.vascn.2013.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022]
Abstract
INTRODUCTION In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for the generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. METHODS We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into a Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. RESULTS KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of the time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. DISCUSSION tdT is an alternative to, or even a better tool than, GFPs for fusion to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to the reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity that the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance.
Collapse
Key Words
- 17,17′-(dicyclopropylmethyl)-6,6′,7,7′-6,6′-imino-7,7′-bimorphinan-3,4′,14,14′-tetrol
- DYKDDDDK epitope tag
- Dynorphin A (1-17)
- FLAG tag
- G protein-coupled receptor
- GFP
- GFPs
- GPCR
- H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-OH
- KOPR
- Live cell imaging
- MAPK
- Neurons
- RFP
- Red fluorescent protein
- U50,488H
- eGFP
- enhanced green fluorescent protein
- green fluorescent protein and its spectral variants
- kappa opioid receptor
- mKOPR
- mitogen-activated protein kinase
- mouse kappa opioid receptor
- norbinaltorphimine
- red fluorescent protein
- tdT
- tdTomato
- trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate salt
Collapse
Affiliation(s)
- Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
18
|
|
19
|
Nowotschin S, Xenopoulos P, Schrode N, Hadjantonakis AK. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC DEVELOPMENTAL BIOLOGY 2013; 13:15. [PMID: 23617465 PMCID: PMC3663770 DOI: 10.1186/1471-213x-13-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 04/11/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Live imaging provides an essential methodology for understanding complex and dynamic cell behaviors and their underlying molecular mechanisms. Genetically-encoded reporter expressing mouse strains are an important tool for use in live imaging experiments. Such reporter strains can be engineered by placing cis-regulatory elements of interest to direct the expression of desired reporter genes. If these cis-regulatory elements are downstream targets, and thus activated as a consequence of signaling pathway activation, such reporters can provide read-outs of the signaling status of a cell. The Notch signaling pathway is an evolutionary conserved pathway operating in multiple developmental processes as well as being the basis for several congenital diseases. The transcription factor CBF1 is a central evolutionarily conserved component of the Notch signaling pathway. It binds the active form of the Notch receptor (NICD) and subsequently binds to cis-regulatory regions (CBF1 binding sites) in the promoters of Notch responsive genes. In this way, CBF1 binding sites represent a good target for the design of a Notch signaling reporter. RESULTS To generate a single-cell resolution Notch signaling reporter, we used a CBF responsive element to direct the expression of a nuclear-localized fluorescent protein. To do this, we linked 4 copies of a consensus CBF1 binding site to the basal simian virus 40 (SV40) promoter, placed this cassette in front of a fluorescent protein fusion comprising human histone H2B linked to the yellow fluorescent protein (YFP) Venus, one of the brightest available YFPs. We used the CBF:H2B-Venus construct to generate both transgenic embryonic mouse stem (ES) cell lines and a strain of transgenic mice that would report Notch signaling activity. CONCLUSION By using multiple CBF1 binding sites together with a subcellular-localized, genetically-encoded fluorescent protein, H2B-Venus, we have generated a transgenic strain of mice that faithfully recapitulates Notch signaling at single-cell resolution. This is the first mouse reporter strain in which individual cells transducing a Notch signal can be visualized. The improved resolution of this reporter makes it ideal for live imaging developmental processes regulated by the Notch signaling pathway as well as a short-term lineage tracer of Notch expressing cells due to the perdurance of the fluorescent reporter. Taken together, the CBF:H2B-Venus mouse strain is a unique tool to study and understand the morphogenetic events regulated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | - Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | |
Collapse
|
20
|
Live imaging, identifying, and tracking single cells in complex populations in vivo and ex vivo. Methods Mol Biol 2013; 1052:109-23. [PMID: 23640250 DOI: 10.1007/7651_2013_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in optical imaging technologies combined with the use of genetically encoded fluorescent proteins have enabled the visualization of stem cells over extensive periods of time in vivo and ex vivo. The generation of genetically encoded fluorescent protein reporters that are fused with subcellularly localized proteins, such as human histone H2B, has made it possible to direct fluorescent protein reporters to specific subcellular structures and identify single cells in complex populations. This facilitates the visualization of cellular behaviors such as division, movement, and apoptosis at a single-cell resolution and, in principle, allows the prospective and retrospective tracking towards determining the lineage of each cell.
