1
|
Geng A, Yuan S, Yu QC, Zeng YA. The role of endothelial cells in pancreatic islet development, transplantation and culture. Front Cell Dev Biol 2025; 13:1558137. [PMID: 40330424 PMCID: PMC12052768 DOI: 10.3389/fcell.2025.1558137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
Endothelial cells (ECs) play pivotal roles in the development and maintenance of tissue homeostasis. During development, vasculature actively involves in organ morphogenesis and functional maturation, through the secretion of angiocrine factors and extracellular matrix components. Islets of Langerhans, essential functional units of glucose homeostasis, are embedded in a dense endothelial capillary network. Islet vasculature not only supplies nutrients and oxygen to endocrine cells but also facilitate the rapid delivery of pancreatic hormones to target tissues, thereby ensuring precise glucose regulation. Diabetes mellitus is a major disease burden and is caused by islet dysfunction or depletion, often accompanied by vessel loss and dysregulation. Therefore, elucidating the regulatory mechanisms of ECs within islets hold profound implications for diabetes therapy. This review provides an overview of recent research advancements on the functional roles of ECs in islet biology, transplantation, and in vitro islet organoid culture.
Collapse
Affiliation(s)
- Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shubo Yuan
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Cissy Yu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Ampofo E, Laschke MW. Cool Fat, Hot Topic: A Systematic Review on Cryopreservation of Adipose Tissue. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40227847 DOI: 10.1089/ten.teb.2024.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Autologous fat grafting is increasingly used in plastic, reconstructive, and esthetic surgery. Cryopreservation offers a promising solution for the long-term storage of adipose tissue, enabling multiple grafting sessions while minimizing patient discomfort associated with repeated liposuction for fat harvesting. This systematic review aims to analyze the current literature focusing on factors that influence the outcome of cryopreservation, including the use of cryoprotectants, the cooling and warming rate, the storage temperature, and the enrichment of cryopreserved fat grafts. A systematic search of the PubMed/MEDLINE database up to November 2024 was performed, including original preclinical and clinical studies written in English describing the cryopreservation of unprocessed or mechanically processed adipose tissue (macrofat, microfat, or nanofat). Eligible articles needed to describe the applied cryopreservation protocol, at least the storage temperature. Studies on cryopreservation of adipose-derived stem cells (ASCs), stromal vascular fraction, microvascular fragments, and other isolated components of adipose tissue were excluded. Data on cryoprotectants, cooling and warming rates, storage temperature, and eventual supplementation or enrichment of frozen fat were collected. Of the 679 records identified, 59 met the inclusion criteria. Adipose tissue cryopreservation at -80°C with a cryoprotectant, controlled slow cooling, and fast warming represented the most often applied protocol with encouraging outcomes in maintaining tissue survival and histological structure. Several studies indicated that the supplementation of frozen adipose tissue with ASCs improves tissue survival. Taken together, existing studies present diverse, and to some extent, conflicting results regarding cryopreservation protocols and their effects on adipose tissue viability. Hence, the ideal cryopreservation protocol for autologous fat remains to be established. Moreover, tailored protocols may be necessary for the cryopreservation of fat derivatives, such as nanofat.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive, and Aesthetic Surgery and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Laschke MW. Preconditioning Strategies for Improving the Outcome of Fat Grafting. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:94-108. [PMID: 38818802 DOI: 10.1089/ten.teb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Autologous fat grafting is a common procedure in plastic, reconstructive, and aesthetic surgery. However, it is frequently associated with an unpredictable resorption rate of the graft depending on the engraftment kinetics. This, in turn, is determined by the interaction of the grafted adipose tissue with the tissue at the recipient site. Accordingly, preconditioning strategies have been developed following the principle of exposing these tissues in the pretransplantation phase to stimuli inducing endogenous protective and regenerative cellular adaptations, such as the upregulation of stress-response genes or the release of cytokines and growth factors. As summarized in the present review, these stimuli include hypoxia, dietary restriction, local mechanical stress, heat, and exposure to fractional carbon dioxide laser. Preclinical studies show that they promote cell viability, adipogenesis, and angiogenesis, while reducing inflammation, fibrosis, and cyst formation, resulting in a higher survival rate and quality of fat grafts in different experimental settings. Hence, preconditioning represents a promising approach to improve the outcome of fat grafting in future clinical practice. For this purpose, it is necessary to establish standardized preconditioning protocols for specific clinical applications that are efficient, safe, and easy to implement into routine procedures.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Gao Y, Liang C, Yang B, Liao L, Su X. Application and Mechanism of Adipose Tissue-Derived Microvascular Fragments in Tissue Repair and Regeneration. Biomolecules 2025; 15:422. [PMID: 40149958 PMCID: PMC11939927 DOI: 10.3390/biom15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
One of the long-standing challenges in the field of tissue repair and regeneration is the rapid establishment of local microvascular circulation and restoration of perfusion at the site of defects or injuries. Recently, adipose tissue-derived microvascular fragments (ad-MVFs) have attracted increasing attention from researchers. Adipose tissue is rich in blood vessels, and significant progress has been made in the extraction and preservation techniques for microvascular fragments within it. Ad-MVFs promote tissue and organ repair and regeneration through three main mechanisms. First, they accelerate rapid and efficient vascularization at the injury site, enabling early vessel perfusion. Second, the stem cell components within ad-MVFs provide a rich source of cells for tissue and organ regeneration. Third, they play a role in immune regulation, facilitating integration with host tissues after implantation. The application methods of ad-MVFs are diverse. They can be directly implanted or pre-cultivated, facilitating their combination with various scaffolds and broadening their application scope. These properties have led to the wide use of ad-MVFs in tissue engineering, with promising prospects. This review demonstrates that ad-MVFs can serve as a reliable and highly feasible unit for tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.G.); (C.L.); (B.Y.); (L.L.)
| |
Collapse
|
6
|
Iqbal MZ, Riaz M, Biedermann T, Klar AS. Breathing new life into tissue engineering: exploring cutting-edge vascularization strategies for skin substitutes. Angiogenesis 2024; 27:587-621. [PMID: 38842751 PMCID: PMC11564345 DOI: 10.1007/s10456-024-09928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.
