1
|
Kafili-Hajlari T, Naseri A, Ansarin A, Rasoulzadeh F. Technical approaches for breath aldehyde biomarker detection and disease diagnosis: A review. Anal Biochem 2025; 702:115841. [PMID: 40113023 DOI: 10.1016/j.ab.2025.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Exhaled breath analysis holds promise as a non-invasive approach for disease diagnosis. Aldehydes represent a class of volatile organic compounds with diagnostic potential as breath biomarkers for cancers and other conditions. However, aldehydes exist at low concentrations in breath and have stability challenges. This review summarizes recent studies on breath aldehyde analysis, focusing on sample collection methodology, analytical techniques implemented, and key findings regarding aldehyde alterations in disease. Breath collection methods examined include commercial bags, end-tidal sampling devices, condensates, and direct analysis. Analytical techniques evaluated gas chromatography, mass spectrometry, and microextraction approaches. Emerging microextraction and sensing technologies are advancing real-time, non-invasive aldehyde detection. Overall, breath aldehyde biomarkers offer immense potential for diagnosis and screening, but continued research is needed to address current limitations. This review provides insights to guide future efforts focused on exhaled aldehyde analysis and disease detection.
Collapse
Affiliation(s)
- Taha Kafili-Hajlari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabri, Iran.
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabri, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street Baku, AZ1096, Azerbaijan.
| | - Atefeh Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzaneh Rasoulzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Alenezy EK, Kandjani AE, Shaibani M, Trinchi A, Bhargava SK, Ippolito SJ, Sabri Y. Human breath analysis; Clinical application and measurement: An overview. Biosens Bioelectron 2025; 278:117094. [PMID: 40037038 DOI: 10.1016/j.bios.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 03/06/2025]
Abstract
Human breath has been recognized as a complex yet predictive mixture of volatile organic compounds (VOCs) and inorganic gas species that can be utilized to non-invasively diagnose common diseases. Current laboratory techniques such as gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC), are capable of VOC detection down to ppm concentrations. However, these methods are expensive, non-portable, require pre-processing of the exhaled VOCs, and expert operators, making them unsuitable for wide-spread use. Portable gas sensors have various advantages over other methods used in gas analysis, including ease of transportation, reduced treatment costs, fast results, and improved patient experience. Recent advancements in gas sensing technologies have enabled such devices to be used to diagnose, predict, and monitor a wide range of diseases and conditions, however, many challenges need still need to be addressed (i.e., sensitivity and selectivity) before they can be employed for such applications. Although nanotechnology has greatly improved the performance of gas sensor materials and their capacity to detect VOCs in human breath, issues around repeatability and accuracy remain, as well as adequateness due to the close proximity of the human body and the sensor device. This review focuses on how recent advancements in nanotechnology and solid-state materials have enabled VOC gas sensors to evolve into miniaturized, sensitive and selective devices for monitoring human breath in clinical applications. An introduction to the key aspects of breath analysis, including sources of VOCs in human breath and their role in disease diagnosis, is discussed. Furthermore, the current limitations and future prospects of such gas sensors for breath monitoring applications are also discussed in detail.
Collapse
Affiliation(s)
- Ebtsam K Alenezy
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.
| | - Ahmad E Kandjani
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Research Unit, Clayton, VIC, 3168, Australia.
| | - Mahdokht Shaibani
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Adrian Trinchi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Research Unit, Clayton, VIC, 3168, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Samuel J Ippolito
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
3
|
Wang Y, Zhou Z, Chang R, Zhang Z, Xu X, Xu Y, Mao J. New Method of Direct Sampling Gas Chromatography-Ion Mobility Spectrometry to Identify the Dynamic Retronasal Volatile Compounds in the Alcoholic Beverage and Their Release Behaviors: A Case Study on Huangjiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4331-4341. [PMID: 39925243 DOI: 10.1021/acs.jafc.4c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Owing to extremely low concentrations and dynamic changes, it is difficult to detect and trace the retronasal volatile organic compounds (VOCs) generated during the consumption of alcoholic beverages. We developed a direct sampling gas chromatography-ion mobility spectrometry (GC-IMS) method to identify the dynamic VOCs after drinking Huangjiu-a fermented alcoholic beverages. The optimal procedure was obtained: take a sip of 10 mL Huangjiu, holding it in mouth for 10 s and then swallow, and the VOCs in one nasal expiration were collected with gas sampling bag and transferred directly to the injection port of GC-IMS. The repeatability was satisfactory (RSD < 5%). Twenty-two VOCs were detected in Huangjiu, with esters and alcohols being dominant, which were divided into five distinct release behavior groups. Their release was found significantly inhibited by saliva. Overall, this new method offers a technical approach to understanding and assessing the characteristics of retronasal aroma in alcoholic beverages.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhilei Zhou
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
| | - Rui Chang
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhimin Zhang
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xibiao Xu
- Shaoxing Nverhong Winery Co., Ltd., Shaoxing 312000, Zhejiang, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center for Huangjiu, Shaoxing 312000, Zhejiang, China
| |
Collapse
|
4
|
Burkhardt T, Sibul F, Pilz F, Scherer G, Pluym N, Scherer M. A comprehensive non-targeted approach for the analysis of biomarkers in exhaled breath across different nicotine product categories. J Chromatogr A 2024; 1736:465359. [PMID: 39303480 DOI: 10.1016/j.chroma.2024.465359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In the context of the evolving landscape of nicotine consumption, the assessment of biomarkers plays a crucial role in understanding the health impact of different product categories. Exhaled breath (EB) emerges as a promising, non-invasive matrix for biomarker analysis, complementary to conventional urine and plasma data. This study explores distinctive EB biomarker profiles among users of combustible cigarettes (CC), heated tobacco products (HTP), electronic cigarettes (EC), smokeless/oral tobacco (OT), and oral/dermal nicotine products (NRT). We have successfully developed and validated a non-targeted GC-TOF-MS method for the analysis of EB samples across the aforementioned product categories. A total of 66 compounds were identified, with significantly elevated levels in at least one study group. The study found that CC users had higher levels of established VOCs associated with smoking, which supports the proof-of-concept of the method. Breathomic analysis identified increased levels of p-cymene and α-pinene in EC users, while HTP users showed potential biomarker candidates like γ-butyrolactone. This study underscores the utility of EB biomarkers for a comprehensive evaluation of diverse nicotine products. The unique advantages offered by EB analysis position it as a valuable tool for understanding the relationship between exposure and health outcomes.
Collapse
Affiliation(s)
- Therese Burkhardt
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Filip Sibul
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Fabian Pilz
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany.
| |
Collapse
|
5
|
Brinkman P, Wilde M, Ahmed W, Wang R, van der Schee M, Abuhelal S, Schaber C, Cunoosamy D, Clarke GW, Maitland-van der Zee AH, Dahlén SE, Siddiqui S, Fowler SJ. Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers. Am J Respir Crit Care Med 2024; 210:1079-1090. [PMID: 38889337 PMCID: PMC11544359 DOI: 10.1164/rccm.202305-0868tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Michael Wilde
- School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ran Wang
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chad Schaber
- Owlstone Medical Ltd., Cambridge, United Kingdom
| | | | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Sven-Erik Dahlén
- The Department of Medicine Huddinge and the Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
6
|
Roy S, Maiti KS. Baseline correction for the infrared spectra of exhaled breath. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124473. [PMID: 38795528 DOI: 10.1016/j.saa.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Infrared spectroscopy appears to be a promising analytical method for the metabolic analysis of breath. However, due to the presence of trace amounts in exhaled breath, the absorption strength of the metabolites remains extremely low. In such low detection limits, the nonlinear detection sensitivity of the infrared detector and electronic noise strongly modify the baseline of the acquired infrared spectra of breath. Fitting the reference molecular spectra with the baseline-modified spectral features of breath metabolites does not provide accurate identification. Therefore, baseline correction of the acquired infrared spectra of breath is the primary requirement for the success of breath-based infrared diagnosis. A selective spectral region-based, simple baseline correction method is proposed for the infrared spectroscopy of breath.
Collapse
Affiliation(s)
- Susmita Roy
- Technical University of Munich, School of Medicine and Health, Department of Clinical Medicine, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kiran Sankar Maiti
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
7
|
Haworth-Duff A, Smith BL, Sham TT, Boisdon C, Loughnane P, Burnley M, Hawcutt DB, Raval R, Maher S. Rapid differentiation of cystic fibrosis-related bacteria via reagentless atmospheric pressure photoionisation mass spectrometry. Sci Rep 2024; 14:17067. [PMID: 39048618 PMCID: PMC11269582 DOI: 10.1038/s41598-024-66851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Breath analysis is an area of significant interest in medical research as it allows for non-invasive sampling with exceptional potential for disease monitoring and diagnosis. Volatile organic compounds (VOCs) found in breath can offer critical insight into a person's lifestyle and/or disease/health state. To this end, the development of a rapid, sensitive, cost-effective and potentially portable method for the detection of key compounds in breath would mark a significant advancement. Herein, we have designed, built and tested a novel reagent-less atmospheric pressure photoionisation (APPI) source, coupled with mass spectrometry (MS), utilising a bespoke bias electrode within a custom 3D printed sampling chamber for direct analysis of VOCs. Optimal APPI-MS conditions were identified, including bias voltage, cone voltage and vaporisation temperature. Calibration curves were produced for ethanol, acetone, 2-butanone, ethyl acetate and eucalyptol, yielding R2 > 0.99 and limits of detection < 10 pg. As a pre-clinical proof of concept, this method was applied to bacterial headspace samples of Escherichia coli (EC), Pseudomonas aeruginosa (PSA) and Staphylococcus aureus (SA) collected in 1 L Tedlar bags. In particular, PSA and SA are commonly associated with lung infection in cystic fibrosis patients. The headspace samples were classified using principal component analysis with 86.9% of the total variance across the first three components and yielding 100% classification in a blind-sample study. All experiments conducted with the novel APPI arrangement were carried out directly in real-time with low-resolution MS, which opens up exciting possibilities in the future for on-site (e.g., in the clinic) analysis with a portable system.