Collapse
|
21
|
Nowotschin S, Hadjantonakis AK. Photomodulatable fluorescent proteins for imaging cell dynamics and cell fate. Organogenesis 2012; 5:217-26. [PMID: 20539741 DOI: 10.4161/org.5.4.10939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
An organism arises from the coordinate generation of different cell types and the stereotypical organization of these cells into tissues and organs. Even so, the dynamic behaviors, as well as the ultimate fates, of cells driving the morphogenesis of an organism, or even an individual organ, remain largely unknown. Continued innovations in optical imaging modalities, along with the discovery and evolution of improved genetically-encoded fluorescent protein reporters in combination with model organism, stem cell and tissue engineering paradigms are providing the means to investigate these unresolved questions. The emergence of fluorescent proteins whose spectral properties can be photomodulated is one of the most significant new developments in the field of cell biology where they are primarily used for studying protein dynamics in cells. Likewise, the use of photomodulatable fluorescent proteins holds great promise for use in developmental biology. Photomodulatable fluorescent proteins also represent attractive and emergent tools for studying cell dynamics in complex populations by facilitating the labeling and tracking of individual or defined groups of cells. Here, we review the currently available photomodulatable fluorescent proteins and their application in model organisms. We also discuss prospects for their use in mice, and by extension in embryonic stem cell and tissue engineering paradigms.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program; Sloan-Kettering Institute; New York, NY USA
| | | |
Collapse
|
22
|
Chen YT, Tsai MS, Yang TL, Ku AT, Huang KH, Huang CY, Chou FJ, Fan HH, Hong JB, Yen ST, Wang WL, Lin CC, Hsu YC, Su KY, Su IC, Jang CW, Behringer RR, Favaro R, Nicolis SK, Chien CL, Lin SW, Yu IS. R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One 2012; 7:e46171. [PMID: 23049968 PMCID: PMC3458011 DOI: 10.1371/journal.pone.0046171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/30/2012] [Indexed: 12/17/2022] Open
Abstract
Green fluorescent protein (GFP) and its derivatives are the most widely used molecular reporters for live cell imagining. The development of organelle-specific fusion fluorescent proteins improves the labeling resolution to a higher level. Here we generate a R26 dual fluorescent protein reporter mouse, activated by Cre-mediated DNA recombination, labeling target cells with a chromatin-specific enhanced green fluorescence protein (EGFP) and a plasma membrane-anchored monomeric cherry fluorescent protein (mCherry). This dual labeling allows the visualization of mitotic events, cell shapes and intracellular vesicle behaviors. We expect this reporter mouse to have a wide application in developmental biology studies, transplantation experiments as well as cancer/stem cell lineage tracing.
Collapse
Affiliation(s)
- You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Shian Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Amy Tsu Ku
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ke-Han Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yen Huang
- The First Core Laboratory, Branch Office of Medical Research and Development, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Ju Chou
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuo-Ting Yen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Le Wang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Ching Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Genomic Medicine, NTU Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Division of Genomic Medicine, NTU Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - I-Chang Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Wei Jang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics and Center for Stem Cell and Developmental Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard R. Behringer
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics and Center for Stem Cell and Developmental Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rebecca Favaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (S-WL); (I-SY)
| | - I-Shing Yu
- Transgenic Mouse Model Core Facility of the National Research Program for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (S-WL); (I-SY)
| |
Collapse
|
23
|
Xenopoulos P, Nowotschin S, Hadjantonakis AK. Live imaging fluorescent proteins in early mouse embryos. Methods Enzymol 2012; 506:361-89. [PMID: 22341233 DOI: 10.1016/b978-0-12-391856-7.00042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse embryonic development comprises highly dynamic and coordinated events that drive key cell lineage specification and morphogenetic events. These processes involve cellular behaviors including proliferation, migration, apoptosis, and differentiation, each of which is regulated both spatially and temporally. Live imaging of developing embryos provides an essential tool to investigate these coordinated processes in three-dimensional space over time. For this purpose, the development and application of genetically encoded fluorescent protein (FP) reporters has accelerated over the past decade allowing for the high-resolution visualization of developmental progression. Ongoing efforts are aimed at generating improved reporters, where spectrally distinct as well as novel FPs whose optical properties can be photomodulated, are exploited for live imaging of mouse embryos. Moreover, subcellular tags in combination with using FPs allow for the visualization of multiple subcellular characteristics, such as cell position and cell morphology, in living embryos. Here, we review recent advances in the application of FPs for live imaging in the early mouse embryo, as well as some of the methods used for ex utero embryo development that facilitate on-stage time-lapse specimen visualization.
