1
|
Webb JP, Paiva AC, Rossoni L, Alstrom-Moore A, Springthorpe V, Vaud S, Yeh V, Minde DP, Langer S, Walker H, Hounslow A, Nielsen DR, Larson T, Lilley K, Stephens G, Thomas GH, Bonev BB, Kelly DJ, Conradie A, Green J. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metab Eng 2022; 72:133-149. [DOI: 10.1016/j.ymben.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
2
|
Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. BIORESOURCE TECHNOLOGY 2022; 346:126614. [PMID: 34954359 DOI: 10.1016/j.biortech.2021.126614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Baroi Chinmoy
- Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, IL, USA
| | - Timothy L Turner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Half-Preparative Scale Synthesis of (S)-1-Phenylethane-1,2-Diol as a Result of 2-Phenylethanol Hydroxylation with Aspergillus niger (IAFB 2301) Assistance. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aspergillus niger (IAFB 2301) was employed for bioconversions of 2-phenylethanol as an immobilized or free mycelium and also as a spore suspension. Experiments were conducted on laboratory and half-preparative scale (bioreactor New Brunswick Scientific, BioFlo Model C32). Thus, A. niger applied as free mycelium, depending on the outcome, supported formation of the mixture of 4-hydroxyphenylacetic acid and hydroxytyrosol (final concentration of 13.8 mg/L and 3.7% efficiency) or 4-hydroxyphenylacetic acid, as single product (final concentration of 140 mg/L and 18% efficiency). In case of scaling experiments conducted with flow and batch reactors, accordingly, the following results were achieved: 1. mixture of antioxidants 4-hydroxyphenylacetic acid and hydroxytyrosol formed with final concentration of 76 mg/L and 10% efficiency (simplified flow system and immobilized mycelium); 2. (S)-1-phenylethane-1,2-diol synthesized with a final concentration of 447 mg/L and 65% (1.3 L batch reactor).
Collapse
|
4
|
Epping MS, Wedde S, Grundmann A, Radukic M, Gröger H, Hummel A, Viefhues M. Dielectrophoretic analysis of the impact of isopropyl alcohol on the electric polarisability of Escherichia coli whole-cells. Anal Bioanal Chem 2020; 412:3925-3933. [PMID: 32157360 PMCID: PMC7235074 DOI: 10.1007/s00216-020-02451-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Whole-cell biocatalysts are versatile tools in (industrial) production processes; though, the effects that impact the efficiency are not fully understood yet. One main factor that affects whole-cell biocatalysts is the surrounding medium, which often consists of organic solvents due to low solubility of substrates in aqueous solutions. It is expected that organic solvents change the biophysical and biochemical properties of the whole-cell biocatalysts, e.g. by permeabilising the cell membrane, and thus analysis of these effects is of high importance. In this work, we present an analysis method to study the impact of organic solvents on whole-cell biocatalysts by means of dielectrophoresis. For instance, we evaluate the changes of the characteristic dielectrophoretic trapping ratio induced by incubation of Escherichia coli, serving as a model system, in an aqueous medium containing isopropyl alcohol. Therefore, we could evaluate the impact on the electric polarisability of the cells. For this purpose, a special microchannel device was designed and Escherichia coli cells were genetically modified to reliably synthesise a green fluorescent protein. We could demonstrate that our method was capable of revealing different responses to small changes in isopropyl alcohol concentration and incubation duration. Complementary spectrophotometric UV-Vis (ultraviolet-visible light) absorbance analysis of released NAD(P)+/NAD(P)H cofactor and proteins confirmed our results. Based on our results, we discuss the biophysical effects taking place during incubation. Graphical abstract.