Collapse
Affiliation(s)
- Adam Haworth-Duff
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Paul Loughnane
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Mark Burnley
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Liverpool, UK
| | - Rasmita Raval
- Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Simpson CE, Ledford JG, Liu G. Application of Metabolomics across the Spectrum of Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2024; 71:1-9. [PMID: 38547373 PMCID: PMC11225873 DOI: 10.1165/rcmb.2024-0080ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Karunanethy M, Tripathi R, Panchagnula MV, Rengaswamy R. User authentication system based on human exhaled breath physics. PLoS One 2024; 19:e0301971. [PMID: 38648227 PMCID: PMC11034670 DOI: 10.1371/journal.pone.0301971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
This work, in a pioneering approach, attempts to build a biometric system that works purely based on the fluid mechanics governing exhaled breath. We test the hypothesis that the structure of turbulence in exhaled human breath can be exploited to build biometric algorithms. This work relies on the idea that the extrathoracic airway is unique for every individual, making the exhaled breath a biomarker. Methods including classical multi-dimensional hypothesis testing approach and machine learning models are employed in building user authentication algorithms, namely user confirmation and user identification. A user confirmation algorithm tries to verify whether a user is the person they claim to be. A user identification algorithm tries to identify a user's identity with no prior information available. A dataset of exhaled breath time series samples from 94 human subjects was used to evaluate the performance of these algorithms. The user confirmation algorithms performed exceedingly well for the given dataset with over 97% true confirmation rate. The machine learning based algorithm achieved a good true confirmation rate, reiterating our understanding of why machine learning based algorithms typically outperform classical hypothesis test based algorithms. The user identification algorithm performs reasonably well with the provided dataset with over 50% of the users identified as being within two possible suspects. We show surprisingly unique turbulent signatures in the exhaled breath that have not been discovered before. In addition to discussions on a novel biometric system, we make arguments to utilise this idea as a tool to gain insights into the morphometric variation of extrathoracic airway across individuals. Such tools are expected to have future potential in the area of personalised medicines.
Collapse
Affiliation(s)
- Mukesh Karunanethy
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Rahul Tripathi
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Mahesh V. Panchagnula
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Raghunathan Rengaswamy
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Tiankanon K, Pungpipattrakul N, Sukaram T, Chaiteerakij R, Rerknimitr R. Identification of breath volatile organic compounds to distinguish pancreatic adenocarcinoma, pancreatic cystic neoplasm, and patients without pancreatic lesions. World J Gastrointest Oncol 2024; 16:894-906. [PMID: 38577457 PMCID: PMC10989381 DOI: 10.4251/wjgo.v16.i3.894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) are a promising potential biomarker that may be able to identify the presence of cancers. AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocarcinoma (PDAC) from intraductal papillary mucinous neoplasm (IPMN) and healthy volunteers. METHODS We collected exhaled breath from histologically proven PDAC patients, radiological diagnosis IPMN, and healthy volunteers using the ReCIVA® device between 10/2021-11/2022. VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups. RESULTS A total of 156 participants (44% male, mean age 62.6 ± 10.6) were enrolled (54 PDAC, 42 IPMN, and 60 controls). Among the nine VOCs identified, two VOCs that showed differences between groups were dimethyl sulfide [0.73 vs 0.74 vs 0.94 arbitrary units (AU), respectively; P = 0.008] and acetone dimers (3.95 vs 4.49 vs 5.19 AU, respectively; P < 0.001). After adjusting for the imbalance parameters, PDAC showed higher dimethyl sulfide levels than the control and IPMN groups, with adjusted odds ratio (aOR) of 6.98 (95%CI: 1.15-42.17) and 4.56 (1.03-20.20), respectively (P < 0.05 both). Acetone dimer levels were also higher in PDAC compared to controls and IPMN (aOR: 5.12 (1.80-14.57) and aOR: 3.35 (1.47-7.63), respectively (P < 0.05 both). Acetone dimer, but not dimethyl sulfide, performed better than CA19-9 in PDAC diagnosis (AUROC 0.910 vs 0.796). The AUROC of acetone dimer increased to 0.936 when combined with CA19-9, which was better than CA19-9 alone (P < 0.05). CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants. Additional prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Kasenee Tiankanon
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nuttanit Pungpipattrakul
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanikan Sukaram
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Angioli R, Santonico M, Pennazza G, Montera R, Luvero D, Gatti A, Zompanti A, Finamore P, Incalzi RA. Use of Sensor Array Analysis to Detect Ovarian Cancer through Breath, Urine, and Blood: A Case-Control Study. Diagnostics (Basel) 2024; 14:561. [PMID: 38473033 DOI: 10.3390/diagnostics14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ovarian cancer (OC) is the eighth most common cancer in women. Since screening programs do not exist, it is often diagnosed in advanced stages. Today, the detection of OC is based on clinical examination, transvaginal ultrasound (US), and serum biomarker (Carbohydrate Antigen 125 (CA 125) and Human Epididymis Protein 4 (HE4)) dosage, with a sensitivity of 88% and 95%, respectively, and a specificity of 84% for US and 76% for biomarkers. These methods are clearly not enough, and OC in its early stages is often missed. Many scientists have recently focused their attention on volatile organic compounds (VOCs). These are gaseous molecules, found in the breath, that could provide interesting information on several diseases, including solid tumors. To detect VOCs, an electronic nose was invented by a group of researchers. A similar device, the e-tongue, was later created to detect specific molecules in liquids. For the first time in the literature, we investigated the potential use of the electronic nose and the electronic tongue to detect ovarian cancer not just from breath but also from urine, blood, and plasma samples.
Collapse
Affiliation(s)
- Roberto Angioli
- Unit of Gynecology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Roberto Montera
- Unit of Gynecology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniela Luvero
- Unit of Gynecology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Alessandra Gatti
- Unit of Gynecology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Alessandro Zompanti
- Unit of Electronics for Sensor Systems, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Panaiotis Finamore
- Unit of Geriatrics, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
13
|
Malik M, Demetrowitsch T, Schwarz K, Kunze T. New perspectives on 'Breathomics': metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Commun Biol 2024; 7:258. [PMID: 38431745 PMCID: PMC10908792 DOI: 10.1038/s42003-024-05943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.
Collapse
Affiliation(s)
- Madiha Malik
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Thomas Kunze
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| |
Collapse
|
14
|
Li L, Wang J, Feng F, Yan J, Zhao B, Li X, Zhong Y. Breath volatile organic compounds for chronic kidney disease progression monitoring. Analyst 2024; 149:1074-1080. [PMID: 37955046 DOI: 10.1039/d3an01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Breath analysis may provide a convenient and non-invasive method for clinical monitoring of chronic kidney disease (CKD) progression. However, few breath volatile organic compounds (VOCs) indicating progression of CKD have been reported. In this study, we used gas chromatography-mass spectrometry (GC-MS) for untargeted detection of breath VOCs in stage 1, 3, and 5 CKD patients. The results showed that, the levels of breath 4-heptanone, n-octane, and n-dodecane gradually increased from CKD stage 1 to stage 5, and their increasing rates from CKD stage 3 to stage 5 were higher than those from CKD stage 1 to stage 3. Gender, smoking habits, age, and body mass index (BMI) had insignificant impact on the levels of the three breath VOCs. The accuracies of the polynomial support vector machine (SVM) and K-nearest neighbour (KNN) models based on 4-heptanone + n-octane + n-dodecane combination in distinguishing CKD stages 1, 3, and 5 were 76.3% and 72.8%, respectively. The combination of 4-heptanone + n-octane + n-dodecane was superior to any single component for monitoring CKD progression. These discoveries have valuable implications for long-term clinical monitoring of CKD and improving our understanding of CKD.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Fei Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yan
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Bin Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou 510799, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
15
|
Sola-Martínez RA, Zeng J, Awchi M, Gisler A, Arnold K, Singh KD, Frey U, Díaz MC, de Diego Puente T, Sinues P. Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study. J Breath Res 2023; 18:011002. [PMID: 38029449 DOI: 10.1088/1752-7163/ad10e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) is an established technique in the field of breath analysis characterized by its short analysis time, as well as high levels of sensitivity and selectivity. Traditionally, SESI-HRMS has been used for real-time breath analysis, which requires subjects to be at the location of the analytical platform. Therefore, it limits the possibilities for an introduction of this methodology in day-to-day clinical practice. However, recent methodological developments have shown feasibility on the remote sampling of exhaled breath in Nalophan® bags prior to measurement using SESI-HRMS. To further explore the range of applications of this method, we conducted a proof-of-concept study to assess the impact of the storage time of exhaled breath in Nalophan® bags at different temperatures (room temperature and dry ice) on the relative intensities of the compounds. In addition, we performed a detailed study of the storage effect of 27 aldehydes related to oxidative stress. After 2 h of storage, the mean of intensity of allm/zsignals relative to the samples analyzed without prior storage remained above 80% at both room temperature and dry ice. For the 27 aldehydes, the mean relative intensity losses were lower than 20% at 24 h of storage, remaining practically stable since the first hour of storage following sample collection. Furthermore, the mean relative intensity of most aldehydes in samples stored at room temperature was higher than those stored in dry ice, which could be related to water vapor condensation issues. These findings indicate that the exhaled breath samples could be preserved for hours with a low percentage of mean relative intensity loss, thereby allowing more flexibility in the logistics of off-line SESI-HRMS studies.