Collapse
Affiliation(s)
- M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
You X, Chen K, Li J, Xu Y, Gao J, Yao Y. Human Adipose-Derived Microvessel Fragments: A Natural Vascularization Units for Ischemic Diseases. Aesthetic Plast Surg 2024; 48:4014-4023. [PMID: 38777930 DOI: 10.1007/s00266-024-04062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND In plastic surgery tissue transplantation, tissue ischemia limits transplanted tissue survival. Adipose-derived stem cells (ASCs) and stromal vascular fraction (SVF) show potential for promoting angiogenesis and rescuing ischemic conditions. However, when SVF and ASC suspensions are utilized without the protection of extracellular matrix, the retention rate of transplanted cells tends to be diminished, leading to an unsatisfactory therapeutic outcome. To overcome this, adipose tissue-derived microvascular fragments (ad-MVFs) have emerged as a promising solution. METHODS We conducted enzymatic digestion on human adipose tissue to generate ad-MVFs. These fragments underwent a thorough characterization process, utilizing electron microscopy to assess their structural attributes and enabling a detailed analysis of their intricate morphology. Furthermore, our team investigated the cellular composition of these microvascular fragments, subsequently confirming their ability to enhance the viability of ischemic skin flaps. RESULTS The resulting product primarily comprised fragments with sizes ranging from 20 to 50 µm, and some exhibited a sophisticated network-like structure. Electron microscopy examination revealed the presence of collagen components in the product. Additionally, flow cytometry analysis indicated a substantial abundance of adipose-derived stem cells and endothelial cells within these microvascular fragments. Significantly, when tested in treating an ischemic skin flap in a nude mouse model, the product exhibited superior therapeutic efficacy compared to SVF cell suspension. CONCLUSION We have successfully generated human ad-MVFs and established standardized procedures. Compared with SVF, Ad-MVFs have a better effect in the treatment of ischemic diseases. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xin You
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - YiDan Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - JianHua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Lu Y, Su S, Chu CC, Kobayashi Y, Masoud AR, Peng H, Lien N, He M, Vuong C, Tran R, Hong S. Amino Acid-Based Protein-Mimic Hydrogel Incorporating Pro-Regenerative Lipid Mediator and Microvascular Fragments Promotes the Healing of Deep Burn Wounds. Int J Mol Sci 2024; 25:10378. [PMID: 39408708 PMCID: PMC11476471 DOI: 10.3390/ijms251910378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Pro-regenerative lipid mediator 1 (PreM1) is a specialized pro-resolving lipid mediator that promotes wound healing and regenerative functions of mesenchymal stem cells (MSCs), endothelial cells, and macrophages. The healing of third-degree (3°) burns and regenerative functions of MSCs are enhanced by ACgel1, an arginine-and-chitosan-based protein-mimic hybrid hydrogel. Adipose-tissue derived microvascular fragments (MVFs) are native vascularization units and a rich source of MSCs, endothelial cells, and perivascular cells for tissue regeneration. Here we describe an innovative PreM1-MVFs-ACgel1 construct that incorporated PreM1 and MVFs into ACgel1 via optimal design and fabrication. This construct delivered PreM1 to 3°-burn wounds at least up to 7 days-post-burn (dpb), and scaffolded and delivered MVFs. PreM1-MVFs-ACgel1 promoted the healing of 3°-burns in mice, including vascularization and collagen formation. The re-epithelization and closure of 3° burn wounds were promoted by ACgel1, MVFs, PreM1, MVFs-ACgel1, PreM1-ACgel1, or PreM1-MVFs-ACgel1 at certain time-point(s), while PreM1-MVFs-ACgel1 was most effective with 97% closure and 4.69% relative epithelial gap at 13 dpb compared to saline control. The PreM1-ACgel1 and MVFs-ACgel1 also promoted blood vessel regeneration of 3°-burns although PreM1-MVFs-ACgel1 is significantly more effective. These PreM1- and/or MVF-functionalized ACgel1 have nonexistent or minimal graft-donor requirements and are promising adjuvant therapeutic candidates for treating deep burns.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Shanchun Su
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Nathan Lien
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Christopher Vuong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Ryan Tran
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
- Department of Ophthalmology, Louisiana State University Health, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Wrublewsky S, Schultz J, Ammo T, Bickelmann C, Metzger W, Später T, Pohlemann T, Menger MD, Laschke MW. Biofabrication of prevascularized spheroids for bone tissue engineering by fusion of microvascular fragments with osteoblasts. Front Bioeng Biotechnol 2024; 12:1436519. [PMID: 39318668 PMCID: PMC11419975 DOI: 10.3389/fbioe.2024.1436519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Spheroids are promising building blocks for scaffold-free bone tissue engineering. Their rapid vascularization is of major importance to guarantee their survival after transplantation. To achieve this, we herein introduce the biofabrication of prevascularized spheroids by fusion of adipose tissue-derived microvascular fragments (MVF) with osteoblasts (OB). Methods For this purpose, 200 MVF from donor mice and 5,000, 10,000 or 20,000 murine OB (MC3T3-E1) were co-cultured in a liquid overlay system for 3 days to generate OB + MVF spheroids. OB mono-culture spheroids served as controls. Results and discussion During the generation process, the diameters of all spheroids progressively decreased, resulting in compact, viable spheroids of homogeneous sizes. MVF promoted the maturation of spheroids containing 5,000 OB, as shown by an accelerated decline of cell proliferation due to contact inhibition. Moreover, MVF most effectively reassembled into new microvascular networks within these small spheroids when compared to the other spheroid types, indicating the most beneficial MVF to OB ratio. Accordingly, these spheroids also showed a high angiogenic sprouting activity in vitro. In contrast to OB spheroids, they further rapidly vascularized in vivo after transplantation into dorsal skinfold chambers. This was caused by the interconnection of incorporated MVF with surrounding blood vessels. These findings indicate that OB + MVF spheroids may be suitable for bone tissue engineering, which should be next tested in appropriate in vivo bone defect models.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Jessica Schultz
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tekoshin Ammo
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Thomas Später
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Tim Pohlemann
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Dinter MC, Bickelmann C, Nickels RM, Menger MD, Laschke MW. Microvascular Fragment-Loaded Platelet-Rich Plasma Dressing Promotes Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2024; 13:336-349. [PMID: 38299944 DOI: 10.1089/wound.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Objective: Chronic wounds represent a considerable burden for the affected patients and the health care system. To overcome this problem, effective treatment strategies are urgently required. In this study, we tested a novel approach by combining platelet-rich plasma (PRP) and microvascular fragments (MVF) to create a prevascularized gel dressing. Approach: MVF were enzymatically isolated from the epididymal fat pads of transgenic green fluorescent protein (GFP)+ C57BL/6J donor mice. Subsequently, 5,000 MVF were suspended in 10 μL murine PRP as carrier and transferred into full-thickness skin wounds within dorsal skinfold chambers of C57BL/6J wild-type mice (PRP+MVF). Wound healing in comparison to empty wounds (control) and wounds filled with PRP alone was repeatedly analyzed throughout 14 days by means of stereomicroscopy, histology, and immunohistochemistry. Results: Planimetric assessment of the wound size over time revealed a significantly accelerated and improved healing of PRP+MVF-treated wounds when compared with PRP-treated and empty control wounds. These wounds also exhibited a significantly higher density of blood and lymph vessels, which originated from the GFP+ MVF isolates and effectively promoted granulation tissue formation inside the skin defects. Innovation: This study is the first to combine PRP and MVF for the improvement of wound healing. Conclusion: The combination of PRP and MVF represents a promising approach for the future treatment of wounds that do not heal spontaneously due to poor wound-healing conditions.
Collapse
Affiliation(s)
- Melina C Dinter
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Yang J, Yan Y, Yin X, Liu X, Reshetov IV, Karalkin PA, Li Q, Huang RL. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 2024; 152:155786. [PMID: 38211697 DOI: 10.1016/j.metabol.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| |
Collapse
|
12
|
Rojek KO, Wrzos A, Żukowski S, Bogdan M, Lisicki M, Szymczak P, Guzowski J. Long-term day-by-day tracking of microvascular networks sprouting in fibrin gels: From detailed morphological analyses to general growth rules. APL Bioeng 2024; 8:016106. [PMID: 38327714 PMCID: PMC10849774 DOI: 10.1063/5.0180703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Understanding and controlling of the evolution of sprouting vascular networks remains one of the basic challenges in tissue engineering. Previous studies on the vascularization dynamics have typically focused only on the phase of intense growth and often lacked spatial control over the initial cell arrangement. Here, we perform long-term day-by-day analysis of tens of isolated microvasculatures sprouting from endothelial cell-coated spherical beads embedded in an external fibrin gel. We systematically study the topological evolution of the sprouting networks over their whole lifespan, i.e., for at least 14 days. We develop a custom image analysis toolkit and quantify (i) the overall length and area of the sprouts, (ii) the distributions of segment lengths and branching angles, and (iii) the average number of branch generations-a measure of network complexity. We show that higher concentrations of vascular endothelial growth factor (VEGF) lead to earlier sprouting and more branched networks, yet without significantly affecting the speed of growth of individual sprouts. We find that the mean branching angle is weakly dependent on VEGF and typically in the range of 60°-75°, suggesting that, by comparison with the available diffusion-limited growth models, the bifurcating tips tend to follow local VEGF gradients. At high VEGF concentrations, we observe exponential distributions of segment lengths, which signify purely stochastic branching. Our results-due to their high statistical relevance-may serve as a benchmark for predictive models, while our new image analysis toolkit, offering unique features and high speed of operation, could be exploited in future angiogenic drug tests.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Wrzos
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | - Michał Bogdan
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Meßner FC, Metzger W, Marschall JE, Bickelmann C, Menger MD, Laschke MW. Generation of Connective Tissue-Free Microvascular Fragment Isolates from Subcutaneous Fat Tissue of Obese Mice. Tissue Eng Regen Med 2023; 20:1079-1090. [PMID: 37783934 PMCID: PMC10645785 DOI: 10.1007/s13770-023-00571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Microvascular fragment (MVF) isolates are generated by short-term enzymatic digestion of adipose tissue and contain numerous vessel segments for the vascularization of tissue defects. Recent findings indicate that the functionality of these isolates is determined by the quality of the fat source. Therefore, we compared MVF isolates from subcutaneous adipose tissue of obese and lean mice. METHODS MVF isolates were generated from subcutaneous adipose tissue of donor mice, which received a high fat or control diet for 12 weeks. The isolates were analyzed in vitro and in vivo. RESULTS Feeding of mice with a high fat diet induced obesity with adipocyte hypertrophy, resulting in a significantly lower collagen fraction and microvessel density within the subcutaneous fat depots when compared to lean controls. Accordingly, MVF isolates from obese mice also contained a reduced number of MVF per mL adipose tissue. However, these MVF tended to be longer and, in contrast to MVF from lean mice, were not contaminated with collagen fibers. Hence, they could be freely seeded onto collagen-glycosaminoglycan scaffolds, whereas MVF from lean controls were trapped in between large amounts of collagen fibers that clogged the pores of the scaffolds. In line with these results, scaffolds seeded with MVF isolates from obese mice exhibited a significantly improved in vivo vascularization after implantation into full-thickness skin defects. CONCLUSION Subcutaneous adipose tissue from obese mice facilitates the generation of connective tissue-free MVF isolates. Translated to clinical conditions, these findings suggest that particularly obese patients may benefit from MVF-based vascularization strategies.