Collapse
Affiliation(s)
- Miriam S Epping
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Severin Wedde
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
- Fermentation Engineering, Department of Technology, Bielefeld University, 33615, Bielefeld, Germany
| | - Armin Grundmann
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Marco Radukic
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
- Cellular and Molecular Biotechnology, Department of Technology, Bielefeld University, 33615, Bielefeld, Germany
| | - Harald Gröger
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Anke Hummel
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
5
|
Zhang J, Zhang X, Mao Y, Jin B, Guo Y, Wang Z, Chen T. Substrate profiling and tolerance testing of Halomonas TD01 suggest its potential application in sustainable manufacturing of chemicals. J Biotechnol 2020; 316:1-5. [PMID: 32311394 DOI: 10.1016/j.jbiotec.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
Halomonas TD01, which can grow under non-sterile and continuous processes at high pH and high salt concentrations, is a robust platform for PHA production from glucose. For extending other low-cost sustainable substrates and increasing the potential application in other value-added products, a better understanding of substrates utilization and chemicals tolerance is necessary. In this study, the substrate profiling of TD01 was analyzed via Biolog. Phenotype microarray results demonstrated that TD01 has a wide-ranging substrate spectrum and can utilize 140 of the 190 test compounds. Some cheap, abundant carbon sources, such as sodium acetate, glycerol, ethanol and lactate can well support the growth of TD01 in shake-flask, and are therefore suggested to be its alternative low-cost substrates for chemicals production in future. Furthermore, the tolerance of TD01 to various chemicals was tested. The results showed that the tolerability of TD01 to high concentrations of organic acid salts is prominent. When adding 75 g/L sodium acetate, 100 g/L succinic acid and 100 g/L itaconic acid in the medium, the growth rate reduced 56.14%, 52.63% and 47.37%, respectively. All these results highlight TD01 as a promising, next generation industrial workhorse in chemicals biomanufacturing from cheap organic acid salts.
Collapse
Affiliation(s)
- Jing Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Li H, Mei X, Liu B, Xie G, Ren N, Xing D. Quantitative proteomic analysis reveals the ethanologenic metabolism regulation of Ethanoligenens harbinense by exogenous ethanol addition. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:166. [PMID: 31297154 PMCID: PMC6598285 DOI: 10.1186/s13068-019-1511-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND H2-ethanol-coproducing bacteria, as primary fermenters, play important roles in the microbiome of bioreactors for bioenergy production from organic wastewater or solid wastes. Ethanoligenens harbinense YUAN-3 is an anaerobic ethanol-H2-fermenting bacterium. Ethanol is one of the main end-products of strain YUAN-3 that influence its fermentative process. Until recently, the molecular mechanism of metabolic regulation in strain YUAN-3 during ethanol accumulation has still been unclear. This study aims to elucidate the metabolic regulation mechanisms in strain YUAN-3, which contributes to effectively shape the microbiome for biofuel and bioenergy production from waste stream. RESULTS This study reports that ethanol stress altered the distribution of end-product yields in the H2-ethanol-coproducing Ethanoligenens harbinense strain YUAN-3. Decreasing trends of hydrogen yield from 1888.6 ± 45.8 to 837 ± 64.7 mL L-1 and acetic acid yield from 1767.7 ± 45 to 160.6 ± 44.7 mg L-1 were observed in strain YUAN-3 with increasing exogenous ethanol (0 mM-200 mM). However, the ethanol yield of strain YUAN-3 increased by 15.1%, 30.1%, and 27.4% in 50 mM, 100 mM, and 200 mM ethanol stress, respectively. The endogenous ethanol accounted for 96.1% (w/w) in liquid end-products when exogenous ethanol of 200 mM was added. The molar ratio of ethanol to acetic acid increased 14 times (exogenous ethanol of 200 mM) compared to the control. iTRAQ-based quantitative proteomic analysis indicated that 263 proteins of strain YUAN-3 were differentially expressed in 50 mM, 100 mM, and 200 mM of exogenous ethanol. These proteins are mainly involved in amino acid transport and metabolism, central carbon metabolism, and oxidative stress response. CONCLUSION These differentially expressed proteins play important roles in metabolic changes necessary for growth and survival of strain YUAN-3 during ethanol stress. The up-regulation of bifunctional acetaldehyde-CoA/alcohol dehydrogenase (ADHE) was the main reason why ethanol production was enhanced, while hydrogen gas and acetic acid yields declined in strain YUAN-3 during ethanol stress. This study also provides a new approach for the enhancement of ethanologenesis by H2-ethanol-coproducing bacteria through exogenous ethanol addition.