Collapse
|
24
|
Abstract
Embryonic development is a highly dynamic process involving complex tissue interactions and movements. Recent progress in cell labeling, image acquisition, and image processing technologies has brought the study of embryo morphogenesis to another level. It is now possible to visualize in real time the dynamic morphogenetic changes occurring in vivo and to reconstitute and quantify them in 4D rendering. However, extended live embryo imaging remains challenging in terms of embryo survival and minimization of phototoxicity. Here, we describe a procedure to image the developing mesonephros for up to 16 h in intact mouse embryos. This method can easily be adapted to the imaging of other structures at similar developmental stages.
Collapse
|
25
|
Abstract
Reconstructing the lineage of cells is central to understanding development and is now also an important issue in stem cell research. Technological advances in genetically engineered permanent cell labeling, together with a multiplicity of fluorescent markers and sophisticated imaging, open new possibilities for prospective and retrospective clonal analysis.
Collapse
Affiliation(s)
- Margaret E Buckingham
- Molecular Genetics of Development Unit, CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, Paris, France.
| | | |
Collapse
|
26
|
Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 2011; 12:656-68. [PMID: 21941275 DOI: 10.1038/nrm3199] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins are always on the move, and this may occur through diffusion or active transport. The realization that the regulation of signal transduction is highly dynamic in space and time has stimulated intense interest in the movement of proteins. Over the past decade, numerous new technologies using fluorescent proteins have been developed, allowing us to observe the spatiotemporal dynamics of proteins in living cells. These technologies have greatly advanced our understanding of protein dynamics, including protein movement and protein interactions.
Collapse
|
27
|
Shioi G, Kiyonari H, Abe T, Nakao K, Fujimori T, Jang CW, Huang CC, Akiyama H, Behringer RR, Aizawa S. A mouse reporter line to conditionally mark nuclei and cell membranes for in vivo live-imaging. Genesis 2011; 49:570-8. [PMID: 21504045 DOI: 10.1002/dvg.20758] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 03/15/2011] [Accepted: 04/11/2011] [Indexed: 11/12/2022]
Abstract
Live-imaging is an essential tool to visualize live cells and monitor their behaviors during development. This technology demands a variety of mouse reporter lines, each uniquely expressing a fluorescent protein. Here, we developed an R26R-RG reporter mouse line that conditionally and simultaneously expresses mCherry and EGFP in nuclei and plasma membranes, respectively, from the Rosa26 locus. The intensity and resolution of mCherry nuclear localization and EGFP membrane localization were demonstrated to be sufficient for live-imaging with embryos that express RG (mCherry and EGFP) ubiquitously and specifically in fetal Sertoli cells. The conditional R26R-RG reporter mouse line should be a useful tool for labeling nuclei and membranes simultaneously in distinct cell populations.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garcia MD, Udan RS, Hadjantonakis AK, Dickinson ME. Live imaging of mouse embryos. Cold Spring Harb Protoc 2011; 2011:pdb.top104. [PMID: 21460058 PMCID: PMC6800220 DOI: 10.1101/pdb.top104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTIONThe development of the mouse embryo is a dynamic process that requires the spatial and temporal coordination of multiple cell types as they migrate, proliferate, undergo apoptosis, and differentiate to form complex structures. However, the confined nature of embryos as they develop in utero limits our ability to observe these morphogenetic events in vivo. Previous work has used fixed samples and histological methods such as immunofluorescence or in situ hybridization to address expression or localization of a gene of interest within a developmental time line. However, such methods do not allow us to follow the complex, dynamic movements of individual cells as the embryo develops. Genetic manipulation methods now allow us to label virtually any cell type or protein of interest fluorescently, providing powerful insights into morphogenetic events at cellular and subcellular resolutions. The development of ex vivo embryo culture methods combined with high-resolution imaging now provides a strong platform for observing morphogenetic events as they occur within the developing embryo. In this article, we discuss the advantages of live embryo imaging for observing dynamic morphogenetic events in vivo.