Collapse
Affiliation(s)
- Friederike C Meßner
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
14
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
15
|
Park GT, Lim JK, Choi EB, Lim MJ, Yun BY, Kim DK, Yoon JW, Hong YG, Chang JH, Bae SH, Ahn JY, Kim JH. Transplantation of adipose tissue-derived microvascular fragments promotes therapy of critical limb ischemia. Biomater Res 2023; 27:70. [PMID: 37455318 DOI: 10.1186/s40824-023-00395-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Adipose tissue-derived microvascular fragments are functional vessel segments derived from arterioles, capillaries, and veins. Microvascular fragments can be used as vascularization units in regenerative medicine and tissue engineering containing microvascular networks. However, the in vivo therapeutic and vascularization properties of human microvascular fragments have not been investigated. METHODS In this study, we isolated microvascular fragments, stromal vascular fractions, and mesenchymal stem cells from human lipoaspirate and studied their therapeutic efficacy and in vivo vasculogenic activity in a murine model of hindlimb ischemia. In addition, in vivo angiogenic activity and engraftment of microvascular fragments into blood vessels were measured using Matrigel plug assay. RESULTS Both microvascular fragments and stromal vascular fractions contain not only mesenchymal stem cells but also endothelial progenitor cells. In a Matrigel plug assay, microvascular fragments increased the number of blood vessels containing red blood cells more than mesenchymal stem cells and stromal vascular fractions did. The engraftment of the microvascular fragments transplanted in blood vessels within the Matrigel plug significantly increased compared to the engraftment of mesenchymal stem cells and stromal vascular fractions. Moreover, intramuscular injection of microvascular fragments markedly increased blood flow in the ischemic hindlimbs and alleviated tissue necrosis compared to that of mesenchymal stem cells or stromal vascular fractions. Furthermore, transplanted microvascular fragments formed new blood vessels in ischemic limbs. CONCLUSIONS These results suggest that microvascular fragments show improved engraftment efficiency and vasculogenic activity in vivo and are highly useful for treating ischemic diseases and in tissue engineering. Adipose tissue-derived microvascular fragments are vascularization units in regenerative medicine and tissue engineering containing microvascular networks. Intramuscular injection of microvascular fragments markedly increased blood flow in the ischemic hindlimbs and alleviated tissue necrosis. The present study suggests that microvascular fragments show improved engraftment efficiency and vasculogenic activity in vivo and are highly useful for treating ischemic diseases and in tissue engineering.
Collapse
Affiliation(s)
- Gyu Tae Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jae Kyung Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Bae Choi
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Mi-Ju Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bo-Young Yun
- UVA Surgery Clinic, Busan, 47537, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Yoon Gi Hong
- BS The Body Aesthetic Plastic Surgery Clinic, Busan, 47287, Republic of Korea
| | - Jae Hoon Chang
- BS The Body Aesthetic Plastic Surgery Clinic, Busan, 47287, Republic of Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, College of Medicine, Pusan National University, Busan, Gyeongsangnam-do, 49241, Republic of Korea
| | - Jung Yong Ahn
- UVA Surgery Clinic, Busan, 47537, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
16
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Microvascular Fragments Protect Ischemic Musculocutaneous Flap Tissue from Necrosis by Improving Nutritive Tissue Perfusion and Suppressing Apoptosis. Biomedicines 2023; 11:biomedicines11051454. [PMID: 37239125 DOI: 10.3390/biomedicines11051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Microvascular fragments (MVF) derived from enzymatically digested adipose tissue are functional vessel segments that have been shown to increase the survival rate of surgical flaps. However, the underlying mechanisms have not been clarified so far. To achieve this, we raised random-pattern musculocutaneous flaps on the back of wild-type mice and mounted them into dorsal skinfold chambers. The flaps were injected with MVF that were freshly isolated from green fluorescent protein-positive (GFP+) donor mice or saline solution (control). On days 1, 3, 5, 7, and 10 after surgery, intravital fluorescence microscopy was performed for the quantitative assessment of angiogenesis, nutritive blood perfusion, and flap necrosis. Subsequently, the flaps were analyzed by histology and immunohistochemistry. The injection of MVF reduced necrosis of the ischemic flap tissue by ~20%. When compared to controls, MVF-injected flaps also displayed a significantly higher functional capillary density and number of newly formed microvessels in the transition zone, where vital tissue bordered on necrotic tissue. Immunohistochemical analyses revealed a markedly lower number of cleaved caspase-3+ apoptotic cells in the transition zone of MVF-injected flaps and a significantly increased number of CD31+ microvessels in both the flaps' base and transition zone. Up to ~10% of these microvessels were GFP+, proving their origin from injected MVF. These findings demonstrate that MVF reduce flap necrosis by increasing angiogenesis, improving nutritive tissue perfusion, and suppressing apoptosis. Hence, the injection of MVF may represent a promising strategy to reduce ischemia-induced flap necrosis in future clinical practice.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
17
|
Co-transplantation of pancreatic islets and microvascular fragments effectively restores normoglycemia in diabetic mice. NPJ Regen Med 2022; 7:67. [PMCID: PMC9636251 DOI: 10.1038/s41536-022-00262-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractInsufficient revascularization of pancreatic islets is one of the major obstacles impairing the success of islet transplantation. To overcome this problem, we introduce in the present study a straightforward strategy to accelerate the engraftment of isolated islets. For this purpose, we co-transplanted 250 islets and 20,000 adipose tissue-derived microvascular fragments (MVF) from donor mice under the kidney capsule as well as 500 or 1000 islets with 40,000 MVF into the subcutaneous space of diabetic mice. We found that the co-transplantation of islets and MVF markedly accelerates the restoration of normoglycemia in diabetic recipients compared with the transplantation of islets alone. In fact, the transplantation of 250 islets with 20,000 MVF under the kidney capsule reversed diabetes in 88% of mice and the subcutaneous transplantation of 500 or 1000 islets with 40,000 MVF restored normoglycemia in 100% of mice. Moreover, diabetic mice receiving islets and MVF exhibited plasma insulin levels similar to nondiabetic control animals. Additional immunohistochemical analyses of the grafts revealed a significantly higher number of islet cells and microvessels in the co-transplantation groups. These findings demonstrate that the co-transplantation of islets and MVF is a promising strategy to improve the success rates of islet transplantation, which could be easily implemented into future clinical practice.