Collapse
Affiliation(s)
- Huahua Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Xiaoxue Mei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| |
Collapse
|
7
|
Jiang L, Fu H, Yang HK, Xu W, Wang J, Yang ST. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol Adv 2018; 36:2101-2117. [PMID: 30266343 DOI: 10.1016/j.biotechadv.2018.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
Abstract
Butyric acid is an important C4 organic acid with broad applications. It is currently produced by chemosynthesis from petroleum-based feedstocks. However, the fermentative production of butyric acid from renewable feedstocks has received growing attention because of consumer demand for green products and natural ingredients in foods, pharmaceuticals, animal feed supplements, and cosmetics. In this review, strategies for improving microbial butyric acid production, including strain engineering and novel fermentation process development are discussed and compared regarding product yield, titer, purity and productivity. Future perspectives on strain and process improvements for butyric acid production are also discussed.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; College of Food Science and Light Industry, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Hongxin Fu
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hopen K Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jufang Wang
- School of Biology & Biological Engineering, South China University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
9
|
Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:99. [PMID: 29632557 PMCID: PMC5887253 DOI: 10.1186/s13068-018-1096-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/26/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Biobutanol production by clostridia via the acetone-butanol-ethanol (ABE) pathway is a promising future technology in bioenergetics , but identifying key regulatory mechanisms for this pathway is essential in order to construct industrially relevant strains with high tolerance and productivity. We have applied flow cytometric analysis to C. beijerinckii NRRL B-598 and carried out comparative screening of physiological changes in terms of viability under different cultivation conditions to determine its dependence on particular stages of the life cycle and the concentration of butanol. RESULTS Dual staining by propidium iodide (PI) and carboxyfluorescein diacetate (CFDA) provided separation of cells into four subpopulations with different abilities to take up PI and cleave CFDA, reflecting different physiological states. The development of a staining pattern during ABE fermentation showed an apparent decline in viability, starting at the pH shift and onset of solventogenesis, although an appreciable proportion of cells continued to proliferate. This was observed for sporulating as well as non-sporulating phenotypes at low solvent concentrations, suggesting that the increase in percentage of inactive cells was not a result of solvent toxicity or a transition from vegetative to sporulating stages. Additionally, the sporulating phenotype was challenged with butanol and cultivation with a lower starting pH was performed; in both these experiments similar trends were obtained-viability declined after the pH breakpoint, independent of the actual butanol concentration in the medium. Production characteristics of both sporulating and non-sporulating phenotypes were comparable, showing that in C. beijerinckii NRRL B-598, solventogenesis was not conditional on sporulation. CONCLUSION We have shown that the decline in C. beijerinckii NRRL B-598 culture viability during ABE fermentation was not only the result of accumulated toxic metabolites, but might also be associated with a special survival strategy triggered by pH change.
Collapse
Affiliation(s)
- Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Zora Pechacova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Serafin-Lewańczuk M, Klimek-Ochab M, Brzezińska-Rodak M, Żymańczyk-Duda E. Fungal synthesis of chiral phosphonic synthetic platform - Scope and limitations of the method. Bioorg Chem 2018; 77:402-410. [PMID: 29427855 DOI: 10.1016/j.bioorg.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
Chiral hydroxyphosphonates due to their wide range of biological properties are industrially important chemicals. Chemical synthesis of their optical isomers is expensive, time consuming and not friendly to the environment, so biotransformations are under consideration. Among others, these compounds act as enzymes inhibitors. This makes the bioconversions of phosphonates, especially scaling experiments, hard to perform. Biocatalysis is one of the methods that can be applied in synthesis of optically pure compounds. To increase the efficiency of the process with whole cell biocatalysts, it is essential to ensure optimal reaction conditions that minimize cellular stress and can enhance the metabolic activity of cells. The present investigation focuses on the scaling up of the kinetic resolution of racemic mixture of 2-butyryloxy-2-(ethoxy-P-phenylphosphinyl)acetic acid, applying free and immobilized form of the fungal biocatalysts and two operation systems: shake flask and recirculated fixed-bed batch reactor. Protocols of effective mycelium immobilization on polyurethane foams were set for T. purpurogenus IAFB 2512, F. oxysporum, P. commune. The best results of biotransformation were obtained with the immobilized P. commune in the column recirculated fixed-bed batch reactor. The conversion reaches 56% (maximal for the kinetic process) and the enantiomeric enrichment of the isomers mixture ranges between 82 and 93% (93% for ester of RP,R conformation). All biocatalysts exhibit SP-preference toward tested compound, what is essential because of importance of the phosphorus atom chirality for its biological activity.