Collapse
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Jiafa Zeng
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mo Awchi
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Amanda Gisler
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Kim Arnold
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Kapil Dev Singh
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Urs Frey
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Pablo Sinues
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
16
|
Peel A, Wang R, Ahmed W, White I, Wilkinson M, Loke YK, Wilson AM, Fowler SJ. Changes in exhaled volatile organic compounds following indirect bronchial challenge in suspected asthma. Thorax 2023; 78:966-973. [PMID: 37495368 DOI: 10.1136/thorax-2022-219708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inhaled mannitol provokes bronchoconstriction via mediators released during osmotic degranulation of inflammatory cells, and, hence represents a useful diagnostic test for asthma and model for acute attacks. We hypothesised that the mannitol challenge would trigger changes in exhaled volatile organic compounds (VOCs), generating both candidate biomarkers and novel insights into their origin. METHODS Participants with a clinical diagnosis of asthma, or undergoing investigation for suspected asthma, were recruited. Inhaled mannitol challenges were performed, followed by a sham challenge after 2 weeks in participants with bronchial hyper-responsiveness (BHR). VOCs were collected before and after challenges and analysed using gas chromatography-mass spectrometry. RESULTS Forty-six patients (mean (SD) age 52 (16) years) completed a mannitol challenge, of which 16 (35%) were positive, and 15 of these completed a sham challenge. Quantities of 16 of 51 identified VOCs changed following mannitol challenge (p<0.05), of which 11 contributed to a multivariate sparse partial least square discriminative analysis model, with a classification error rate of 13.8%. Five of these 16 VOCs also changed (p<0.05) in quantity following the sham challenge, along with four further VOCs. In patients with BHR to mannitol distinct postchallenge VOC signatures were observed compared with post-sham challenge. CONCLUSION Inhalation of mannitol was associated with changes in breath VOCs, and in people with BHR resulted in a distinct exhaled breath profile when compared with a sham challenge. These differentially expressed VOCs are likely associated with acute airway inflammation and/or bronchoconstriction and merit further investigation as potential biomarkers in asthma.
Collapse
Affiliation(s)
- Adam Peel
- Respiratory medicine, Norfolk Community Health and Care NHS Trust, Norwich, Norfolk, UK
| | - Ran Wang
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Waqar Ahmed
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Iain White
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yoon K Loke
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Stephen J Fowler
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Liu X, Hu B. Mask device as a new wearable sampler for breath analysis: what can we expect in the future? Anal Bioanal Chem 2023:10.1007/s00216-023-04673-z. [PMID: 37017724 PMCID: PMC10074379 DOI: 10.1007/s00216-023-04673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Human exhaled breath is becoming an attractive clinical source as it is foreseen to enable noninvasive diagnosis of many diseases. Because mask devices can be used for efficiently filtering exhaled substances, mask-wearing has been required in the past few years in daily life since the unprecedented COVID-19 pandemic. In recent years, there is a new development of mask devices as new wearable breath samplers for collecting exhaled substances for disease diagnosis and biomarker discovery. This paper attempts to identify new trends in mask samplers for breath analysis. The couplings of mask samplers with different (bio)analytical approaches, including mass spectrometry (MS), polymerase chain reaction (PCR), sensor, and others for breath analysis, are summarized. The developments and applications of mask samplers in disease diagnosis and human health are reviewed. The limitations and future trends of mask samplers are also discussed.
Collapse
Affiliation(s)
- Ximeng Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Fu L, Wang L, Wang H, Yang M, Yang Q, Lin Y, Guan S, Deng Y, Liu L, Li Q, He M, Zhang P, Chen H, Deng G. A cross-sectional study: a breathomics based pulmonary tuberculosis detection method. BMC Infect Dis 2023; 23:148. [PMID: 36899314 PMCID: PMC9999612 DOI: 10.1186/s12879-023-08112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Diagnostics for pulmonary tuberculosis (PTB) are usually inaccurate, expensive, or complicated. The breathomics-based method may be an attractive option for fast and noninvasive PTB detection. METHOD Exhaled breath samples were collected from 518 PTB patients and 887 controls and tested on the real-time high-pressure photon ionization time-of-flight mass spectrometer. Machine learning algorithms were employed for breathomics analysis and PTB detection mode, whose performance was evaluated in 430 blinded clinical patients. RESULTS The breathomics-based PTB detection model achieved an accuracy of 92.6%, a sensitivity of 91.7%, a specificity of 93.0%, and an AUC of 0.975 in the blinded test set (n = 430). Age, sex, and anti-tuberculosis treatment does not significantly impact PTB detection performance. In distinguishing PTB from other pulmonary diseases (n = 182), the VOC modes also achieve good performance with an accuracy of 91.2%, a sensitivity of 91.7%, a specificity of 88.0%, and an AUC of 0.961. CONCLUSIONS The simple and noninvasive breathomics-based PTB detection method was demonstrated with high sensitivity and specificity, potentially valuable for clinical PTB screening and diagnosis.
Collapse
Affiliation(s)
- Liang Fu
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lei Wang
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, 100000, China
| | - Min Yang
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Qianting Yang
- Institute for Hepatology, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yi Lin
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Shanyi Guan
- Medical Examination Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yongcong Deng
- Pulmonary Diseases Out-Patient Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lei Liu
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Qingyun Li
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China
| | - Mengqi He
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China
| | - Peize Zhang
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China.
| | - Guofang Deng
- Division Two of the Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
19
|
Swinarew AS, Gabor J, Kusz B, Skoczyński S, Raif P, Skoczylas I, Jonas K, Grabka M, Mizia-Szubryt M, Bula K, Stanula A, Mika B, Tkacz E, Paluch J, Gąsior M, Kopeć G, Mizia-Stec K. Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification-The Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:503. [PMID: 36612835 PMCID: PMC9819134 DOI: 10.3390/ijerph20010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with a serious prognosis. The aim of this study was to identify biomarkers for PAH in the breath phase and to prepare an automatic classification method to determine the changing metabolome trends and molecular mapping. A group of 37 patients (F/M: 8/29 women, mean age 60.4 ± 10.9 years, BMI 27.6 ± 6.0 kg/m2) with diagnosed PAH were enrolled in the study. The breath phase of all the patients was collected on a highly porous septic material using a special patented holder PL230578, OHIM 002890789-0001. The collected air was then examined with gas chromatography coupled with mass spectrometry (GC/MS). The algorithms of Spectral Clustering, KMeans, DBSCAN, and hierarchical clustering methods were used to perform the cluster analysis. The identification of the changes in the ratio of the whole spectra of biomarkers allowed us to obtain a multidimensional pathway for PAH characteristics and showed the metabolome differences in the four subgroups divided by the cluster analysis. The use of GC/MS, supported with novel porous polymeric materials, for the breath phase analysis seems to be a useful tool in selecting bio-fingerprints in patients with PAH. The four metabolome classes which were obtained constitute novel data in the PAH population.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Błażej Kusz
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Szymon Skoczyński
- Department of Pneumonology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Raif
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ilona Skoczylas
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Kamil Jonas
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Marek Grabka
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Mizia-Szubryt
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Bula
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Arkadiusz Stanula
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Barbara Mika
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ewaryst Tkacz
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Jarosław Paluch
- Department of ENT, Faculty of Medical Sciences in Katowice, Medical University Silesia, 40-055 Katowice, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
20
|
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2022; 13:8. [PMID: 36676933 PMCID: PMC9866406 DOI: 10.3390/metabo13010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.