Collapse
|
29
|
Viotti M, Nowotschin S, Hadjantonakis AK. Afp::mCherry, a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis 2011; 49:124-33. [PMID: 21442721 PMCID: PMC3081534 DOI: 10.1002/dvg.20695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/20/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022]
Abstract
Live imaging of genetically encoded fluorescent protein reporters is increasingly being used to investigate details of the cellular behaviors that underlie the large-scale tissue rearrangements that shape the embryo. However, the majority of mouse fluorescent reporter strains are based on the green fluorescent protein (GFP). Mouse reporter strains expressing fluorescent colors other than GFP are therefore valuable for co-visualization studies with GFP, where relative positioning and relationship between two different tissues or compartments within cells are being investigated. Here, we report the generation and characterization of a transgenic Afp::mCherry mouse strain in which cis-regulatory elements from the Alpha-fetoprotein (Afp) locus were used to drive expression of the monomeric Cherry red fluorescent protein. The Afp::mCherry transgene is based on and recapitulates reporter expression of a previously described Afp::GFP strain. However, we note that perdurance of mCherry protein is not as prolonged as GFP, making the Afp::mCherry line a more faithful reporter of endogenous Afp expression. Afp::mCherry transgenic mice expressed mCherry specifically in the visceral endoderm and its derivatives, including the visceral yolk sac, gut endoderm, fetal liver, and pancreas of the embryo. The Afp::mCherry reporter was also noted to be expressed in other documented sites of Afp expression including hepatocytes as well as in pancreas, digestive tract, and brain of postnatal mice.
Collapse
Affiliation(s)
- Manuel Viotti
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Medical College of Cornell University, New York, NY, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | |
Collapse
|
30
|
Khairy K, Keller PJ. Reconstructing embryonic development. Genesis 2011; 49:488-513. [DOI: 10.1002/dvg.20698] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 01/22/2023]
|
31
|
Artus J, Hadjantonakis AK. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Methods Mol Biol 2011; 693:37-56. [PMID: 21080273 DOI: 10.1007/978-1-60761-974-1_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
From the hybrid creatures of the Greek and Egyptian mythologies, the concept of the chimera has evolved and, in modern day biology, refers to an organism comprises of at least two populations of genetically distinct cells. Mouse chimeras have proven an invaluable tool for the generation of genetically modified strains. In addition, chimeras have been extensively used in developmental biology as a powerful tool to analyze the phenotype of specific mutations, to attribute function to gene products and to address the question of cell autonomy versus noncell autonomy of gene function. This chapter describes a simple and economical technique used to generate mouse chimeras by embryo aggregation. Multiple aggregation combinations are described each of which can be tailored to answer particular biological questions.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | |
Collapse
|
32
|
Abstract
Mouse genetic approaches when combined with live imaging tools have the potential to revolutionize our current understanding of mammalian biology. The availability and improvement of a wide variety of fluorescent proteins have provided indispensable tools to visualize cells in living organisms. It is now possible to generate genetically modified mouse strains expressing fluorescent proteins in a tissue-specific manner. These reporter-expressing strains make it possible to image dynamic cell behaviors in the context of a living embryo. Since mouse embryos develop within the uterus, live imaging experiments require culture conditions that closely mimic those in vivo. Over the past few decades, significant advances have been made in developing conditions for culturing both pre- and postimplantation stage embryos. In this chapter, we will discuss methods for ex utero culture of preimplantation and postimplantation stage mouse embryos. In particular, we will describe protocols for collecting embryos at various stages, setting up culture conditions for imaging and using laser scanning confocal microscopy to visualize live processes in mouse embryos expressing fluorescent reporters.