Collapse
Affiliation(s)
- Monika Serafin-Lewańczuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Brzezińska-Rodak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Żymańczyk-Duda
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
11
|
Zhang R, Cao Y, Liu W, Xian M, Liu H. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microb Cell Fact 2017; 16:227. [PMID: 29258595 PMCID: PMC5735909 DOI: 10.1186/s12934-017-0839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes. Results In the present work, we examined the impact of the native GroESL chaperone system with different overexpression levels on phloroglucinol tolerance and production in E. coli. The groESL gene was cloned into an expression vector, of which expression level was regulated by three different promoters (natural, tac and T7 promoter). Strain tolerance was evaluated employing viable cell counts and phloroglucinol production. In comparison with the control strain, all GroESL overexpressing strains showed good characteristics in cell viability and phloroglucinol synthesis. Strain which overexpressed GroESL under tac promoter was found to show the best tolerance in all of those tested, resulting in a 3.19-fold increase in viable cell numbers compared with control strain of agar-plate culture under the condition of 0.7 g/L phloroglucinol, and a 39.5% increase in phloroglucinol production under fed-batch fermentation. This engineered strain finally accumulated phloroglucinol up to 5.3 g/L in the fed-batch cultivation 10 h after induction, and the productivity was 0.53 g/L/h. To date, the highest phloroglucinol production was achieved in this work compared with the previous reports, which is promising to make the bioprocess feasible from the economical point. Conclusions The data show that appropriate expression level of GroESL plays a critical role in improving phloroglucinol tolerance and production in E. coli, and maybe involve in controlling some aspects of the stress response system through upregulation of GroESL. GroESL overexpression is therefore a feasible and efficient approach for improvement of E. coli tolerance. Electronic supplementary material The online version of this article (10.1186/s12934-017-0839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
12
|
Chen LJ, Wu YD, Xue C, Bai FW. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis. Biotechnol J 2017; 12. [PMID: 28731563 DOI: 10.1002/biot.201700198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Indexed: 12/15/2022]
Abstract
Jerusalem artichoke (JA) can grow well in marginal lands with high biomass yield, and thus is a potential energy crop for biorefinery. The major biomass of JA is from tubers, which contain inulin that can be easily hydrolyzed into a mixture of fructose and glucose, but fructose utilization for producing butanol as an advanced biofuel is poor compared to glucose-based ABE fermentation by Clostridium acetobutylicum. In this article, the impact of extracellular redox potential (ORP) on the process is studied using a mixture of fructose and glucose to simulate the hydrolysate of JA tubers. When the extracellular ORP is controlled above -460 mV, 13.2 g L-1 butanol is produced from 51.0 g L-1 total sugars (40.1 g L-1 fructose and 10.9 g L-1 glucose), leading to dramatically increased butanol yield and butanol/ABE ratio of 0.26 g g-1 and 0.67, respectively. Intracellular metabolite and q-PCR analysis further indicate that intracellular ATP and NADH availabilities are significantly improved together with the fructose-specific PTS expression at the lag phase, which consequently facilitate fructose transport, metabolic shift toward solventogenesis and carbon flux redistribution for butanol biosynthesis. Therefore, the extracellular ORP control can be an effective strategy to improve butanol production from fructose-based feedstock.