Collapse
Affiliation(s)
- Kinga Westphal
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Małgorzata Waszczuk-Jankowska
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
21
|
Meller S, Al Khatri MSA, Alhammadi HK, Álvarez G, Alvergnat G, Alves LC, Callewaert C, Caraguel CGB, Carancci P, Chaber AL, Charalambous M, Desquilbet L, Ebbers H, Ebbers J, Grandjean D, Guest C, Guyot H, Hielm-Björkman A, Hopkins A, Kreienbrock L, Logan JG, Lorenzo H, Maia RDCC, Mancilla-Tapia JM, Mardones FO, Mutesa L, Nsanzimana S, Otto CM, Salgado-Caxito M, de los Santos F, da Silva JES, Schalke E, Schoneberg C, Soares AF, Twele F, Vidal-Martínez VM, Zapata A, Zimin-Veselkoff N, Volk HA. Expert considerations and consensus for using dogs to detect human SARS-CoV-2-infections. Front Med (Lausanne) 2022; 9:1015620. [PMID: 36569156 PMCID: PMC9773891 DOI: 10.3389/fmed.2022.1015620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sebastian Meller
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Hamad Khatir Alhammadi
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Guadalupe Álvarez
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillaume Alvergnat
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Lêucio Câmara Alves
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Charles G. B. Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Paula Carancci
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Marios Charalambous
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Loïc Desquilbet
- École Nationale Vétérinaire d’Alfort, IMRB, Université Paris Est, Maisons-Alfort, France
| | | | | | - Dominique Grandjean
- École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Claire Guest
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Hugues Guyot
- Clinical Department of Production Animals, Fundamental and Applied Research for Animals & Health Research Unit, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Amy Hopkins
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - James G. Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Arctech Innovation, The Cube, Dagenham, United Kingdom
| | - Hector Lorenzo
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | - Fernando O. Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Rwanda National Joint Task Force COVID-19, Kigali, Rwanda
| | | | - Cynthia M. Otto
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marília Salgado-Caxito
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Esther Schalke
- Bundeswehr Medical Service Headquarters, Koblenz, Germany
| | - Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Friederike Twele
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Victor Manuel Vidal-Martínez
- Laboratorio de Parasitología y Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, Mérida, Yucatán, Mexico
| | - Ariel Zapata
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Natalia Zimin-Veselkoff
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Holger A. Volk
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
- Center for Systems Neuroscience Hannover, Hanover, Germany
| |
Collapse
|
22
|
Shahi F, Forrester S, Redeker K, Chong JP, Barlow G. Case Report: The effect of intravenous and oral antibiotics on the gut microbiome and breath volatile organic compounds over one year. Wellcome Open Res 2022; 7:50. [PMID: 36874581 PMCID: PMC9975432 DOI: 10.12688/wellcomeopenres.17450.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global concern and better understanding of the gut microbiome, a known 'amplifier' of AMR, may allow future clinicians to tailor therapy to minimise this risk and offer a personalised medicine approach. To examine the gut microbiome, patients are required to provide faecal samples; more convenient and cheaper solutions need to be found. METHODS As part of a pilot study looking at how routes of administration affect the gut microbiome in NHS patients undergoing routine clinical management for infections, we hypothesised that effects on the gut microbiome varied with the route and metabolism of antibiotic used, and these changes may be reflected in breath metabolites. We present a case report of a patient with an unusual clinical history, alongside breath metabolite and gut microbiome data taken before, during and after antibiotic therapy over a period of one year. RESULTS We noted a shift in the dominant Bacteroides strain in the patient's gut microbiome between pre- and post-therapy samples, along with an alteration in the composition of breath metabolites. CONCLUSIONS This study provides a framework for similar future work and highlights the need for further research on the relationships between changes in microbial gut communities and antimicrobial exposure, patient clinical status, and the metabolites of human breath.
Collapse
Affiliation(s)
- Farah Shahi
- Department of Biology, University of York, UK, York, YO10 5DD, UK
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Sarah Forrester
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Kelly Redeker
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - James P.J. Chong
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Gavin Barlow
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
- Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, YO10 5DD, UK
| |
Collapse
|
23
|
Qualitative and quantitative assessment of flavor quality of Chinese soybean paste using multiple sensor technologies combined with chemometrics and a data fusion strategy. Food Chem 2022; 405:134859. [DOI: 10.1016/j.foodchem.2022.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
24
|
Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother–child pairs of a birth cohort and analysed by gas-chromatography–mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath.
Collapse
|
25
|
Shahi F, Forrester S, Redeker K, Chong JP, Barlow G. Case Report: The effect of intravenous and oral antibiotics on the gut microbiome and breath volatile organic compounds over one year. Wellcome Open Res 2022; 7:50. [PMID: 36874581 PMCID: PMC9975432 DOI: 10.12688/wellcomeopenres.17450.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global concern and better understanding of the gut microbiome, a known 'amplifier' of AMR, may allow future clinicians to tailor therapy to minimise this risk and offer a personalised medicine approach. To examine the gut microbiome, patients are required to provide faecal samples; more convenient and cheaper solutions need to be found. METHODS As part of a pilot study looking at how routes of administration affect the gut microbiome in NHS patients undergoing routine clinical management for infections, we hypothesised that effects on the gut microbiome varied with the route and metabolism of antibiotic used, and these changes may be reflected in breath metabolites. We present a case report of a patient with an unusual clinical history, alongside breath metabolite and gut microbiome data taken before, during and after antibiotic therapy over a period of one year. RESULTS We noted a shift in the dominant Bacteroides strain in the patient's gut microbiome between pre- and post-therapy samples, along with an alteration in the composition of breath metabolites. CONCLUSIONS This study provides a framework for similar future work and highlights the need for further research on the relationships between changes in microbial gut communities and antimicrobial exposure, patient clinical status, and the metabolites of human breath.
Collapse
Affiliation(s)
- Farah Shahi
- Department of Biology, University of York, UK, York, YO10 5DD, UK
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Sarah Forrester
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Kelly Redeker
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - James P.J. Chong
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Gavin Barlow
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
- Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, YO10 5DD, UK
| |
Collapse
|
26
|
AuNP@ZeNose (ZIF-based electrochemical nose) for detection of flu biomarker in breath. Mikrochim Acta 2022; 189:231. [PMID: 35612633 DOI: 10.1007/s00604-022-05334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
A novel electrochemical sensor is reported for the detection of isoprene levels in breath using a ZIF-based electrochemical nose. This sensor incorporates a hybrid detection system using gold nanoparticles encapsulated inside the ZIF-8 moiety. Breath-based analysis is widely being used for monitoring the metabolic state of the body. It is associated with the change in the concentration of volatile organic compounds and inorganic gases released endogenously and can be tracked using breath as the sample. One such volatile organic compound, isoprene, has been correlated to the presence of influenza virus or respiratory inflammation. Analytical techniques such as powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and tunneling electron microscopy were used to understand the structural features of the composite. The electrochemical nose system uses chronoamperometry as the transduction mechanism to monitor the diffusion kinetics of the target analyte across the electrode-electrolyte interface. The presented work demonstrates isoprene sensing with high sensitivity and specificity and a detection limit of 10 parts per billion in air. We successfully demonstrate the functionality of the ZIF-based electrochemical nose for point-of-care screening of isoprene levels by developing a prototype device using a commercially available development board. We foresee that the developed sensing platform can help in early screening for the presence of influenza virus and help control the infection rate.
Collapse
|
27
|
Skarysz A, Salman D, Eddleston M, Sykora M, Hunsicker E, Nailon WH, Darnley K, McLaren DB, Thomas CLP, Soltoggio A. Fast and automated biomarker detection in breath samples with machine learning. PLoS One 2022; 17:e0265399. [PMID: 35413057 PMCID: PMC9004778 DOI: 10.1371/journal.pone.0265399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions and can be used for fast, accurate and non-invasive diagnostics. Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis that is time-consuming, subjective and may introduce errors. We propose a machine learning-based system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs directly from raw data, thus bypassing expert-led processing. We evaluate this new approach on clinical samples and with four types of convolutional neural networks (CNNs): VGG16, VGG-like, densely connected and residual CNNs. The proposed machine learning methods showed to outperform the expert-led analysis by detecting a significantly higher number of VOCs in just a fraction of time while maintaining high specificity. These results suggest that the proposed novel approach can help the large-scale deployment of breath-based diagnosis by reducing time and cost, and increasing accuracy and consistency.
Collapse
Affiliation(s)
- Angelika Skarysz
- Computer Science Department, School of Science, Loughborough University, Loughborough, United Kingdom
- * E-mail: (AS); (AS)
| | - Dahlia Salman
- Centre for Analytical Science, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Michael Eddleston
- Pharmacology, Toxicology & Therapeutics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Sykora
- Centre for Information Management, School of Business and Economics, Loughborough University, Loughborough, United Kingdom
| | - Eugénie Hunsicker
- Mathematical Sciences Department, School of Science, Loughborough University, Loughborough, United Kingdom
| | | | - Kareen Darnley
- Clinical Research Facility, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | | | - C. L. Paul Thomas
- Centre for Analytical Science, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Andrea Soltoggio
- Computer Science Department, School of Science, Loughborough University, Loughborough, United Kingdom
- * E-mail: (AS); (AS)
| |
Collapse
|
28
|
Lippa KA, Aristizabal-Henao JJ, Beger RD, Bowden JA, Broeckling C, Beecher C, Clay Davis W, Dunn WB, Flores R, Goodacre R, Gouveia GJ, Harms AC, Hartung T, Jones CM, Lewis MR, Ntai I, Percy AJ, Raftery D, Schock TB, Sun J, Theodoridis G, Tayyari F, Torta F, Ulmer CZ, Wilson I, Ubhi BK. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics 2022; 18:24. [PMID: 35397018 PMCID: PMC8994740 DOI: 10.1007/s11306-021-01848-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.