Collapse
Affiliation(s)
- Anna Piliszek
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA.
| | | | | |
Collapse
|
33
|
Mawhinney R, Staveley B. Expression of GFP can influence aging and climbing ability in Drosophila. GENETICS AND MOLECULAR RESEARCH 2011; 10:494-505. [DOI: 10.4238/vol10-1gmr1023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Strohhöfer C, Förster T, Chorvát D, Kasák P, Lacík I, Koukaki M, Karamanou S, Economou A. Quantitative analysis of energy transfer between fluorescent proteins in CFP–GBP–YFP and its response to Ca2+. Phys Chem Chem Phys 2011; 13:17852-63. [DOI: 10.1039/c1cp21088b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Diéguez-Hurtado R, Martín J, Martínez-Corral I, Martínez MD, Megías D, Olmeda D, Ortega S. A Cre-reporter transgenic mouse expressing the far-red fluorescent protein Katushka. Genesis 2011; 49:36-45. [PMID: 21254335 DOI: 10.1002/dvg.20685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/13/2010] [Accepted: 10/17/2010] [Indexed: 11/09/2022]
Abstract
Cre/loxP-dependent expression of fluorescent proteins represents a powerful biological tool for cell lineage, fate-mapping, and genetic analysis. Live tissue imaging has significantly improved with the development of far-red fluorescent proteins, with optimized spectral characteristics for in vivo applications. Here, we report the generation of the first transgenic mouse line expressing the far-red fluorescent protein Katushka, driven by the hybrid CAG promoter upon Cre-mediated recombination. After germ line or tissue-specific Cre-driven reporter activation, Katushka expression is strong and ubiquitous, without toxic effects, allowing fluorescence detection in fresh and fixed samples from all tissues examined. Moreover, fluorescence can be detected by in vivo noninvasive whole-body imaging when Katuhska is expressed exclusively in a specific cell population deep within the animal body such as pancreatic beta cells. Thus, this reporter model enables early, widespread, and sensitive in vivo detection of Cre activity and should provide a versatile tool for a wide spectrum of fluorescence and live-imaging applications.
Collapse
Affiliation(s)
- Rodrigo Diéguez-Hurtado
- Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Ferrer-Vaquer A, Piliszek A, Tian G, Aho RJ, Dufort D, Hadjantonakis AK. A sensitive and bright single-cell resolution live imaging reporter of Wnt/ß-catenin signaling in the mouse. BMC DEVELOPMENTAL BIOLOGY 2010; 10:121. [PMID: 21176145 PMCID: PMC3017038 DOI: 10.1186/1471-213x-10-121] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/21/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND Understanding the dynamic cellular behaviors and underlying molecular mechanisms that drive morphogenesis is an ongoing challenge in biology. Live imaging provides the necessary methodology to unravel the synergistic and stereotypical cell and molecular events that shape the embryo. Genetically-encoded reporters represent an essential tool for live imaging. Reporter strains can be engineered by placing cis-regulatory elements of interest to direct the expression of a desired reporter gene. In the case of canonical Wnt signaling, also referred to as Wnt/β-catenin signaling, since the downstream transcriptional response is well understood, reporters can be designed that reflect sites of active Wnt signaling, as opposed to sites of gene transcription, as is the case with many fluorescent reporters. However, even though several transgenic Wnt/β-catenin reporter strains have been generated, to date, none provides the single-cell resolution favored for live imaging studies. RESULTS We have placed six copies of a TCF/Lef responsive element and an hsp68 minimal promoter in front of a fluorescent protein fusion comprising human histone H2B to GFP and used it to generate a strain of mice that would report Wnt/β-catenin signaling activity. Characterization of developmental and adult stages of the resulting TCF/Lef:H2B-GFP strain revealed discrete and specific expression of the transgene at previously characterized sites of Wnt/β-catenin signaling. In support of the increased sensitivity of the TCF/Lef:H2B-GFP reporter, additional sites of Wnt/β-catenin signaling not documented with other reporters but identified through genetic and embryological analysis were observed. Furthermore, the