Collapse
Affiliation(s)
- Li-Jie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - You-Duo Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Mahipant G, Paemanee A, Roytrakul S, Kato J, Vangnai AS. The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:122. [PMID: 28503197 PMCID: PMC5425972 DOI: 10.1186/s13068-017-0811-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Butanol is an intensively used industrial solvent and an attractive alternative biofuel, but the bioproduction suffers from its high toxicity. Among the native butanol producers and heterologous butanol-producing hosts, Bacillus subtilis 168 exhibited relatively higher butanol tolerance. Nevertheless, organic solvent tolerance mechanisms in Bacilli and Gram-positive bacteria have relatively less information. Thus, this study aimed to elucidate butanol stress responses that may involve in unique tolerance of B. subtilis 168 to butanol and other alcohol biocommodities. RESULTS Using comparative proteomics approach and molecular analysis of butanol-challenged B. subtilis 168, 108 butanol-responsive proteins were revealed, and classified into seven groups according to their biological functions. While parts of them may be similar to the proteins reportedly involved in solvent stress response in other Gram-positive bacteria, significant role of proline in the proline-glutamate-arginine metabolism was substantiated. Detection of intracellular proline and glutamate accumulation, as well as glutamate transient conversion during butanol exposure confirmed their necessity, especially proline, for cellular butanol tolerance. Disruption of the particular genes in proline biosynthesis pathways clarified the essential role of the anabolic ProB-ProA-ProI system over the osmoadaptive ProH-ProA-ProJ system for cellular protection in response to butanol exposure. Molecular modifications to increase gene dosage for proline biosynthesis as well as for glutamate acquisition enhanced butanol tolerance of B. subtilis 168 up to 1.8% (vol/vol) under the conditions tested. CONCLUSION This work revealed the important role of proline as an effective compatible solute that is required to protect cells against butanol chaotropic effect and to maintain cellular functions in B. subtilis 168 during butanol exposure. Nevertheless, the accumulation of intracellular proline against butanol stress required a metabolic conversion of glutamate through the specific biosynthetic ProB-ProA-ProI route. Thus, exogenous addition of glutamate, but not proline, enhanced butanol tolerance. These findings serve as a practical knowledge to enhance B. subtilis 168 butanol tolerance, and demonstrate means to engineer the bacterial host to promote higher butanol/alcohol tolerance of B. subtilis 168 for the production of butanol and other alcohol biocommodities.
Collapse
Affiliation(s)
- Gumpanat Mahipant
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atchara Paemanee
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, 739-8530 Japan
| | - Alisa S. Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
14
|
Volmer J, Schmid A, Bühler B. The application of constitutively solvent-tolerantP. taiwanensisVLB120ΔCΔttgVfor stereospecific epoxidation of toxic styrene alleviates carrier solvent use. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Jan Volmer
- Chair for Bioprocess engineering; Department of Biochemical and Chemical Engineering; TU Dortmund University; Dortmund Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Leipzig Germany
| |
Collapse
|
15
|
Korshunova IO, Pistsova ON, Kuyukina MS, Ivshina IB. The effect of organic solvents on the viability and morphofunctional properties of rhodococcus. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Khoei NS, Andreolli M, Lampis S, Vallini G, Turner RJ. A comparison of the response of twoBurkholderia fungorumstrains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Can J Microbiol 2016; 62:851-860. [DOI: 10.1139/cjm-2016-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In natural environments, bacteria often exist in close association with surfaces and interfaces by establishing biofilms. Here, we report on the ability of Burkholderia fungorum strains DBT1 and 95 to survive in high concentrations of hydrocarbons, and we compare their growth as a biofilm vs. planktonic cells. The 2 compounds tested were dibenzothiophene (DBT) and a mixture of naphthalene, phenanthrene, and pyrene (5:2:1) as representative compounds of thiophenes and polycyclic aromatic hydrocarbons (PAHs), respectively. The results showed that both strains were able to degrade DBT and to survive in the presence of up to a 2000 mg·L−1concentration of this compound both as a biofilm and as free-living cells. Moreover, B. fungorum DBT1 showed reduced tolerance towards the mixed PAHs (2000 mg·L−1naphthalene, 800 mg·L−1phenanthrene, and 400 mg·L−1pyrene) both as a biofilm and as free-living cells. Conversely, biofilms of B. fungorum 95 enhanced resistance against these toxic compounds compared with planktonic cells (P < 0.05). Visual observation through confocal laser scanning microscopy showed that exposure of biofilms to DBT and PAHs altered their structure: high concentrations of DBT triggered an aggregation of biofilm cells. These findings provide new perspectives on the effectiveness of using DBT-degrading bacterial strains in bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Sandoval NR, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Curr Opin Microbiol 2016; 33:56-66. [PMID: 27376665 DOI: 10.1016/j.mib.2016.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall.
Collapse
Affiliation(s)
- Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
18
|
Jones AJ, Venkataramanan KP, Papoutsakis T. Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol Lett 2016; 363:fnw063. [PMID: 26989157 DOI: 10.1093/femsle/fnw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone-Butanol-Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells.