Collapse
Affiliation(s)
- Katrice A Lippa
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Juan J Aristizabal-Henao
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
- BERG LLC, 500 Old Connecticut Path, Building B, 3rd Floor, Framingham, MA, 01710, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - John A Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Corey Broeckling
- Analytical Resources Core: Bioanalysis and Omics Center, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - W Clay Davis
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Charleston, SC, 29412, USA
| | - Warwick B Dunn
- School of Biosciences, Institute of Metabolism and Systems Research and Phenome Centre Birmingham, University of Birmingham, Birmingham, B15, 2TT, UK
| | - Roberto Flores
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown St., Liverpool, L69 7ZB, UK
| | - Gonçalo J Gouveia
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Amy C Harms
- Biomedical Metabolomics Facility Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Thomas Hartung
- Bloomberg School of Public Health, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Christina M Jones
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, London, SW7 2AZ, UK
| | - Ioanna Ntai
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | - Andrew J Percy
- Cambridge Isotope Laboratories, Inc., Tewksbury, MA, 01876, USA
| | - Dan Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, 98109, USA
| | - Tracey B Schock
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Charleston, SC, 29412, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | | | - Fariba Tayyari
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Federico Torta
- Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Candice Z Ulmer
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30341, USA
| | - Ian Wilson
- Computational & Systems Medicine, Imperial College, Exhibition Rd, London, SW7 2AZ, UK
| | - Baljit K Ubhi
- MOBILion Systems Inc., 4 Hillman Drive Suite 130, Chadds Ford, PA, 19317, USA.
| |
Collapse
|
29
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|
30
|
Shahi F, Forrester S, Redeker K, Chong JP, Barlow G. Case Report: The effect of intravenous and oral antibiotics on the gut microbiome and breath volatile organic compounds over one year. Wellcome Open Res 2022; 7:50. [PMID: 36874581 PMCID: PMC9975432 DOI: 10.12688/wellcomeopenres.17450.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global concern and better understanding of the gut microbiome, a known 'amplifier' of AMR, may allow future clinicians to tailor therapy to minimise this risk and offer a personalised medicine approach. To examine the gut microbiome, patients are required to provide faecal samples; more convenient and cheaper solutions need to be found. METHODS As part of a pilot study looking at how routes of administration affect the gut microbiome in NHS patients undergoing routine clinical management for infections, we hypothesised that effects on the gut microbiome varied with the route and metabolism of antibiotic used, and these changes may be reflected in breath metabolites. We present a case report of a patient with an unusual clinical history, alongside breath metabolite and gut microbiome data taken before, during and after antibiotic therapy over a period of one year. RESULTS We noted a shift in the dominant Bacteroides strain in the patient's gut microbiome between pre- and post-therapy samples, along with an alteration in the composition of breath metabolites. CONCLUSIONS This study provides a framework for similar future work and highlights the need for further research on the relationships between changes in microbial gut communities and antimicrobial exposure, patient clinical status, and the metabolites of human breath.
Collapse
Affiliation(s)
- Farah Shahi
- Department of Biology, University of York, UK, York, YO10 5DD, UK
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Sarah Forrester
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Kelly Redeker
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - James P.J. Chong
- Department of Biology, University of York, UK, York, YO10 5DD, UK
| | - Gavin Barlow
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, HU3 2JZ, UK
- Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, YO10 5DD, UK
| |
Collapse
|
31
|
Roquencourt C, Grassin-Delyle S, Thévenot EA. ptairMS: real-time processing and analysis of PTR-TOF-MS data for biomarker discovery in exhaled breath. Bioinformatics 2022; 38:1930-1937. [PMID: 35043937 PMCID: PMC8963316 DOI: 10.1093/bioinformatics/btac031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/14/2022] Open
Abstract
Motivation Analysis of volatile organic compounds (VOCs) in exhaled breath by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is of increasing interest for real-time, non-invasive diagnosis, phenotyping and therapeutic drug monitoring in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts and suited for biomarker discovery studies. Results We developed a comprehensive suite of algorithms that process raw data from patient acquisitions and generate the table of feature intensities. Notably, we included an innovative two-dimensional peak deconvolution model based on penalized splines signal regression for accurate estimation of the temporal profile and feature quantification, as well as a method to specifically select the VOCs from exhaled breath. The workflow was implemented as the ptairMS software, which contains a graphical interface to facilitate cohort management and data analysis. The approach was validated on both simulated and experimental datasets, and we showed that the sensitivity and specificity of the VOC detection reached 99% and 98.4%, respectively, and that the error of quantification was below 8.1% for concentrations down to 19 ppb. Availability and implementation The ptairMS software is publicly available as an R package on Bioconductor (doi: 10.18129/B9.bioc.ptairMS), as well as its companion experiment package ptairData (doi: 10.18129/B9.bioc.ptairData). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Camille Roquencourt
- CEA, LIST, Laboratoire Sciences des Données et de la Décision, F-91191 Gif-Sur-Yvette, France
| | - Stanislas Grassin-Delyle
- Hôpital Foch, Exhalomics, Département des maladies des voies respiratoires, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis)
| | - Etienne A Thévenot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, F-91191 Gif sur Yvette, France
| |
Collapse
|
32
|
Weng Z, Sun L, Wang F, Sui X, Fang Y, Tang X, Shen X. Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC-MS. FOOD CHEMISTRY-X 2021; 12:100141. [PMID: 34704014 PMCID: PMC8523844 DOI: 10.1016/j.fochx.2021.100141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Enzymatic hydrolysis with Alcalase reduced soybean odor substance 1-octene-3-ol. Excessive enzymatic hydrolysis resulted in the deterioration of the hydrolysate flavor. The flavour of soybean meal hydrolysates with different hydrolysis conditions could be distinguished by E-tongue.
In the present study, E-nose, E-tongue, and headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC–MS) technology combined with Principal Component Analysis (PCA) were employed to evaluate the flavor characteristics of the volatile and the non-volatile substances generated during the enzymatic hydrolysis of the soybean meal by Alcalase. The results showed that the enzymatic hydrolysis effectively reduced the content of soybean odorous substance 1-octene-3-ol and led to better flavor. However, the excessive enzymatic hydrolysis resulted in the deterioration of the enzymatic hydrolysates flavor. In addition, both radar graph and PCA of E-tongue were able to provide the distribution of flavor substances during the enzymatic hydrolysis of the soybean meal. These results provided a theoretical basis for the improvement of the flavors of the soybean meal and its derived products.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| |
Collapse
|
33
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
35
|
Pham YL, Beauchamp J. Breath Biomarkers in Diagnostic Applications. Molecules 2021; 26:molecules26185514. [PMID: 34576985 PMCID: PMC8468811 DOI: 10.3390/molecules26185514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
The detection of chemical compounds in exhaled human breath presents an opportunity to determine physiological state, diagnose disease or assess environmental exposure. Recent advancements in metabolomics research have led to improved capabilities to explore human metabolic profiles in breath. Despite some notable challenges in sampling and analysis, exhaled breath represents a desirable medium for metabolomics applications, foremost due to its non-invasive, convenient and practically limitless availability. Several breath-based tests that target either endogenous or exogenous gas-phase compounds are currently established and are in practical and/or clinical use. This review outlines the concept of breath analysis in the context of these unique tests and their applications. The respective breath biomarkers targeted in each test are discussed in relation to their physiological production in the human body and the development and implementation of the associated tests. The paper concludes with a brief insight into prospective tests and an outlook of the future direction of breath research.
Collapse
Affiliation(s)
- Y Lan Pham
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany;
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany;
- Correspondence:
| |
Collapse
|
36
|
Sola-Martínez RA, Lozano-Terol G, Gallego-Jara J, Morales E, Cantero-Cano E, Sanchez-Solis M, García-Marcos L, Jiménez-Guerrero P, Noguera-Velasco JA, Cánovas Díaz M, de Diego Puente T. Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Sci Rep 2021; 11:13823. [PMID: 34226570 PMCID: PMC8257728 DOI: 10.1038/s41598-021-92933-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of asthma is considerably high among women of childbearing age. Most asthmatic women also often have other atopic disorders. Therefore, the differentiation between patients with atopic diseases without asthma and asthmatics with coexisting diseases is essential to avoid underdiagnosis of asthma and to design strategies to reduce symptom severity and improve quality of life of patients. Hence, we aimed for the first time to conduct an analysis of volatile organic compounds in exhaled breath of women of childbearing age as a new approach to discriminate between asthmatics with other coexisting atopic diseases and non-asthmatics (with or without atopic diseases), which could be a helpful tool for more accurate asthma detection and monitoring using a noninvasive technique in the near future. In this study, exhaled air samples of 336 women (training set (n = 211) and validation set (n = 125)) were collected and analyzed by thermal desorption coupled with gas chromatography-mass spectrometry. ASCA (ANOVA (analysis of variance) simultaneous component analysis) and LASSO + LS (least absolute shrinkage and selection operator + logistic regression) were employed for data analysis. Fifteen statistically significant models (p-value < 0.05 in permutation tests) that discriminated asthma with other coexisting atopic diseases in women of childbearing age were generated. Acetone, 2-ethyl-1-hexanol and a tetrahydroisoquinoline derivative were selected as discriminants of asthma with other coexisting atopic diseases. In addition, carbon disulfide, a tetrahydroisoquinoline derivative, 2-ethyl-1-hexanol and decane discriminated asthma disease among patients with other atopic disorders. Results of this study indicate that refined metabolomic analysis of exhaled breath allows asthma with other coexisting atopic diseases discrimination in women of reproductive age.