Collapse
|
18
|
Gonzalez Porras MA, Stojkova K, Acosta FM, Rathbone CR, Brey EM. Engineering Human Beige Adipose Tissue. Front Bioeng Biotechnol 2022; 10:906395. [PMID: 35845420 PMCID: PMC9283722 DOI: 10.3389/fbioe.2022.906395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we described a method for generating functional, beige (thermogenic) adipose microtissues from human microvascular fragments (MVFs). The MVFs were isolated from adipose tissue acquired from adults over 50 years of age. The tissues express thermogenic gene markers and reproduce functions essential for the potential therapeutic impact of beige adipose tissues such as enhanced lipid metabolism and increased mitochondrial respiration. MVFs serve as a potential single, autologous source of cells that can be isolated from adult patients, induced to recreate functional aspects of beige adipose tissue and enable rapid vascularization post-transplantation. This approach has the potential to be used as an autologous therapy for metabolic diseases or as a model for the development of a personalized approach to high-throughput drug development/screening for adipose tissue.
Collapse
Affiliation(s)
- Maria A. Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Li C, Han X, Ma Z, Jie T, Wang J, Deng L, Cui W. Engineered Customizable Microvessels for Progressive Vascularization in Large Regenerative Implants. Adv Healthc Mater 2022; 11:e2101836. [PMID: 34797037 DOI: 10.1002/adhm.202101836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Inspired by the rapid angiogenesis of natural microvessels in vivo, engineered customizable microvessels (ECMVs) are developed which can naturally angiogenic sprout and induce vascular network formation via combing a celluar coaxial microfluidic extrusion technique with microsurgery post-process. ECMVs can be used for customization of primarily pre-vascularized soft tissue regenerative implants with personalized shape and vascular density with the aid of sacrificial printing technology. After collaborating with surrounding cells, ECMVs angiogenic sprouted and formed daughter vascular networks. Through techniques such as injection and suturing, ECMVs can also be introduced into large bone repair implants for pre-vascularization and osteogenesis promotion. Furthermore, the microvessel networks with personalized shapes are customized by connecting the coaxial microfluidic system to a 3D printer. It is further demonstrated that the vascularization promotion and anastomose with host vessels of the ECMVs in vivo. Thus, ECMVs provide a simple engineering strategy for rapid vascularization of clinically large regenerative soft/hard tissue implants.
Collapse
Affiliation(s)
- Cuidi Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Xiaoyu Han
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 P. R. China
| | - Tianyang Jie
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
20
|
Wu D, Qin H, Wang Z, Yu M, Liu Z, Peng H, Liang L, Zhang C, Wei X. Bone Mesenchymal Stem Cell-Derived sEV-Encapsulated Thermosensitive Hydrogels Accelerate Osteogenesis and Angiogenesis by Release of Exosomal miR-21. Front Bioeng Biotechnol 2022; 9:829136. [PMID: 35127680 PMCID: PMC8807520 DOI: 10.3389/fbioe.2021.829136] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis has been recognized to play an essential role in remodeling new bone (osteogenesis). Small extracellular vesicles (sEVs), the endogenously secreted nanovesicles by cells, exhibit great potential in the regeneration of bone defects and the realization of cell-free therapy. Chitosan, a natural polysaccharide, can form a thermosensitive injectable hydrogel through the addition of β-glycerophosphate. Herein, we developed injectable thermosensitive hydrogel-encapsulated sEVs derived from bone mesenchymal stem cells, which significantly prolonged delivery and release and synergistically enhanced bone regeneration. sEVs were isolated and characterized, and the physicochemical properties, release kinetics, and biocompatibility of the hydrogels were analyzed. In vitro experiments were performed to investigate osteogenic differentiation, cell proliferation and migration, and tube formation. Thereafter, sEVs were added to the chitosan/β-glycerophosphate hydrogel (sEV@CS/β-GP composite) to repair calvarial defects in rats. The results showed that sEV-loaded hydrogels were biocompatible, exhibiting excellent thermosensitive properties and enhancing bone regeneration. Furthermore, mechanistic studies revealed that exosomal miR-21 targeted SPRY2, thereby promoting angiogenesis. Our study provides new insights on the repair of bone defects with multifunctional controlled-sEV-release hydrogels, which shows great potential in the repair of tissues in the future.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Hao Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Zhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Hao Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Leilei Liang
- National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated, Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
21
|
Frueh FS, Gassert L, Scheuer C, Müller A, Fries P, Boewe AS, Ampofo E, Rübe CE, Menger MD, Laschke MW. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng 2022; 13:20417314221109957. [PMID: 35923176 PMCID: PMC9340320 DOI: 10.1177/20417314221109957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/12/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphedema after cancer treatment is common and there is still no cure for this disease. We herein investigated the lymphangiogenic capacity of adipose tissue-derived microvascular fragments (MVF), which contain stem cells and lymphatic vessel fragments. Secondary lymphedema was induced in the hindlimbs of C57BL/6J mice. Green fluorescence protein (GFP)+ MVF were isolated from transgenic C57BL/6Tg (CAG-EGFP)1Osb/J mice, suspended in collagen hydrogel, and injected in the lymphadenectomy defect of wild-type animals. This crossover model allowed the detection of MVF-derived blood and lymphatic vessels after transplantation. The MVF group was compared with animals receiving collagen hydrogel only or a sham intervention. Lymphangiogenic effects were analyzed using volumetry, magnetic resonance (MR) lymphography, histology, and immunohistochemistry. MVF injection resulted in reduced hindlimb volumes when compared to non-treated controls. MR lymphography revealed lymphatic regeneration with reduced dermal backflow after MVF treatment. Finally, MVF transplantation promoted popliteal angiogenesis and lymphangiogenesis associated with a significantly increased microvessel and lymphatic vessel density. These findings indicate that MVF transplantation represents a promising approach to induce therapeutic lymphangiogenesis.
Collapse
Affiliation(s)
- Florian S Frueh
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Laura Gassert
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
22
|
Acosta FM, Howland KK, Stojkova K, Hernandez E, Brey EM, Rathbone CR. Adipogenic Differentiation Alters Properties of Vascularized Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2022; 28:54-68. [PMID: 34102861 PMCID: PMC8812504 DOI: 10.1089/ten.tea.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advances in the engineering of comprehensive skeletal muscle models in vitro will improve drug screening platforms and can lead to better therapeutic approaches for the treatment of skeletal muscle injuries. To this end, a vascularized tissue-engineered skeletal muscle (TE-SkM) model that includes adipocytes was developed to better emulate the intramuscular adipose tissue that is observed in skeletal muscles of patients with diseases such as diabetes. Muscle precursor cells cultured with and without microvessels derived from adipose tissue (microvascular fragments) were used to generate TE-SkM constructs, with and without a microvasculature, respectively. TE-SkM constructs were treated with adipogenic induction media to induce varying levels of adipogenesis. With a delayed addition of induction media to allow for angiogenesis, a robust microvasculature in conjunction with an increased content of adipocytes was achieved. The augmentation of vascularized TE-SkM constructs with adipocytes caused a reduction in maturation (compaction), mechanical integrity (Young's modulus), and myotube and vessel alignment. An increase in basal glucose uptake was observed in both levels of adipogenic induction, and a diminished insulin-stimulated glucose uptake was associated with the higher level of adipogenic differentiation and the greater number of adipocytes.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - Kennedy K. Howland
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Elizabeth Hernandez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,Address correspondence to: Christopher R. Rathbone, PhD, Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
23
|
Später T, Marschall JE, Brücker LK, Nickels RM, Metzger W, Mai AS, Menger MD, Laschke MW. Adipose Tissue-Derived Microvascular Fragments From Male and Female Fat Donors Exhibit a Comparable Vascularization Capacity. Front Bioeng Biotechnol 2021; 9:777687. [PMID: 34778238 PMCID: PMC8578922 DOI: 10.3389/fbioe.2021.777687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies exclusively use epididymal fat tissue of male donor mice as a source for MVF isolation. However, in future clinical practice, MVF-based approaches may be applied in both male and female patients. Therefore, we herein compared the vascularization capacity of MVF isolated from the epididymal and peri-ovarian fat tissue of male and female donor mice. Freshly isolated MVF from male and female donors did not differ in their number, length distribution, viability and cellular composition. After their assembly into spheroids, they also exhibited a comparable in vitro sprouting activity. Moreover, they could be seeded onto collagen-glycosaminoglycan matrices, which were implanted into full-thickness skin defects within mouse dorsal skinfold chambers. Repetitive intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a comparable vascularization and incorporation of implants seeded with MVF of male and female origin. Taken together, these findings demonstrate that the vascularization capacity of MVF is not gender-specific.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lea K Brücker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Ann-Sophie Mai
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
24
|
Laschke MW, Menger MD. Microvascular fragments in microcirculation research and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1109-1120. [PMID: 34731017 DOI: 10.1089/ten.teb.2021.0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adipose tissue-derived microvascular fragments (MVF) are functional vessel segments, which rapidly reassemble into new microvasculatures under experimental in vitro and in vivo conditions. Accordingly, they have been used for many years in microcirculation research to study basic mechanisms of endothelial cell function, angiogenesis and microvascular network formation in two- and three-dimensional environments. Moreover, they serve as vascularization units for musculoskeletal regeneration and implanted biomaterials as well as for the treatment of myocardial infarction and the generation of prevascularized tissue organoids. Besides, multiple factors determining the vascularization capacity of MVF have been identified, including their tissue origin and cellular composition, the conditions for their short- and long-term storage as well as their implantation site and the general health status and medication of the recipient. The next challenging step is now the successful translation of all these promising experimental findings into clinical practice. If this succeeds, a multitude of future therapeutic applications may significantly benefit from the remarkable properties of MVF.