Collapse
Affiliation(s)
- Alexander J Jones
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Keerthi P Venkataramanan
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Terry Papoutsakis
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
19
|
Xia ML, Wang L, Yang ZX, Chen HZ. Periodic-peristole agitation for process enhancement of butanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:225. [PMID: 26702300 PMCID: PMC4689062 DOI: 10.1186/s13068-015-0409-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the important bioengineering issues. RESULTS In this study, a novel agitation type, named periodic-peristole was applied to butanol fermentation with Clostridium acetobutylicum ATCC 824. Meanwhile, the enhancement mechanism was studied. Initially, the fermentation performance of periodic-peristole agitation was compared with the traditional Rushton impeller and stationary cultivation. Result showed that the biomass, butanol and total solvent in periodic-peristole group (PPG) was enhanced to 1.92-, 2.06-, and 2.4-fold of those in the traditional Rushton impeller group (TIG), as well as 1.64-, 1.19- and 1.41-fold of those in the stationary group (SG). Subsequently, to get in-depth insight into enhancement mechanism, hydromechanics analysis and metabolic flux analysis (MFA) were carried out. The periodic-peristole agitation exhibits significant difference on velocity distribution, shear force, and mixing efficiency from the traditional Rushton impeller agitation. And the shear force in PPG is only 74 % of that in TIG. According to MFA result, fructose 6-phosphate, pyruvate, acetyl-CoA, oxaloacetate and α-ketoglutarate were determined the key nodes of cells in response to hydrodynamic mechanical stress. Based on such key information, rational enhancement strategies were proposed and butanol production was further improved. CONCLUSION The agitation associated with three issues which resulted in significant changes in cell metabolic behaviors: first, a rebalanced redox status; second, the energy (ATP) acquirement and consumption; third, the tolerance mechanism of the cell for survival of solvent. Periodic-peristole agitation provides an answer to address a long-standing problem of biofuel engineering. Key information derived from current study deepens the understanding of agitation, which can guide the designment of new bioreactors and development of enhancement strategies for biofuel refinery.
Collapse
Affiliation(s)
- Meng-lei Xia
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
- />University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing, 100039 China
| | - Lan Wang
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
| | - Zhi-xia Yang
- />College of Mathematics and System Science, Xinjiang University, No. 14 Shengli Road, Urumchi, 830046 China
| | - Hong-zhang Chen
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
| |
Collapse
|
20
|
Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, de Lorenzo V, Prokop Z, Damborsky J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 2015; 14:201. [PMID: 26691337 PMCID: PMC4687329 DOI: 10.1186/s12934-015-0393-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Heterologous expression systems based on promoters inducible with isopropyl-β-D-1-thiogalactopyranoside (IPTG), e.g., Escherichia coli BL21(DE3) and cognate LacI(Q)/P(lacUV5)-T7 vectors, are commonly used for production of recombinant proteins and metabolic pathways. The applicability of such cell factories is limited by the complex physiological burden imposed by overexpression of the exogenous genes during a bioprocess. This burden originates from a combination of stresses that may include competition for the expression machinery, side-reactions due to the activity of the recombinant proteins, or the toxicity of their substrates, products and intermediates. However, the physiological impact of IPTG-induced conditional expression on the recombinant host under such harsh conditions is often overlooked. RESULTS The physiological responses to IPTG of the E. coli BL21(DE3) strain and three different recombinants carrying a synthetic metabolic pathway for biodegradation of the toxic anthropogenic pollutant 1,2,3-trichloropropane (TCP) were investigated using plating, flow cytometry, and electron microscopy. Collected data revealed unexpected negative synergistic effect of inducer of the expression system and toxic substrate resulting in pronounced physiological stress. Replacing IPTG with the natural sugar effector lactose greatly reduced such stress, demonstrating that the effect was due to the original inducer's chemical properties. CONCLUSIONS IPTG is not an innocuous inducer; instead, it exacerbates the toxicity of haloalkane substrate and causes appreciable damage to the E. coli BL21(DE3) host, which is already bearing a metabolic burden due to its content of plasmids carrying the genes of the synthetic metabolic pathway. The concentration of IPTG can be effectively tuned to mitigate this negative effect. Importantly, we show that induction with lactose, the natural inducer of P lac , dramatically lightens the burden without reducing the efficiency of the synthetic TCP degradation pathway. This suggests that lactose may be a better inducer than IPTG for the expression of heterologous pathways in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Pavel Dvorak
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Radek Fedr
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
21
|
Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 2015; 11:2370-87. [PMID: 26734087 PMCID: PMC4685893 DOI: 10.3762/bjoc.11.259] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022] Open
Abstract
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
Collapse
Affiliation(s)
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
22
|
Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes. Curr Opin Biotechnol 2015; 36:16-31. [DOI: 10.1016/j.copbio.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/21/2022]
|
23
|
Akinosho H, Rydzak T, Borole A, Ragauskas A, Close D. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2156-2174. [PMID: 26423392 DOI: 10.1007/s10646-015-1543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.