Collapse
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
| | | | - Manuel Sanchez-Solis
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - José A Noguera-Velasco
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
37
|
van Oort PM, Nijsen TM, White IR, Knobel HH, Felton T, Rattray N, Lawal O, Bulut M, Ahmed W, Artigas A, Povoa PR, Martin-Loeches I, Weda H, Goodacre R, Schultz MJ, Dark PM, Fowler SJ, Bos LD. Untargeted Molecular Analysis of Exhaled Breath as a Diagnostic Test for Ventilator-Associated Lower Respiratory Tract Infections (BreathDx). Thorax 2021; 77:79-81. [PMID: 34088787 PMCID: PMC8685633 DOI: 10.1136/thoraxjnl-2021-217362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Patients suspected of ventilator-associated lower respiratory tract infections (VA-LRTIs) commonly receive broad-spectrum antimicrobial therapy unnecessarily. We tested whether exhaled breath analysis can discriminate between patients suspected of VA-LRTI with confirmed infection, from patients with negative cultures. Breath from 108 patients suspected of VA-LRTI was analysed by gas chromatography-mass spectrometry. The breath test had a sensitivity of 98% at a specificity of 49%, confirmed with a second analytical method. The breath test had a negative predictive value of 96% and excluded pneumonia in half of the patients with negative cultures. Trial registration number: UKCRN ID number 19086, registered May 2015.
Collapse
Affiliation(s)
| | | | - Iain R White
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.,Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Hugo H Knobel
- Materials Analysis, Eurofins Materials Science Netherlands BV, Eindhoven, The Netherlands
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Oluwasola Lawal
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Waqar Ahmed
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Antonio Artigas
- Critical Care Centre, Corporació Sanitària I Universitaria Parc Taulí-Hospital De Sabadell-Ciber Enfermedades Respiratorias, Sabadell, Barcelona, Spain
| | - Pedro R Povoa
- Intensive Care, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | | | - Royston Goodacre
- Department of Biochemistry, University of Liverpool, Liverpool, UK
| | - Marcus J Schultz
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Paul M Dark
- Intensive care, University of Manchester, Manchester, UK
| | - Stephen J Fowler
- Manchester University NHS Foundation Trust - Wythenshawe Hospital, Manchester, UK.,Division of Infection, Immunity and Respiratory Medicine, NIHR's Manchester Biomedical Research Centre (BRC), the University of Manchester, Manchester, UK
| | - Lieuwe D Bos
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands .,Respiratory Medicine, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | | |
Collapse
|
38
|
Mohamed N, van de Goor R, El-Sheikh M, Elrayah O, Osman T, Nginamau ES, Johannessen AC, Suleiman A, Costea DE, Kross KW. Feasibility of a Portable Electronic Nose for Detection of Oral Squamous Cell Carcinoma in Sudan. Healthcare (Basel) 2021; 9:healthcare9050534. [PMID: 34063592 PMCID: PMC8147635 DOI: 10.3390/healthcare9050534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is increasing at an alarming rate particularly in low-income countries. This urges for research into noninvasive, user-friendly diagnostic tools that can be used in limited-resource settings. This study aims to test and validate the feasibility of e-nose technology for detecting OSCC in the limited-resource settings of the Sudanese population. METHODS Two e-nose devices (Aeonose™, eNose Company, Zutphen, The Netherlands) were used to collect breath samples from OSCC (n = 49) and control (n = 35) patients. Patients were divided into a training group for building an artificial neural network (ANN) model and a blinded control group for model validation. The Statistical Package for the Social Sciences (SPSS) software was used for the analysis of baseline characteristics and regression. Aethena proprietary software was used for data analysis using artificial neural networks based on patterns of volatile organic compounds. RESULTS A diagnostic accuracy of 81% was observed, with 88% sensitivity and 71% specificity. CONCLUSIONS This study demonstrates that e-nose is an efficient tool for OSCC detection in limited-resource settings, where it offers a valuable cost-effective strategy to tackle the burden posed by OSCC.
Collapse
Affiliation(s)
- Nazar Mohamed
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Center for International Health (CIH), University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Rens van de Goor
- Department of Otolaryngology—Head and Neck Surgery, Bernhoven Hospital, P.O. Box 707, 5400 AS Uden, The Netherlands;
- Department of Otolaryngology—Head and Neck Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Mariam El-Sheikh
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Osman Elrayah
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Tarig Osman
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
| | - Elisabeth Sivy Nginamau
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
| | - Anne Christine Johannessen
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
| | - Ahmed Suleiman
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Daniela Elena Costea
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
- Correspondence: (D.E.C.); (K.W.K); Tel.: +47-5597-2565 (D.E.C.); +33-7-68-19-05-57 (K.W.K.)
| | - Kenneth W. Kross
- Department of Otolaryngology—Head and Neck Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Policlinique Saint Odilon, 32 Rue Professeur Etienne Sorrel, 03000 Moulins, France
- Correspondence: (D.E.C.); (K.W.K); Tel.: +47-5597-2565 (D.E.C.); +33-7-68-19-05-57 (K.W.K.)
| |
Collapse
|
39
|
Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules 2021; 26:molecules26092667. [PMID: 34063191 PMCID: PMC8125105 DOI: 10.3390/molecules26092667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Exhaled breath is a potential noninvasive matrix to give new information about metabolic effects of diets. In this pilot study, non-targeted analysis of exhaled breath volatile organic compounds (VOCs) was made by comprehensive two-dimensional gas chromatography-mass spectrometry (GCxGC-MS) to explore compounds relating to whole grain (WG) diets. Nine healthy subjects participated in the dietary intervention with parallel crossover design, consisting of two high-fiber diets containing whole grain rye bread (WGR) or whole grain wheat bread (WGW) and 1-week control diets with refined wheat bread (WW) before both diet periods. Large interindividual differences were detected in the VOC composition. About 260 VOCs were detected from exhaled breath samples, in which 40 of the compounds were present in more than half of the samples. Various derivatives of benzoic acid and phenolic compounds, as well as some furanones existed in exhaled breath samples only after the WG diets, making them interesting compounds to study further.
Collapse
|
40
|
Sola Martínez RA, Pastor Hernández JM, Yanes Torrado Ó, Cánovas Díaz M, de Diego Puente T, Vinaixa Crevillent M. Exhaled volatile organic compounds analysis in clinical pediatrics: a systematic review. Pediatr Res 2021; 89:1352-1363. [PMID: 32919397 DOI: 10.1038/s41390-020-01116-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Measured exhaled volatile organic compounds (VOCs) in breath also referred to as exhaled volatilome have been long claimed as a potential source of non-invasive and clinically applicable biomarkers. However, the feasibility of using exhaled volatilome in clinical practice remains to be demonstrated, particularly in pediatrics where the need for improved non-invasive diagnostic and monitoring methods is most urgent. This work presents the first formal evidence-based judgment of the clinical potential of breath volatilome in the pediatric population. METHODS A rigorous systematic review across Web of Science, SCOPUS, and PubMed databases following the PRISMA statement guidelines. A narrative synthesis of the evidence was conducted and QUADAS-2 was used to assess the quality of selected studies. RESULTS Two independent reviewers deemed 22 out of the 229 records initially found to satisfy inclusion criteria. A summary of breath VOCs found to be relevant for several respiratory, infectious, and metabolic pathologies was conducted. In addition, we assessed their associated metabolism coverage through a functional characterization analysis. CONCLUSION Our results indicate that current research remains stagnant in a preclinical exploratory setting. Designing exploratory experiments in compliance with metabolomics practice should drive forward the clinical translation of VOCs breath analysis. IMPACT What is the key message of your article? Metabolomics practice could help to achieve the clinical utility of exhaled volatilome analysis. What does it add to the existing literature? This work is the first systematic review focused on disease status discrimination using analysis of exhaled breath in the pediatric population. A summary of the reported exhaled volatile organic compounds is conducted together with a functional characterization analysis. What is the impact? Having noted challenges preventing the clinical translation, we summary metabolomics practices and the experimental designs that are closer to clinical practice to create a framework to guide future trials.