Collapse
Affiliation(s)
- Matthias W Laschke
- Saarland University, 9379, Institute for Clinical & Experimental Surgery, Kirrbergerstrasse 100, Homburg, Germany, 66421;
| | - Michael D Menger
- Saarland University, 9379, Institute for Clinical & Experimental Surgery, Homburg, Saarland, Germany;
| |
Collapse
|
25
|
Sharma S, Muthu S, Jeyaraman M, Ranjan R, Jha SK. Translational products of adipose tissue-derived mesenchymal stem cells: Bench to bedside applications. World J Stem Cells 2021; 13:1360-1381. [PMID: 34786149 PMCID: PMC8567449 DOI: 10.4252/wjsc.v13.i10.1360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
With developments in the field of tissue engineering and regenerative medicine, the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians. Among all the available biological tissues, research and exploration of adipose tissue have become more robust. Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential. The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth, proliferation, and differentiation. Adipose tissue, apart from being the powerhouse of energy storage, also functions as the largest endocrine organ, with the release of various adipokines. The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues. The results of adipose-derived stem-cell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis, fat graft integration, and survival within the recipient tissue and promote the regeneration of tissue are promising. Adipose tissue gives rise to various by-products upon processing. This article highlights the significance and the usage of various adipose tissue by-products, their individual characteristics, and their clinical applications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
| | - Sathish Muthu
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu 624304, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India.
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
26
|
Später T, Marschall JE, Brücker LK, Nickels RM, Metzger W, Menger MD, Laschke MW. Vascularization of Microvascular Fragment Isolates from Visceral and Subcutaneous Adipose Tissue of Mice. Tissue Eng Regen Med 2021; 19:161-175. [PMID: 34536211 PMCID: PMC8782984 DOI: 10.1007/s13770-021-00391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies in rodents exclusively use epididymal adipose tissue as a visceral fat source for MVF isolation. However, in future clinical practice, MVF may be rather isolated from liposuctioned subcutaneous fat tissue of patients. Therefore, we herein compared the vascularization characteristics of MVF isolates from visceral and subcutaneous fat tissue of murine origin. Methods: MVF isolates were generated from visceral and subcutaneous fat tissue of donor mice using two different enzymatic procedures. For in vivo analyses, the MVF isolates were seeded onto collagen-glycosaminoglycan scaffolds and implanted into full-thickness skin defects within dorsal skinfold chambers of recipient mice. Results: By means of the two isolation procedures, we isolated a higher number of MVF from visceral fat tissue when compared to subcutaneous fat tissue, while their length distribution, viability and cellular composition were comparable in both groups. Intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a significantly reduced vascularization of implanted scaffolds seeded with subcutaneous MVF isolates when compared to implants seeded with visceral MVF isolates. Light and scanning electron microscopy showed that this was due to high amounts of undigested connective tissue within the subcutaneous MVF isolates, which clogged the scaffold pores and prevented the interconnection of individual MVF into new microvascular networks. Conclusion: These findings indicate the need for improved protocols to generate connective tissue-free MVF isolates from subcutaneous fat tissue for future translational studies.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Lea K Brücker
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
27
|
Nalbach L, Müller D, Wrublewsky S, Metzger W, Menger MD, Laschke MW, Ampofo E. Microvascular fragment spheroids: Three-dimensional vascularization units for tissue engineering and regeneration. J Tissue Eng 2021; 12:20417314211035593. [PMID: 34471514 PMCID: PMC8404660 DOI: 10.1177/20417314211035593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) serve as vascularization units in tissue engineering and regenerative medicine. Because a three-dimensional cellular arrangement has been shown to improve cell function, we herein generated for the first time MVF spheroids to investigate whether this further increases their vascularization potential. These spheroids exhibited a morphology, size, and viability comparable to that of previously introduced stromal vascular fraction (SVF) spheroids. However, MVF spheroids contained a significantly higher number of CD31-positive endothelial cells and α-smooth muscle actin (SMA)-positive perivascular cells, resulting in an enhanced angiogenic sprouting activity. Accordingly, they also exhibited an improved in vivo vascularization and engraftment after transplantation into mouse dorsal skinfold chambers. These findings indicate that MVF spheroids are superior to SVF spheroids and, thus, may be highly suitable to improve the vascularization of tissue defects and implanted tissue constructs.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Danièle Müller
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Gould LJ, Orgill DP, Armstrong DG, Galiano RD, Glat PM, Zelen CM, DiDomenico LA, Carter MJ, Li WW. Improved healing of chronic diabetic foot wounds in a prospective randomised controlled multi-centre clinical trial with a microvascular tissue allograft. Int Wound J 2021; 19:811-825. [PMID: 34469077 PMCID: PMC9013595 DOI: 10.1111/iwj.13679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
This study assesses the impact of a processed microvascular tissue (PMVT) allograft on wound closure and healing in a prospective, single‐blinded, multi‐centre, randomised controlled clinical trial of 100 subjects with Wagner Grade 1 and 2 chronic neuropathic diabetic foot ulcerations. In addition to standard wound care, including standardised offloading, the treatment arm received PMVT while the control arm received a collagen alginate dressing. The primary endpoint was complete wound closure at 12 weeks. Secondary endpoints assessed on all subjects were percent wound area reduction, time to healing, and local neuropathy. Novel exploratory sub‐studies were conducted for wound area perfusion and changes in regional neuropathy. Weekly application of PMVT resulted in increased complete wound closure at 12 weeks (74% vs 38%; P = .0003), greater percent wound area reduction from weeks four through 12 (76% vs 24%; P = .009), decreased time to healing (54 days vs 64 days; P = .009), and improved local neuropathy (118% vs 11%; P = .028) compared with the control arm. Enhanced perfusion and improved regional neuropathy were demonstrated in the sub‐studies. In conclusion, this study demonstrated increased complete healing with PMVT and supports its use in treating non‐healing DFUs. The observed benefit of PMVT on the exploratory regional neuropathy and perfusion endpoints warrants further study.