Collapse
Affiliation(s)
- Hannah Akinosho
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Thomas Rydzak
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
| | - Abhijeet Borole
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN, USA
| | - Arthur Ragauskas
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA.
| |
Collapse
|
24
|
Yang X, Xu M, Yang ST. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng 2015; 32:39-48. [PMID: 26365585 DOI: 10.1016/j.ymben.2015.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
Abstract
Production of cellulosic biofuels has drawn increasing attention. However, currently no microorganism can produce biofuels, particularly butanol, directly from cellulosic biomass efficiently. Here we engineered a cellulolytic bacterium, Clostridium cellulovorans, for n-butanol and ethanol production directly from cellulose by introducing an aldehyde/alcohol dehydrogenase (adhE2), which converts butyryl-CoA to n-butanol and acetyl-CoA to ethanol. The engineered strain was able to produce 1.42 g/L n-butanol and 1.60 g/L ethanol directly from cellulose. Moreover, the addition of methyl viologen as an artificial electron carrier shifted the metabolic flux from acid production to alcohol production, resulting in a high biofuel yield of 0.39 g/g from cellulose, comparable to ethanol yield from corn dextrose by yeast fermentation. This study is the first metabolic engineering of C. cellulovorans for n-butanol and ethanol production directly from cellulose with significant titers and yields, providing a promising consolidated bioprocessing (CBP) platform for biofuel production from cellulosic biomass.
Collapse
Affiliation(s)
- Xiaorui Yang
- Department of Chemical and Biomolecular Engineering and Department of Molecular Genetics, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Chemical and Biomolecular Engineering and Department of Molecular Genetics, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering and Department of Molecular Genetics, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Papoutsakis ET. Reassessing the Progress in the Production of Advanced Biofuels in the Current Competitive Environment and Beyond: What Are the Successes and Where Progress Eludes Us and Why. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eleftherios T. Papoutsakis
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, Department of Biological Sciences & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
26
|
Venkataramanan KP, Min L, Hou S, Jones SW, Ralston MT, Lee KH, Papoutsakis ET. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:81. [PMID: 26269711 PMCID: PMC4533764 DOI: 10.1186/s13068-015-0260-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/30/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. RESULTS The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. CONCLUSIONS The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.