Collapse
Affiliation(s)
- Rosa A Sola Martínez
- Department of Biochemistry and Molecular Biology (B) and Immunology, University of Murcia and Murcian Institute of Biosanitary Research Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - José M Pastor Hernández
- Department of Biochemistry and Molecular Biology (B) and Immunology, University of Murcia and Murcian Institute of Biosanitary Research Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - Óscar Yanes Torrado
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology (B) and Immunology, University of Murcia and Murcian Institute of Biosanitary Research Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology (B) and Immunology, University of Murcia and Murcian Institute of Biosanitary Research Virgen de la Arrixaca (IMIB), Murcia, Spain.
| | - María Vinaixa Crevillent
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Hwang SI, Chen HY, Fenk C, Rothfuss MA, Bocan KN, Franconi NG, Morgan GJ, White DL, Burkert SC, Ellis JE, Vinay ML, Rometo DA, Finegold DN, Sejdic E, Cho SK, Star A. Breath Acetone Sensing Based on Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids Enabled by a Custom-Built Dehumidifier. ACS Sens 2021; 6:871-880. [PMID: 33720705 DOI: 10.1021/acssensors.0c01973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@TiO2) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and β-hydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hou-Yu Chen
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Courtney Fenk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gregory J. Morgan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James E. Ellis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David A. Rometo
- Department of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David N. Finegold
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
42
|
Pleil JD, Lowe CN, Wallace MAG, Williams AJ. Using the US EPA CompTox Chemicals Dashboard to interpret targeted and non-targeted GC-MS analyses from human breath and other biological media. J Breath Res 2021; 15:025001. [PMID: 33734097 DOI: 10.1088/1752-7163/abdb03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The U.S. EPA CompTox Chemicals Dashboard is a freely available web-based application providing access to chemistry, toxicity, and exposure data for ∼900 000 chemicals. Data, search functionality, and prediction models within the Dashboard can help identify chemicals found in environmental analyses and human biomonitoring. It was designed to deliver data generated to support computational toxicology to reduce chemical testing on animals and provide access to new approach methodologies including prediction models. The inclusion of mass and formula-based searches, together with relevant ranking approaches, allows for the identification and prioritization of exogenous (environmental) chemicals from high resolution mass spectrometry in need of further evaluation. The Dashboard includes chemicals that can be detected by liquid chromatography, gas chromatography-mass spectrometry (GC-MS) and direct-MS analyses, and chemical lists have been added that highlight breath-borne volatile and semi-volatile organic compounds. The Dashboard can be searched using various chemical identifiers (e.g. chemical synonyms, CASRN and InChIKeys), chemical formula, MS-ready formulae monoisotopic mass, consumer product categories and assays/genes associated with high-throughput screening data. An integrated search at a chemical level performs searches against PubMed to identify relevant published literature. This article describes specific procedures using the Dashboard as a first-stop tool for exploring both targeted and non-targeted results from GC-MS analyses of chemicals found in breath, exhaled breath condensate, and associated aerosols.
Collapse
Affiliation(s)
- Joachim D Pleil
- Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
43
|
Foo LH, Balan P, Pang LM, Laine ML, Seneviratne CJ. Role of the oral microbiome, metabolic pathways, and novel diagnostic tools in intra-oral halitosis: a comprehensive update. Crit Rev Microbiol 2021; 47:359-375. [PMID: 33653206 DOI: 10.1080/1040841x.2021.1888867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Halitosis or oral malodor is one of the most common reasons for the patients' visit to the dental clinic, ranking behind only dental caries and periodontitis. In the present times, where social and professional communications are becoming unavoidable, halitosis has become a concern of growing importance. Oral malodor mostly develops due to the putrefaction of substrates by the indigenous bacterial populations. Although culture-based studies have provided adequate information on halitosis, the high throughput omics technologies have amplified the resolution at which oral microbial community can be examined and has led to the detection of a broader range of taxa associated with intra-oral halitosis (IOH). These microorganisms are regulated by the interactions of their ecological processes. Thus to develop effective treatment strategies, it is important to understand the microbial basis of halitosis. In the current review, we provide an update on IOH in context to the role of the oral microbiome, metabolic pathways involved, and novel diagnostic tools, including breathomics. Understanding oral microbiota associated with halitosis from a broader ecological perspective can provide novel insights into one's oral and systemic health. Such information can pave the way for the emergence of diagnostic tools that can revolutionize the early detection of halitosis and various associated medical conditions.
Collapse
Affiliation(s)
- Lean Heong Foo
- Department of Restorative Dentistry, Periodontic Unit, National Dental Centre Singapore, Singapore, Singapore.,Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | - Preethi Balan
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore.,Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| | - Li Mei Pang
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Chaminda Jayampath Seneviratne
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore.,Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Sinclair E, Walton-Doyle C, Sarkar D, Hollywood KA, Milne J, Lim SH, Kunath T, Rijs AM, de Bie RMA, Silverdale M, Trivedi DK, Barran P. Validating Differential Volatilome Profiles in Parkinson's Disease. ACS CENTRAL SCIENCE 2021; 7:300-306. [PMID: 33655068 PMCID: PMC7908024 DOI: 10.1021/acscentsci.0c01028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that does not currently have a robust clinical diagnostic test. Nonmotor symptoms such as skin disorders have long since been associated with the disease, and more recently a characteristic odor emanating from the skin of people with Parkinson's has been identified. Here, dynamic head space (DHS) thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) is implemented to directly measure the volatile components of sebum on swabs sampled from people with Parkinson's-both drug naïve and those on PD medications (n = 100) and control subjects (n = 29). Supervised multivariate analyses of data showed 84.4% correct classification of PD cases using all detected volatile compounds. Variable importance in projection (VIP) scores were generated from these data, which revealed eight features with VIP > 1 and p < 0.05 which all presented a downregulation within the control cohorts. Purified standards based on previously annotated analytes of interest eicosane and octadecanal did not match to patient sample data, although multiple metabolite features are annotated with these compounds all with high spectral matches indicating the presence of a series of similar structured species. DHS-TD-GC-MS analysis of a range of lipid standards has revealed the presence of common hydrocarbon species rather than differentiated intact compounds which are hypothesized to be breakdown products of lipids. This replication study validates that a differential volatile profile between control and PD cohorts can be measured using an analytical method that measures volatile compounds directly from skin swabs.
Collapse
Affiliation(s)
- Eleanor Sinclair
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Caitlin Walton-Doyle
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Depanjan Sarkar
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Katherine A. Hollywood
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
- Manchester
Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Joy Milne
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Sze Hway Lim
- Department
of Neurology, Salford Royal Foundation Trust, Manchester Academic
Health Science Centre, The University of
Manchester, Manchester M13 9PL, United Kingdom
| | - Tilo Kunath
- Institute
for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Anouk M. Rijs
- Division
of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob M. A. de Bie
- Department
of Neurology, Amsterdam Neuroscience, Amsterdam
University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105
AZ Amsterdam, The Netherlands
| | - Monty Silverdale
- Department
of Neurology, Salford Royal Foundation Trust, Manchester Academic
Health Science Centre, The University of
Manchester, Manchester M13 9PL, United Kingdom
| | - Drupad K. Trivedi
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
- E-mail:
| |
Collapse
|
45
|
Wojtasik-Kalinowska I, Onopiuk A, Szpicer A, Wierzbicka A, Półtorak A. Frozen storage quality and flavor evaluation of ready to eat steamed meat products treated with antioxidants. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1869103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Anna Onopiuk
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Półtorak
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
46
|
van Oort PMP, White IR, Ahmed W, Johnson C, Bannard-Smith J, Felton T, Bos LD, Goodacre R, Dark P, Fowler SJ. Detection and quantification of exhaled volatile organic compounds in mechanically ventilated patients - comparison of two sampling methods. Analyst 2021; 146:222-231. [PMID: 33103170 DOI: 10.1039/c9an01134j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exhaled breath analysis is a promising new diagnostic tool, but currently no standardised method for sampling is available in mechanically ventilated patients. We compared two breath sampling methods, first using an artificial ventilator circuit, then in "real life" in mechanically ventilated patients on the intensive care unit. In the laboratory circuit, a 24-component synthetic-breath volatile organic compound (VOC) mixture was injected into the system as air was sampled: (A) through a port on the exhalation limb of the circuit and (B) through a closed endo-bronchial suction catheter. Sorbent tubes were used to collect samples for analysis by thermal desorption-gas chromatography-mass spectrometry. Realistic mechanical ventilation rates and breath pressure-volume loops were established and method detection limits (MDLs) were calculated for all VOCs. Higher yields of VOCs were retrieved using the closed suction catheter; however, for several VOCs MDLs were compromised due to the background signal associated with plastic and rubber components in the catheters. Different brands of suction catheter were compared. Exhaled VOC data from 40 patient samples collected at two sites were then used to calculate the proportion of data analysed above the MDL. The relative performance of the two methods differed depending on the VOC under study and both methods showed sensitivity towards different exhaled VOCs. Furthermore, method performance differed depending on recruitment site, as the centres were equipped with different brands of respiratory equipment, an important consideration for the design of multicentre studies investigating exhaled VOCs in mechanically ventilated patients.