Collapse
Affiliation(s)
- Lisa J Gould
- South Shore Hospital, Weymouth, Massachusetts, USA
| | - Dennis P Orgill
- Professional Education and Research Institute, Roanoke, Virginia, USA
| | | | | | - Paul M Glat
- Drexel University, Philadelphia, Pennsylvania, USA
| | - Charles M Zelen
- Professional Education and Research Institute, Roanoke, Virginia, USA
| | | | | | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Laschke MW, Menger MD. The simpler, the better: tissue vascularization using the body's own resources. Trends Biotechnol 2021; 40:281-290. [PMID: 34404555 DOI: 10.1016/j.tibtech.2021.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Tissue regeneration is crucially dependent on sufficient vascularization. In regenerative medicine, this can be effectively achieved by autologous vascularization strategies using the body's own resources. These strategies include the administration of blood-derived factor preparations, adipose tissue-based vascularization, and the in situ engineering of vascularized tissue. Due to their simplicity, the translation of these strategies into clinical practice is easier in terms of feasibility, safety requirements, and regulatory hurdles compared with complex and time-consuming procedures involving intensive cell manipulation. Hence, they are close to clinical application or are already being used to successfully treat patients by distinct personalized medicine concepts.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
30
|
Zucal I, Mihic-Probst D, Pignet AL, Calcagni M, Giovanoli P, Frueh FS. Intraneural fibrosis and loss of microvascular architecture - Key findings investigating failed human nerve allografts. Ann Anat 2021; 239:151810. [PMID: 34324996 DOI: 10.1016/j.aanat.2021.151810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Processed nerve allografts are increasingly used in clinical nerve reconstruction with promising results. However, allograft failure has been reported, leading to chronic pain and persistent loss of function. In the present work, we performed a histological and immunohistochemical analysis of two failed allograft reconstructions of a sensory human nerve one year after primary surgery. METHODS Two patients with a superficial radial nerve injury underwent nerve reconstruction with processed nerve allografts. The clinical follow-up was complicated by severe neuropathic pain and absent sensory reinnervation. Consequently, the failed allografts were excised with subsequent histological and immunohistochemical examinations. For that purpose, the collagen content and neurofilament network as well as the blood and lymphatic vasculature were analysed in the center of the specimens. RESULTS Histology revealed increased fibrosis, fatty degeneration, and disorganised proliferation of nerve fibres. Moreover, the microvascular network within the allografts was characterised by increased numbers of microvessels, whereas no difference was found concerning the lymphatic vasculature. CONCLUSION The herein presented histological and immunohistochemical findings indicate that the failure of human allografts is associated with loss of the physiological microvascular architecture. Future studies elucidating the complex interplay of angiogenesis, lymphangiogenesis and axonal regeneration are required to better understand the mechanisms of human allograft failure.
Collapse
Affiliation(s)
- Isabel Zucal
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Mihic-Probst
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna-Lisa Pignet
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Salamone M, Rigogliuso S, Nicosia A, Campora S, Bruno CM, Ghersi G. 3D Collagen Hydrogel Promotes In Vitro Langerhans Islets Vascularization through ad-MVFs Angiogenic Activity. Biomedicines 2021; 9:biomedicines9070739. [PMID: 34199087 PMCID: PMC8301445 DOI: 10.3390/biomedicines9070739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 μm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF–islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation.
Collapse
Affiliation(s)
- Monica Salamone
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Salvatrice Rigogliuso
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
| | - Carmelo Marco Bruno
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Giulio Ghersi
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
- Correspondence:
| |
Collapse
|
33
|
Downing K, Prisby R, Varanasi V, Zhou J, Pan Z, Brotto M. Old and new biomarkers for volumetric muscle loss. Curr Opin Pharmacol 2021; 59:61-69. [PMID: 34146835 DOI: 10.1016/j.coph.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Volumetric muscle loss (VML) impacts skeletal muscles and causes damage to associated tissues such as blood vessels and other structural tissues. Despite progress in the VML field, current preclinical approaches are often ineffective at restoring muscle volume. Additional research is paramount to develop strategies that improve muscle mass and function, while restoring supporting tissues. We highlight mechanisms that govern normal muscle function that are also key players for VML, including intracellular calcium signaling/homeostasis, mitochondria signaling (calcium, reactiove oxidative species (ROS)/oxidative stress), and angiogenesis. We propose an integration of these processes within the context of emerging biomaterials that provide structural support for muscle regeneration. We posit that new biomarkers (i.e. myokines and lipid signaling mediators) may serve as sentinels of early muscle injury and regeneration. We conclude that as new ideas, approaches, and models come together, new treatments will emerge to allow the full rebuilding of skeletal muscles and functional recovery of skeletal muscles after VML.
Collapse
Affiliation(s)
- Kerrie Downing
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Rhonda Prisby
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Venu Varanasi
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jingsong Zhou
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Zui Pan
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| | - Marco Brotto
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| |
Collapse
|
34
|
Subbiah R, Ruehle MA, Klosterhoff BS, Lin AS, Hettiaratchi MH, Willett NJ, Bertassoni LE, García AJ, Guldberg RE. Triple growth factor delivery promotes functional bone regeneration following composite musculoskeletal trauma. Acta Biomater 2021; 127:180-192. [PMID: 33823326 DOI: 10.1016/j.actbio.2021.03.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Successful bone healing in severe trauma depends on early revascularization to restore oxygen, nutrient, growth factor, and progenitor cell supply to the injury. Therapeutic angiogenesis strategies have therefore been investigated to promote revascularization following severe bone injuries; however, results have been inconsistent. This is the first study investigating the effects of dual angiogenic growth factors (VEGF and PDGF) with low-dose bone morphogenetic protein-2 (BMP-2; 2.5 µg) on bone healing in a clinically challenging composite bone-muscle injury model. Our hydrogel-based delivery systems demonstrated a more than 90% protein entrapment efficiency and a controlled simultaneous release of three growth factors over 28 days. Co-stimulation of microvascular fragment constructs with VEGF and PDGF promoted vascular network formation in vitro compared to VEGF or PDGF alone. In an in vivo model of segmental bone and volumetric muscle loss injury, combined VEGF (5 µg) and PDGF (7.5 µg or 15 µg) delivery with a low dose of BMP-2 significantly enhanced regeneration of vascularized bone compared to BMP-2 treatment alone. Notably, the regenerated bone mechanics reached ~60% of intact bone, a value that was previously only achieved by delivery of high-dose BMP-2 (10 µg) in this injury model. Overall, sustained delivery of VEGF, PDFG, and BMP-2 is a promising strategy to promote functional vascularized bone tissue regeneration following severe composite musculoskeletal injury. Although this study is conducted in a clinically relevant composite injury model in rats using a simultaneous release strategy, future studies are necessary to test the regenerative potential of spatiotemporally controlled delivery of triple growth factors on bone healing using large animal models. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss combined with delayed union or non-union bone defect causes deleterious effects on bone regeneration even with the supplementation of bone morphogenetic protein-2 (BMP-2). In this study, the controlled delivery of dual angiogenic growth factors (vascular endothelial growth factor [VEGF] + Platelet-derived growth factor [PDGF]) increases vascular growth in vitro. Co-delivering VEGF+PDGF significantly increase the bone formation efficacy of low-dose BMP-2 and improves the mechanics of regenerated bone in a challenging composite bone-muscle injury model.
Collapse
|
35
|
Burdis R, Kelly DJ. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater 2021; 126:1-14. [PMID: 33711529 DOI: 10.1016/j.actbio.2021.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
The modest clinical impact of musculoskeletal tissue engineering (TE) can be attributed, at least in part, to a failure to recapitulate the structure, composition and functional properties of the target tissue. This has motivated increased interest in developmentally inspired TE strategies, which seek to recapitulate key events that occur during embryonic and post-natal development, as a means of generating truly biomimetic grafts to replace or regenerate damaged tissues and organs. Such TE strategies can be substantially enabled by emerging biofabrication and bioprinting strategies, and in particular the use of cellular aggregates, microtissues and organoids as 'building blocks' for the development of larger tissues and/or organ precursors. Here, the application of such biological building blocks for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. The importance of first scaling-down to later scale-up will be discussed, as this is viewed as a key component of engineering functional grafts using cellular aggregates or microtissues. In the context of engineering anatomically accurate tissues of scale suitable for tissue engineering and regenerative medicine applications, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues fuse and self-organise will be reviewed. Throughout the paper, we will highlight some of the key challenges facing this emerging field. STATEMENT OF SIGNIFICANCE: The field of bioprinting has grown substantially in recent years, but despite the hype and excitement it has generated, there are relatively few examples of bioprinting strategies producing implants with superior regenerative potential to that achievable with more traditional tissue engineering approaches. This paper provides an up-to-date review of emerging biofabrication and bioprinting strategies which use cellular aggregates and microtissues as 'building blocks' for the development of larger musculoskeletal tissues and/or organ precursors - a field of research that can potentially enable functional regeneration of damaged and diseased tissues. The application of cellular aggregates and microtissues for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. In the context of engineering anatomically accurate tissues of scale, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues self-organise is addressed, as well as key challenges facing this emerging field.