sub-cellular localization of the reporter minimized reporter perdurance, and allowed visualization and tracking of individual cells within a cohort, so facilitating the detailed analysis of cell behaviors and signaling activity during morphogenesis. CONCLUSION By combining the Wnt activity read-out efficiency of multimerized TCF/Lef DNA binding sites, together with the high-resolution imaging afforded by subcellularly-localized fluorescent fusion proteins such as H2B-GFP, we have created a mouse transgenic line that faithfully recapitulates Wnt signaling activity at single-cell resolution. The TCF/Lef:H2B-GFP reporter represents a unique tool for live imaging the in vivo processes triggered by Wnt/β-catenin signaling, and thus should help the formulation of a high-resolution understanding of the serial events that define the morphogenetic process regulated by this signaling pathway.
Collapse
Affiliation(s)
- Anna Ferrer-Vaquer
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Anna Piliszek
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Guangnan Tian
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Robert J Aho
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Daniel Dufort
- Department of Obstetrics and Gynecology, Division of Experimental Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, QC, Canada
| | | |
Collapse
|
37
|
BAC modification through serial or simultaneous use of CRE/Lox technology. J Biomed Biotechnol 2010; 2011:924068. [PMID: 21197414 PMCID: PMC3010708 DOI: 10.1155/2011/924068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/06/2010] [Indexed: 11/17/2022] Open
Abstract
Bacterial Artificial Chromosomes (BACs) are vital tools in mouse genomic analyses because of their ability to propagate large inserts. The size of these constructs, however, prevents the use of conventional molecular biology techniques for modification and manipulation. Techniques such as recombineering and Cre/Lox methodologies have thus become heavily relied upon for such purposes. In this work, we investigate the applicability of Lox variant sites for serial and/or simultaneous manipulations of BACs. We show that Lox spacer mutants are very specific, and inverted repeat variants reduce Lox reaction rates through reducing the affinity of Cre for the site, while retaining some functionality. Employing these methods, we produced serial modifications encompassing four independent changes which generated a mouse HoxB BAC with fluorescent reporter proteins inserted into four adjacent Hox genes. We also generated specific, simultaneous deletions using combinations of spacer variants and inverted repeat variants. These techniques will facilitate BAC manipulations and open a new repertoire of methods for BAC and genome manipulation.
Collapse
|
38
|
Müller B, Grossniklaus U. Model organisms--A historical perspective. J Proteomics 2010; 73:2054-63. [PMID: 20727995 DOI: 10.1016/j.jprot.2010.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/03/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Bruno Müller
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
39
|
Poché RA, Saik JE, West JL, Dickinson ME. The mouse cornea as a transplantation site for live imaging of engineered tissue constructs. Cold Spring Harb Protoc 2010; 2010:pdb.prot5416. [PMID: 20360370 PMCID: PMC3057363 DOI: 10.1101/pdb.prot5416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The field of tissue engineering aims to recapitulate healthy human organs and 3-D tissue structures in vitro and then transplant these constructs in vivo where they can be effectively integrated within the recipient patient and become perfused by the host circulation. To improve the design of materials for artificial tissue scaffolds, it would be ideal to have a high-throughput imaging system that allows one to directly monitor transplanted tissue constructs in live animals over an extended period of time. By combining such an assay with transgenic, cell-specific fluorescent reporters, one could monitor such parameters as tissue construct perfusion, donor cell survival, and donor-host cell interaction/integration. Here, we describe a protocol for a modified version of the classical corneal micropocket angiogenesis assay, employing it as a live imaging "window" to monitor angiogenic poly(ethylene glycol) (PEG)-based hydrogel tissue constructs.