Collapse
Affiliation(s)
- Pouline M P van Oort
- Department of Intensive Care, Amsterdam UMC - location Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, Fleuriet J, Salvator H, Naline E, Couderc LJ, Devillier P, Thévenot EA, Annane D. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine 2021; 63:103154. [PMID: 33279860 PMCID: PMC7714658 DOI: 10.1016/j.ebiom.2020.103154] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Early diagnosis of coronavirus disease 2019 (COVID-19) is of the utmost importance but remains challenging. The objective of the current study was to characterize exhaled breath from mechanically ventilated adults with COVID-19. METHODS In this prospective observational study, we used real-time, online, proton transfer reaction time-of-flight mass spectrometry to perform a metabolomic analysis of expired air from adults undergoing invasive mechanical ventilation in the intensive care unit due to severe COVID-19 or non-COVID-19 acute respiratory distress syndrome (ARDS). FINDINGS Between March 25th and June 25th, 2020, we included 40 patients with ARDS, of whom 28 had proven COVID-19. In a multivariate analysis, we identified a characteristic breathprint for COVID-19. We could differentiate between COVID-19 and non-COVID-19 ARDS with accuracy of 93% (sensitivity: 90%, specificity: 94%, area under the receiver operating characteristic curve: 0·94-0·98, after cross-validation). The four most prominent volatile compounds in COVID-19 patients were methylpent-2-enal, 2,4-octadiene 1-chloroheptane, and nonanal. INTERPRETATION The real-time, non-invasive detection of methylpent-2-enal, 2,4-octadiene 1-chloroheptane, and nonanal in exhaled breath may identify ARDS patients with COVID-19. FUNDING The study was funded by Agence Nationale de la Recherche (SoftwAiR, ANR-18-CE45-0017 and RHU4 RECORDS, Programme d'Investissements d'Avenir, ANR-18-RHUS-0004), Région Île de France (SESAME 2016), and Fondation Foch.
Collapse
Affiliation(s)
- Stanislas Grassin-Delyle
- Hôpital Foch, Exhalomics®, Département des maladies des voies respiratoires, Suresnes, France (S.G.D., H.S., E.N., L-J.C., P.D.); Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France (S.G.D., P.M., N.H., D.A.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)..
| | - Camille Roquencourt
- CEA, LIST, Laboratoire Sciences des Données et de la Décision, Gif-sur-Yvette, France (C.R.)
| | - Pierre Moine
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France (S.G.D., P.M., N.H., D.A.); Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.)
| | - Gabriel Saffroy
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.)
| | - Stanislas Carn
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.)
| | - Nicholas Heming
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France (S.G.D., P.M., N.H., D.A.); Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.)
| | - Jérôme Fleuriet
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.)
| | - Hélène Salvator
- Hôpital Foch, Exhalomics®, Département des maladies des voies respiratoires, Suresnes, France (S.G.D., H.S., E.N., L-J.C., P.D.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| | - Emmanuel Naline
- Hôpital Foch, Exhalomics®, Département des maladies des voies respiratoires, Suresnes, France (S.G.D., H.S., E.N., L-J.C., P.D.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| | - Louis-Jean Couderc
- Hôpital Foch, Exhalomics®, Département des maladies des voies respiratoires, Suresnes, France (S.G.D., H.S., E.N., L-J.C., P.D.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| | - Philippe Devillier
- Hôpital Foch, Exhalomics®, Département des maladies des voies respiratoires, Suresnes, France (S.G.D., H.S., E.N., L-J.C., P.D.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| | - Etienne A Thévenot
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France (E.T.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| | - Djillali Annane
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France (S.G.D., P.M., N.H., D.A.); Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France (P.M., G.S., S.C., N.H., J.F., D.A.); FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) (S.G.D., H.S., E.N., L-J.C., P.D., E.T., D.A.)
| |
Collapse
|
48
|
Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources. Sci Rep 2020; 10:22008. [PMID: 33319832 PMCID: PMC7738550 DOI: 10.1038/s41598-020-79014-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
The noninvasive diagnosis and monitoring of high prevalence diseases such as cardiovascular diseases, cancers and chronic respiratory diseases are currently priority objectives in the area of health. In this regard, the analysis of volatile organic compounds (VOCs) has been identified as a potential noninvasive tool for the diagnosis and surveillance of several diseases. Despite the advantages of this strategy, it is not yet a routine clinical tool. The lack of reproducible protocols for each step of the biomarker discovery phase is an obstacle of the current state. Specifically, this issue is present at the data preprocessing step. Thus, an open source workflow for preprocessing the data obtained by the analysis of exhaled breath samples using gas chromatography coupled with single quadrupole mass spectrometry (GC/MS) is presented in this paper. This workflow is based on the connection of two approaches to transform raw data into a useful matrix for statistical analysis. Moreover, this workflow includes matching compounds from breath samples with a spectral library. Three free packages (xcms, cliqueMS and eRah) written in the language R are used for this purpose. Furthermore, this paper presents a suitable protocol for exhaled breath sample collection from infants under 2 years of age for GC/MS.
Collapse
|
49
|
Wilkinson M, White IR, Hamshere K, Holz O, Schuchardt S, Bellagambi FG, Lomonaco T, Biagini D, Di Francesco F, Fowler SJ. The peppermint breath test: a benchmarking protocol for breath sampling and analysis using GC-MS. J Breath Res 2020; 15. [PMID: 33302258 DOI: 10.1088/1752-7163/abd28c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Exhaled breath contains hundreds of volatile organic compounds (VOCs) which offers the potential for diagnosing and monitoring a wide range of diseases. As the breath research field has grown, sampling and analytical practices have become highly varied between groups. Standardisation would allow meta-analyses of data from multiple studies and greater confidence in published results. The Peppermint Consortium has been formed to address this task of standardisation. In the current study we aimed to generate initial benchmark values for thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis of breath samples containing peppermint-derived VOCs. Headspace analysis of peppermint oil capsules was performed to determine compounds of interest. Ten healthy participants were recruited by three groups. Each participant provided a baseline breath sample prior to taking a peppermint capsule, with further samples collected at 60, 90, 165, 285 and 360 min following ingestion. Sampling and analytical protocols were different for each institution, in line with their usual practice. Samples were analysed by TD-GC-MS and benchmarking values determined for the time taken for detected peppermint VOCs to return to baseline values. Sixteen compounds were identified in the capsule headspace. Additionally, 2,3-dehydro-1,8-cineole was uniquely found in the breath samples, with a washout profile that suggested it was a product of peppermint metabolism. Five compounds (α-pinene, β-pinene, eucalyptol, menthol and menthone) were quantified by all three groups. Differences in recovery were observed between the groups, particularly for menthone and menthol. The average time taken for VOCs to return to baseline was selected as the benchmark and were 441, 648, 1736, 643 and 375 min for α-pinene, β-pinene, eucalyptol, menthone and menthol respectively. An initial set of easy-to-measure benchmarking values for assessing the performance of TD-GC-MS systems for the analysis of VOCs in breath is presented. These values will be updated when more groups provide additional data.
Collapse
Affiliation(s)
- Maxim Wilkinson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Iain R White
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, 5000, SLOVENIA
| | - Katie Hamshere
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Olaf Holz
- Member of the German Center for Lung Research (BREATH), Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, GERMANY
| | - Sven Schuchardt
- Member of the German Center for Lung Research (BREATH), Fraunhofer-Institut fur Toxikologie und Experimentelle Medizin, Hannover, GERMANY
| | - Francesca G Bellagambi
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, 5, rue de la Doua, Villeurbanne, FRANCE, 69100, FRANCE
| | - Tommaso Lomonaco
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Denise Biagini
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Fabio Di Francesco
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Stephen J Fowler
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
50
|
Rodríguez-Hernández P, Cardador MJ, Arce L, Rodríguez-Estévez V. Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome. Crit Rev Anal Chem 2020; 52:917-932. [PMID: 33180561 DOI: 10.1080/10408347.2020.1843130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Volatilome analysis is growing in attention for the diagnosis of diseases in animals and humans. In particular, volatilome analysis in fecal samples is starting to be proposed as a fast, easy and noninvasive method for disease diagnosis. Volatilome comprises volatile organic compounds (VOCs), which are produced during both physiological and patho-physiological processes. Thus, VOCs from a pathological condition often differ from those of a healthy state and therefore the VOCs profile can be used in the detection of some diseases. Due to their strengths and advantages, feces are currently being used to obtain information related to health status in animals. However, they are complex samples, that can present problems for some analytical techniques and require special consideration in their use and preparation before analysis. This situation demands an effort to clarify which analytic options are currently being used in the research context to analyze the possibilities these offer, with the final objectives of contributing to develop a standardized methodology and to exploit feces potential as a diagnostic matrix. The current work reviews the studies focused on the diagnosis of animal diseases through fecal volatilome in order to evaluate the analytical methods used and their advantages and limitations. The alternatives found in the literature for sampling, storage, sample pretreatment, measurement and data treatment have been summarized, considering all the steps involved in the analytical process.
Collapse
Affiliation(s)
| | - M J Cardador
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | - L Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|