Collapse
Affiliation(s)
- Keerthi P. Venkataramanan
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Lie Min
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Shuyu Hou
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Shawn W. Jones
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Matthew T. Ralston
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />15 Innovation Way, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711 USA
| | - Kelvin H. Lee
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - E. Terry Papoutsakis
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| |
Collapse
|
27
|
Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 2014; 99:1011-22. [DOI: 10.1007/s00253-014-6249-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/07/2023]
|
28
|
Wang J, Yang X, Chen CC, Yang ST. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2014.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 2014; 13:151. [PMID: 25366096 PMCID: PMC4234862 DOI: 10.1186/s12934-014-0151-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis. CONCLUSIONS The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Yaxing Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| |
Collapse
|
30
|
Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Appl Microbiol Biotechnol 2014; 98:8399-411. [DOI: 10.1007/s00253-014-6004-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
31
|
Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Appl Environ Microbiol 2014; 80:6539-48. [PMID: 25128338 DOI: 10.1128/aem.01940-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The application of whole cells as biocatalysts is often limited by the toxicity of organic solvents, which constitute interesting substrates/products or can be used as a second phase for in situ product removal and as tools to control multistep biocatalysis. Solvent-tolerant bacteria, especially Pseudomonas strains, are proposed as promising hosts to overcome such limitations due to their inherent solvent tolerance mechanisms. However, potential industrial applications suffer from tedious, unproductive adaptation processes, phenotypic variability, and instable solvent-tolerant phenotypes. In this study, genes described to be involved in solvent tolerance were identified in Pseudomonas taiwanensis VLB120, and adaptive solvent tolerance was proven by cultivation in the presence of 1% (vol/vol) toluene. Deletion of ttgV, coding for the specific transcriptional repressor of solvent efflux pump TtgGHI gene expression, led to constitutively solvent-tolerant mutants of P. taiwanensis VLB120 and VLB120ΔC. Interestingly, the increased amount of solvent efflux pumps enhanced not only growth in the presence of toluene and styrene but also the biocatalytic performance in terms of stereospecific styrene epoxidation, although proton-driven solvent efflux is expected to compete with the styrene monooxygenase for metabolic energy. Compared to that of the P. taiwanensis VLB120ΔC parent strain, the maximum specific epoxidation activity of P. taiwanensis VLB120ΔCΔttgV doubled to 67 U/g of cells (dry weight). This study shows that solvent tolerance mechanisms, e.g., the solvent efflux pump TtgGHI, not only allow for growth in the presence of organic compounds but can also be used as tools to improve redox biocatalysis involving organic solvents.
Collapse
|
32
|
Zingaro KA, Nicolaou SA, Yuan Y, Papoutsakis ET. Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals. ACS Synth Biol 2014; 3:476-86. [PMID: 24933690 DOI: 10.1021/sb400156v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses both improved cell viability and growth under chemical stress. Building upon the success of our recently reported semisynthetic stress response system expressed off plasmid pHSP (Heat Shock Protein), we probed the genomic space of the solvent tolerant Lactobacillus plantarum to identify genetic determinants that impart solvent tolerance in combination with pHSP. Using two targeted enrichments, one for superior viability and one for better growth under ethanol stress, we identified several beneficial heterologous DNA determinants that act synergistically with pHSP. In separate strains, a 209% improvement in survival and an 83% improvement in growth over previously engineered strains based on pHSP were thus generated. We then developed a composite phenotype of improved growth and survival by combining the identified L. plantarum genetic fragments. This demonstrates the concept for a sequential, iterative assembly strategy for building multigenic traits by exploring the synergistic effects of genetic determinants from a much broader genomic space. The best performing strain produced a 3.7-fold improved survival under 8% ethanol stress, as well as a 32% increase in growth under 4% ethanol. This strain also shows significantly improved tolerance to n-butanol. Improved solvent production is rarely examined in tolerance engineering studies. Here, we show that our system significantly improves ethanol productivity in a Melle-Boinot-like fermentation process.
Collapse
Affiliation(s)
- Kyle A. Zingaro
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Sergios A. Nicolaou
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Yongbo Yuan
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Eleftherios Terry Papoutsakis
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
33
|
Piotrowski JS, Zhang Y, Bates DM, Keating DH, Sato TK, Ong IM, Landick R. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol 2014; 5:90. [PMID: 24672514 PMCID: PMC3954026 DOI: 10.3389/fmicb.2014.00090] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/18/2014] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic hydrolysate (LCH) inhibitors are a large class of bioactive molecules that arise from pretreatment, hydrolysis, and fermentation of plant biomass. These diverse compounds reduce lignocellulosic biofuel yields by inhibiting cellular processes and diverting energy into cellular responses. LCH inhibitors present one of the most significant challenges to efficient biofuel production by microbes. Development of new strains that lessen the effects of LCH inhibitors is an economically favorable strategy relative to expensive detoxification methods that also can reduce sugar content in deconstructed biomass. Systems biology analyses and metabolic modeling combined with directed evolution and synthetic biology are successful strategies for biocatalyst development, and methods that leverage state-of-the-art tools are needed to overcome inhibitors more completely. This perspective considers the energetic costs of LCH inhibitors and technologies that can be used to overcome their drain on conversion efficiency. We suggest academic and commercial research groups could benefit by sharing data on LCH inhibitors and implementing "translational biofuel research."
Collapse
Affiliation(s)
- Jeff S Piotrowski
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Donna M Bates
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - David H Keating
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Irene M Ong
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|