Collapse
Affiliation(s)
- Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Molecular imaging provides spatial and temporal information on cellular changes that occur during development and in disease. MRI and optical imaging of reporter genes allows for the visualization of promoter activity, protein-protein interactions, protein stability and the tracking of individual proteins and cells. Reporter genes can be genetically encoded in transgenic animals or detected through the administration of an exogenous contrast agent. Advances in molecular imaging of reporter genes have led to the development of imaging probes that detect changes in endogenous cellular changes. The ability to use contrast agents coupled with functional information on cellular events will allow for sensitive assessment of individual patient therapies, leading to an accurately tailored treatment regimen.
Collapse
Affiliation(s)
- Allison S. Harney
- Departments of Chemistry, Biochemistry and Molecular and Cell Biology, Neurobiology and Physiology, and Radiology, Northwestern University, Evanston, IL, 60208, USA
| | - Thomas J. Meade
- Departments of Chemistry, Biochemistry and Molecular and Cell Biology, Neurobiology and Physiology, and Radiology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
41
|
Kanki H, Shimabukuro MK, Miyawaki A, Okano H. "Color Timer" mice: visualization of neuronal differentiation with fluorescent proteins. Mol Brain 2010; 3:5. [PMID: 20205849 PMCID: PMC2825511 DOI: 10.1186/1756-6606-3-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/02/2010] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms governing the differentiation of neural stem cells (NSCs) into neuronal progenitor cells and finally into neurons are gradually being revealed. The lack of convenient means for real-time determination of the stages of differentiation of individual neural cells, however, has been hindering progress in elucidating the mechanisms. In order to be able to easily identify the stages of differentiation of neural cells, we have been attempting to establish a mouse system that would allow progression of neuronal differentiation to be visualized based on transitions between fluorescence colors by using a combination of mouse genetics and the ever-expanding repertoire of fluorescent proteins. In this study we report the initial version of such a mouse system, which we call "Color Timer." We first generated transgenic (Tg; nestin/KOr Tg) mice in which production of the fluorescent protein Kusabira-Orange (KOr) is controlled by the gene regulatory elements within the 2nd intronic enhancer of the nestin gene, which is a good marker for NSCs, so that NSCs would emit orange fluorescence upon excitation. We then confirmed by immunohistochemical and immunocytochemical analyses that the KOr fluorescence closely reflected the presence of the Nestin protein. We also confirmed by a neurosphere formation assay that the intensity of the KOr fluorescence correlated with "stemness" of the cell and it was possible to readily identify NSCs in the two neurogenic regions, namely the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, in the brain of adult nestin/KOr Tg mice by the orange fluorescence they emitted. We then crossed nestin/KOr mice with doublecortin-enhanced Green Fluorescent Protein Tg mice, whose immature neurons emit green fluorescence upon excitation, and it was possible to visualize the progress of NSC-to-neuron differentiation by the transition between fluorescence colors from orange to green. This two-color initial version of the "Color Timer" mouse system will provide a powerful new tool for neurogenesis research.