Collapse
|
36
|
Interpretation of Near-Infrared Imaging in Acute and Chronic Wound Care. Diagnostics (Basel) 2021; 11:diagnostics11050778. [PMID: 33925990 PMCID: PMC8144992 DOI: 10.3390/diagnostics11050778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Vascular assessment is a critical component of wound care. Current routine noninvasive vascular studies have limitations which can give a false sense of security of the presence of adequate perfusion for healing. Near-infrared imaging modalities can serve as an additional diagnostic assessment of wounds in which adequate perfusion is a concern. Correct interpretation of near-infrared images obtained is critical as subtleties that exist in the acute and chronic wound population goes beyond the interpretation that increased signal is consistent with adequate perfusion for healing. The objective of this paper is to educate providers on the correct interpretation of this point-of-care imaging modality in day-to-day wound-care practice to guide clinical decision-making for rapid wound resolution.
Collapse
|
37
|
Xu X, Liang C, Gao X, Huang H, Xing X, Tang Q, Yang J, Wu Y, Li M, Li H, Liao L, Tian W. Adipose Tissue-derived Microvascular Fragments as Vascularization Units for Dental Pulp Regeneration. J Endod 2021; 47:1092-1100. [PMID: 33887305 DOI: 10.1016/j.joen.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The transplantation of dental pulp stem cells (DPSCs) has emerged as a novel strategy for the regeneration of lost dental pulp after pulpitis and trauma. Dental pulp regeneration of the young permanent tooth with a wide tooth apical foramen has achieved significant progress in the clinical trials. However, because of the narrow apical foramen, dental pulp regeneration in adult teeth using stem cells remains difficult in the clinic. Finding out how to promote vascular reconstitution is essential for the survival of stem cells and the regeneration of dental pulp after transplantation into the adult tooth. METHODS Adipose tissue-derived microvascular fragments (ad-MVFs) were isolated from human adipose tissues. The apoptosis and senescence of DPSCs cultured in conditioned media were evaluated to explore the effects of ad-MVFs on DPSCs. DPSCs combined with ad-MVFs were inserted into the human tooth root segments and implanted subcutaneously into immunodeficient mice. Regenerated pulplike tissues were analyzed by hematoxylin and eosin and immunohistochemistry. The vessels in regenerated tissues were analyzed by Micro-CT and immunofluorescence. RESULTS The isolated ad-MVFs contained endothelial cells and pericytes. ad-MVFs effectively prevented the apoptosis and senescence of the transplanted DPSCs both in vivo and in vitro. Combined with DPSCs, ad-MVFs obviously facilitated the formation of vascular networks in the transplants. DPSCs combined with ad-MVFs formed dental pulp-like tissues with abundant cells and matrix after 4 weeks of implantation. The supplementation of ad-MVFs led to more odontoblastlike cells and increased the formation of mineralized substance around the root canal. CONCLUSIONS Cotransplantation with ad-MVFs promotes the angiogenesis and revascularization of transplanted DPSC aggregates, leading to robust regeneration of dental pulp.
Collapse
Affiliation(s)
- Xun Xu
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Liang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Gao
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haisen Huang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaotao Xing
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jian Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Wu
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maojiao Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huanian Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
40
|
Später T, Ampofo E, Menger MD, Laschke MW. Combining Vascularization Strategies in Tissue Engineering: The Faster Road to Success? Front Bioeng Biotechnol 2020; 8:592095. [PMID: 33364230 PMCID: PMC7752995 DOI: 10.3389/fbioe.2020.592095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
41
|
Moyle LA, Jacques E, Gilbert PM. Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Oualla-Bachiri W, Fernández-González A, Quiñones-Vico MI, Arias-Santiago S. From Grafts to Human Bioengineered Vascularized Skin Substitutes. Int J Mol Sci 2020; 21:E8197. [PMID: 33147759 PMCID: PMC7662999 DOI: 10.3390/ijms21218197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
The skin plays an important role in the maintenance of the human's body physiological homeostasis. It acts as a coverage that protects against infective microorganism or biomechanical impacts. Skin is also implied in thermal regulation and fluid balance. However, skin can suffer several damages that impede normal wound-healing responses and lead to chronic wounds. Since the use of autografts, allografts, and xenografts present source limitations and intense rejection associated problems, bioengineered artificial skin substitutes (BASS) have emerged as a promising solution to address these problems. Despite this, currently available skin substitutes have many drawbacks, and an ideal skin substitute has not been developed yet. The advances that have been produced on tissue engineering techniques have enabled improving and developing new arising skin substitutes. The aim of this review is to outline these advances, including commercially available skin substitutes, to finally focus on future tissue engineering perspectives leading to the creation of autologous prevascularized skin equivalents with a hypodermal-like layer to achieve an exemplary skin substitute that fulfills all the biological characteristics of native skin and contributes to wound healing.
Collapse
Affiliation(s)
- Wasima Oualla-Bachiri
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
43
|
Chiou G, Jui E, Rhea AC, Gorthi A, Miar S, Acosta FM, Perez C, Suhail Y, Kshitiz, Chen Y, Ong JL, Bizios R, Rathbone C, Guda T. Scaffold Architecture and Matrix Strain Modulate Mesenchymal Cell and Microvascular Growth and Development in a Time Dependent Manner. Cell Mol Bioeng 2020; 13:507-526. [PMID: 33184580 PMCID: PMC7596170 DOI: 10.1007/s12195-020-00648-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis. METHODS The interaction between mesenchymal stem cells (MSCs) seeded on hydroxyapatite scaffolds of 450, 340, and 250 μm pores and microvascular fragments (MVFs) seeded within 20 mg/mL fibrin hydrogels that were cast into the cell-seeded scaffolds, was assessed in vitro over 21 days and compared to the fibrin hydrogels without scaffold but containing both MSCs and MVFs. mRNA sequencing was performed across all groups and a computational mechanics model was developed to validate architecture effects on predicting vascularization driven by stiffer matrix behavior at scaffold surfaces compared to the pore interior. RESULTS Lectin staining of decalcified scaffolds showed continued vessel growth, branching and network formation at 14 days. The fibrin gel provides no resistance to spread-out capillary networks formation, with greater vessel loops within the 450 μm pores and vessels bridging across 250 μm pores. Vessel growth in the scaffolds was observed to be stimulated by hypoxia and successive angiogenic signaling. Fibrin gels showed linear fold increase in VEGF expression and no change in BMP2. Within scaffolds, there was multiple fold increase in VEGF between days 7 and 14 and early multiple fold increases in BMP2 between days 3 and 7, relative to fibrin. There was evidence of yap/taz based hippo signaling and mechanotransduction in the scaffold groups. The vessel growth models determined by computational modeling matched the trends observed experimentally. CONCLUSION The differing nature of hypoxia signaling between scaffold systems and mechano-transduction sensing matrix mechanics were primarily responsible for differences in osteogenic cell and microvessel growth. The computational model implicated scaffold architecture in dictating branching morphology and strain in the hydrogel within pores in dictating vessel lengths.