Collapse
Affiliation(s)
- Hiroaki Kanki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Marilia Kimie Shimabukuro
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Current address: Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Advanced Technology Development Core, Brain Science Institute (BSI), Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
42
|
Abstract
The pancreas is a vertebrate-specific organ of endodermal origin which is responsible for production of digestive enzymes and hormones involved in regulating glucose homeostasis, in particular insulin, deficiency of which results in diabetes. Basic research on the genetic and molecular pathways regulating pancreas formation and function has gained major importance for the development of regenerative medical approaches aimed at improving diabetes treatment. Among the different model organisms that are currently used to elucidate the basic pathways of pancreas development and regeneration, the zebrafish is distinguished by its unique opportunities to combine genetic and pharmacological approaches with sophisticated live-imaging methodology, and by its ability to regenerate the pancreas within a short time. Here we review current perspectives and present methods for studying two important processes contributing to pancreas development and regeneration, namely cell migration via time-lapse micropscopy and cell proliferation via incorporation of nucleotide analog EdU, with a focus on the insulin-producing beta cells of the islet.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
43
|
Nowotschin S, Ferrer-Vaquer A, Hadjantonakis AK. Imaging mouse development with confocal time-lapse microscopy. Methods Enzymol 2010; 476:351-77. [PMID: 20691876 DOI: 10.1016/s0076-6879(10)76020-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, USA
| | | | | |
Collapse
|
44
|
Fraser ST, Isern J, Baron MH. Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 2010; 476:403-27. [PMID: 20691878 DOI: 10.1016/s0076-6879(10)76022-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of fluorescent reporter proteins such as GFP, RFP, and their variants to tag and track cells within the embryo has revolutionized developmental biology. Expression of these proteins within restricted populations has been achieved through the use of lineage-specific regulatory elements. This approach has proven especially powerful in the hematopoietic system, where it has been possible to monitor the generation, expansion, maturation, and migration of primitive erythroid cells, macrophages, and megakaryocytes during embryogenesis at unprecedented resolution. Such analyses have provided novel insights into the development of these lineages. In this chapter, we discuss the design considerations and methodologies involved in the production and analysis of transgenic mouse lines in which fluorescent reporters are expressed in the hematopoietic system of the mouse embryo.
Collapse
Affiliation(s)
- Stuart T Fraser
- Division of Hematology and Medical Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| | | | | |
Collapse
|
45
|
Abstract
For the past three decades, methods for culturing mouse embryos ex vivo have been optimized in order to improve embryo viability and physiology throughout critical stages of embryogenesis. Combining advances made in the production of transgenic animals and in the development of different varieties of fluorescent proteins (FPs), time-lapse imaging is becoming more and more popular in the analysis of dynamic events during mouse development. Targeting FPs to specific cell types or subcellular compartments has enabled researchers to study cell proliferation, apoptosis, migration, and changes in cell morphology in living mouse embryos in real time. Here we provide a guide for time-lapse imaging of early stages of mouse embryo development.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
46
|
Colas JF, Sharpe J. Live optical projection tomography. Organogenesis 2009; 5:211-6. [PMID: 20539740 PMCID: PMC2878749 DOI: 10.4161/org.5.4.10426] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/06/2009] [Accepted: 10/26/2009] [Indexed: 01/27/2023] Open
Abstract
Optical projection tomography (OPT) is a technology ideally suited for imaging embryonic organs. We emphasize here recent successes in translating this potential into the field of live imaging. Live OPT (also known as 4D OPT, or time-lapse OPT) is already in position to accumulate good quantitative data on the developmental dynamics of organogenesis, a prerequisite for building realistic computer models and tackling new biological problems. Yet, live OPT is being further developed by merging state-of-the-art mouse embryo culture with the OPT system. We discuss the technological challenges that this entails and the prospects for expansion of this molecular imaging technique into a wider range of applications.
Collapse
Affiliation(s)
- Jean-François Colas
- EMBL-CRG Systems Biology Program; Centre for Genomic Regulation; UPF; Barcelona, Spain; Istituciô Catalana de Recerca i Estudis Avançats; Barcelona, Spain
| | | |
Collapse
|
47
|
Nowotschin S, Hadjantonakis AK. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC DEVELOPMENTAL BIOLOGY 2009; 9:49. [PMID: 19740427 PMCID: PMC2872819 DOI: 10.1186/1471-213x-9-49] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins. RESULTS We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR), is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within ex utero cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time. CONCLUSION Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells, collective cell dynamics and fate mapping applications.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
48
|
Rajput J, Rahbek DB, Andersen LH, Rocha-Rinza T, Christiansen O, Bravaya KB, Erokhin AV, Bochenkova AV, Solntsev KM, Dong J, Kowalik J, Tolbert LM, Åxman Petersen M, Brøndsted Nielsen M. Photoabsorption studies of neutral green fluorescent protein model chromophores in vacuo. Phys Chem Chem Phys 2009; 11:9996-10002. [DOI: 10.1039/b914276b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|