Collapse
Affiliation(s)
- Gennifer Chiou
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Elysa Jui
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Allison C. Rhea
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229 USA
| | - Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Cynthia Perez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030 USA
- Cancer Systems Biology at Yale, Yale University, West Haven, CT 06516 USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229 USA
| | - Joo L. Ong
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Christopher Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| |
Collapse
|
44
|
Laschke MW, Später T, Menger MD. Microvascular Fragments: More Than Just Natural Vascularization Units. Trends Biotechnol 2020; 39:24-33. [PMID: 32593437 DOI: 10.1016/j.tibtech.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue-derived microvascular fragments serve as natural vascularization units in angiogenesis research and tissue engineering due to their ability to rapidly reassemble into microvascular networks. Recent studies indicate that they exhibit additional unique properties that may be beneficial for a wide range of future biomedical applications. Their angiogenic activity can be increased during short-term cultivation as a means of adapting their vascularization capacity to patient-specific needs. Moreover, they are a source of endothelial progenitor cells, multipotent mesenchymal stromal cells, and lymphatic vessel fragments. Finally, they exert immunomodulatory effects, determining the tissue integration of implanted biomaterials. Hence, microvascular fragments represent versatile building blocks for the improvement of vascularization, organotypic tissue formation, lymphatic regeneration, and implant integration.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
45
|
Später T, Menger MD, Laschke MW. Vascularization Strategies for Porous Polyethylene Implants. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:29-38. [PMID: 32524897 DOI: 10.1089/ten.teb.2020.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Porous polyethylene (pPE) is a frequently implanted biomaterial in craniofacial reconstructive surgery. Its rapid vascularization and tissue incorporation are major prerequisites to prevent complications, such as material infection, migration, and extrusion. To achieve this, several sophisticated strategies have been introduced and evaluated during the last 20 years. These include (i) the angiogenic stimulation of the host tissue with epidermal growth factor, basic fibroblast growth factor or macrophage-activating lipopeptide-2, (ii) material modifications, such as increase of surface roughness and incorporation of bioactive glass particles, (iii) surface coatings with growth factors, glycoproteins, acrylic acid, arginine/glycine/aspartic acid peptide as well as components of the plasminogen activation system and autologous clotted blood or serum, and (iv) the seeding with fibroblasts, chondrocytes, stem cells, or adipose-tissue-derived microvascular fragments. The majority of these approaches showed promising results in experimental studies and, thus, may be capable of improving the success rates after pPE implantation in future clinical practice.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
46
|
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, Plock JA, Calcagni M, Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 2020; 22:400-411. [PMID: 32507607 DOI: 10.1016/j.jcyt.2020.03.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.
Collapse
Affiliation(s)
- Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michelle McLuckie
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nadia Sanchez-Macedo
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Petra Wolint
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Später T, Menger MM, Nickels RM, Menger MD, Laschke MW. Macrophages promote network formation and maturation of transplanted adipose tissue-derived microvascular fragments. J Tissue Eng 2020; 11:2041731420911816. [PMID: 32313616 PMCID: PMC7153185 DOI: 10.1177/2041731420911816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue–derived microvascular fragments rapidly reassemble into microvascular networks within implanted scaffolds. Herein, we analyzed the contribution of macrophages to this process. C57BL/6 mice received clodronate (clo)-containing liposomes for macrophage depletion, whereas animals treated with phosphate-buffered-saline-containing liposomes served as controls. Microvascular fragments were isolated from clo- and phosphate-buffered-saline-treated donor mice and seeded onto collagen–glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of clo- and phosphate-buffered-saline-treated recipient mice. The implants’ vascularization and incorporation were analyzed by stereomicroscopy, intravital fluorescence microscopy, histology, and immunohistochemistry. Compared to controls, matrices within clo-treated animals exhibited a significantly reduced functional microvessel density. Moreover, they contained a lower fraction of microvessels with an α-smooth muscle actin (SMA)+ cell layer, indicating impaired vessel maturation. This was associated with a deteriorated implant incorporation. These findings demonstrate that macrophages not only promote the reassembly of microvascular fragments into microvascular networks, but also improve their maturation during this process.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
48
|
Acosta FM, Stojkova K, Brey EM, Rathbone CR. A Straightforward Approach to Engineer Vascularized Adipose Tissue Using Microvascular Fragments. Tissue Eng Part A 2020; 26:905-914. [PMID: 32070226 DOI: 10.1089/ten.tea.2019.0345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is a need to overcome the donor-site morbidity and loss of volume over time that accompanies the current clinical approaches to treat soft tissue defects caused by disease and trauma. The development of bioactive constructs that can regenerate adipose tissue have made great progress toward addressing the limitations of current therapies, but their lack of vascularization and ability to meet the significant dimension requirements of tissue defects limit their clinical translatability. Microvascular fragments (MVFs) can form extensive vascular networks and contain resident cells that have the ability to differentiate into adipocytes. Therefore, the objective of this study was to determine if vascularized adipose tissue could be engineered using a fibrin-based hydrogel containing MVFs as the sole source of microvessels and adipocyte-forming cells. The potential for MVFs from different fat depots (epididymal, inguinal, and subcutaneous) to form microvascular networks and generate adipocytes when exposed to growth media (GM), adipogenic differentiation media (ADM), or when treated with GM before adipogenic induction (i.e., they were allowed to presprout before adipogenic induction) was evaluated. MVFs treated with adipogenic induction media, both with and without presprouting, contained lipid droplets, had an increase in expression levels of genes associated with adipogenesis (adiponectin and fatty acid synthase [FAS]), and had an increased rate of lipolysis. MVFs allowed to presprout before ADM treatment maintained their ability to form vascular networks while maintaining an elevated lipid content, adipogenic gene expression, and lipolysis rate. Collectively, these results support the contention that MVFs can serve as the sole source of biologic material for creating a vascularized adipose tissue scaffold. Impact statement Microvascular fragments have both the ability to form extensive vascular networks and function as a source of adipocytes. These phenomena were exploited as vascularized adipose tissue was generated by first allowing for a period of angiogenesis before the adipogenic induction. This strategy has the ability to provide a means of both improving soft tissue reconstruction while also serving as a model to better understand adipose tissue expansion.
Collapse
Affiliation(s)
- Francisca M Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas.,UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Christopher R Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
49
|
Dobke M, Peterson DR, Mattern RH, Arm DM, Li WW. Microvascular tissue as a platform technology to modify the local microenvironment and influence the healing cascade. Regen Med 2020; 15:1313-1328. [PMID: 32228366 DOI: 10.2217/rme-2019-0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims: Profiling of microvascular tissue allows identification of components that stimulate wound healing. Here we study those elements for biological effect and establish clinical proof-of-concept using a microvascular tissue graft (mVASC®) in chronic refractory wounds. Methods: mVASC was characterized for tissue fragments and protein composition, evaluated for angiogenic potential in preclinical models, and applied clinically to a series of nonhealing wounds with compromised vascularity of different etiologies. Results: mVASC increased endothelial cell migration in vitro and angiogenesis in mouse ingrowth and hindlimb ischemia models. Clinically, mVASC stimulated wound neovascularization, granulation and epithelialization, and complete and durable healing. Conclusion: Microvascular tissue contains elements relevant to tissue repair and can be clinically applied to enable or accelerate the closure of challenging wounds.
Collapse
Affiliation(s)
- Marek Dobke
- Division of Plastic Surgery, Department of Surgery, University of California San Diego, 200 West Arbor Drive, San Diego, CA 92103, USA
| | | | | | - Douglas M Arm
- MicroVascular Tissues, Inc., San Diego, CA 92121, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, MA 02142, USA
| |
Collapse
|
50
|
Laschke MW, Kontaxi E, Scheuer C, Heß A, Karschnia P, Menger MD. Insulin-like growth factor 1 stimulates the angiogenic activity of adipose tissue-derived microvascular fragments. J Tissue Eng 2019; 10:2041731419879837. [PMID: 31632630 PMCID: PMC6767710 DOI: 10.1177/2041731419879837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis in adipose tissue is promoted by insulin-like growth factor 1 signaling. We analyzed whether this regulatory mechanism also improves the angiogenic activity of adipose tissue-derived microvascular fragments. Murine adipose tissue-derived microvascular fragments were cultivated for 24 h in the University of Wisconsin (UW) solution supplemented with vehicle, insulin-like growth factor 1, or a combination of insulin-like growth factor 1 and insulin-like growth factor-binding protein 4. Subsequently, we assessed their cellular composition, viability, proliferation, and growth factor expression. Moreover, cultivated adipose tissue-derived microvascular fragments were seeded onto collagen-glycosaminoglycan scaffolds, which were implanted into dorsal skinfold chambers to study their vascularization and incorporation. Insulin-like growth factor 1 increased the viability and growth factor expression of adipose tissue-derived microvascular fragments without affecting their cellular composition and proliferation. Accordingly, scaffolds containing insulin-like growth factor 1-stimulated adipose tissue-derived microvascular fragments exhibited an enhanced in vivo vascularization and incorporation. These positive insulin-like growth factor 1 effects were reversed by additional exposure of adipose tissue-derived microvascular fragments to insulin-like growth factor-binding protein 4. Our findings indicate that insulin-like growth factor 1 stimulation of adipose tissue-derived microvascular fragments is suitable to improve their vascularization capacity.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Elena Kontaxi
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Alexander Heß
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Philipp Karschnia
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|