1
|
Chernigovskaya M, Pavlović M, Kanduri C, Gielis S, Robert P, Scheffer L, Slabodkin A, Haff IH, Meysman P, Yaari G, Sandve GK, Greiff V. Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning. Nucleic Acids Res 2025; 53:gkaf025. [PMID: 39873270 PMCID: PMC11773363 DOI: 10.1093/nar/gkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2025] [Indexed: 01/30/2025] Open
Abstract
Machine learning (ML) has shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML methods where experimental data is currently inaccessible or insufficient. The challenge for simulated data to be useful is incorporating key features observed in experimental repertoires. These features, such as antigen or disease-associated immune information, cause AIRR-ML problems to be challenging. Here, we introduce LIgO, a software suite, which simulates AIRR data for the development and benchmarking of AIRR-ML methods. LIgO incorporates different types of immune information both on the receptor and the repertoire level and preserves native-like generation probability distribution. Additionally, LIgO assists users in determining the computational feasibility of their simulations. We show two examples where LIgO supports the development and validation of AIRR-ML methods: (i) how individuals carrying out-of-distribution immune information impacts receptor-level prediction performance and (ii) how immune information co-occurring in the same AIRs impacts the performance of conventional receptor-level encoding and repertoire-level classification approaches. LIgO guides the advancement and assessment of interpretable AIRR-ML methods.
Collapse
Affiliation(s)
- Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Chakravarthi Kanduri
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Sofie Gielis
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | | | - Pieter Meysman
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| |
Collapse
|
2
|
Du F, Deng Y, Deng L, Du B, Xing A, Tao H, Li H, Xie L, Zhang X, Sun T, Li H. T-cell receptor and B-cell receptor repertoires profiling in pleural tuberculosis. Front Immunol 2024; 15:1473486. [PMID: 39664375 PMCID: PMC11632106 DOI: 10.3389/fimmu.2024.1473486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Tuberculosis (TB) is a leading cause of death worldwide from a single infectious agent. In China the most common extra-pulmonary TB (EPTB) is pleural tuberculosis (PLTB). An important clinical feature of PLTB is that the lymphocytes associated with TB will accumulate in the pleural fluid. The adaptive immune repertoires play important roles in Mycobacterium tuberculosis (Mtb) infection. Methods In this study, 10 PLTB patients were enrolled, and their Peripheral Blood Mononuclear Cells(PBMCs) and Pleural Effusion Mononuclear Cells(PEMCs) were collected. After T cells were purified from PBMCs and PEMCs, high-throughput immunosequencing of the TCRβ chain (TRB), TCRγ chain(TRG), and B cell receptor(BCR) immunoglobulin heavy chain (IGH) were conducted on these samples. Results The TRB, TRG, and BCR IGH repertoires were characterized between the pleural effusion and blood in PLTB patients, and the shared clones were analyzed and collected. The binding activity of antibodies in plasma and pleural effusion to Mtb antigens was tested which indicates that different antibodies responses to Mtb antigens in plasma and pleural effusion in PLTB patients. Moreover, GLIPH2 was used to identify the specificity groups of TRB clusters and Mtb-specific TRB sequences were analyzed and collected by VJ mapping. Conclusion We characterize the adaptive immune repertoires and identify the shared clones and Mtb-specific clones in pleural effusion and blood in PLTB patients which can give important clues for TB diagnosis, treatment, and vaccine development.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Tuberculosis, Pleural/immunology
- Tuberculosis, Pleural/diagnosis
- Male
- Female
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Adult
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Aged
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Fengjiao Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Ling Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Boping Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hong Tao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hua Li
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Xie
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinyong Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, China
| | - Hao Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
4
|
Hu W, Zhao Z, Du J, Jiang J, Yang M, Tian M, Zhao P. Interferon signaling and ferroptosis in tumor immunology and therapy. NPJ Precis Oncol 2024; 8:177. [PMID: 39127858 PMCID: PMC11316745 DOI: 10.1038/s41698-024-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study sought to elucidate the mechanisms underlying the impact of the interferon signaling pathway on Ferroptosis in tumor cells and its correlation with CD8 + T cell exhaustion. Using mouse models and single-cell sequencing, the researchers studied the interaction between CD8 + T cells and the interferon signaling pathway. Differential gene analysis revealed key genes involved in CD8 + T cell exhaustion, and their downstream factors were explored using bioinformatics tools. The expression levels of interferon-related genes associated with Ferroptosis were analyzed using data from the TCGA database, and their relevance to tumor tissue Ferroptosis and patients' prognosis was determined. In vitro experiments were conducted to measure the levels of IFN-γ, MDA, and LPO, as well as tumor cell viability and apoptosis. In vivo validation using a mouse tumor model confirmed the results obtained from the in vitro experiments, highlighting the potential of silencing HSPA6 or DNAJB1 in enhancing the efficacy of PD-1 therapy and inhibiting tumor growth and migration.
Collapse
Grants
- This study was supported by National Natural Science Foundation of China (81972002,12304241), Natural Science Foundation of Shandong Province (ZR2023QC168,ZR2021MC165,ZR2021MC083,ZR2023MC136), and Taishan Young Scholar Foundation of Shandong Province (tsqnz20231257). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students (S202310760060).
- This study was supported by National Natural Science Foundation of China (81972002, 12304241), and Natural Science Foundation of Shandong Province (ZR2019MH099, ZR2021MC165, ZR2021MC083, ZR2023QC168). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students(S202310760060).
Collapse
Affiliation(s)
- Wei Hu
- Department of Breast Surgery, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Ziqian Zhao
- The Second Medical College, Xinjiang Medical University, Urumqii, PR China
| | - Jianxin Du
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Jie Jiang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Minghao Yang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| |
Collapse
|
5
|
Zhu H, Jiang J, Yang M, Zhao M, He Z, Tang C, Song C, Zhao M, Akbar AN, Reddy V, Pan W, Li S, Tan Y, Wu H, Lu Q. Topical application of a BCL-2 inhibitor ameliorates imiquimod-induced psoriasiform dermatitis by eliminating senescent cells. J Dermatol Sci 2024; 115:54-63. [PMID: 38960840 DOI: 10.1016/j.jdermsci.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease with unclear pathogenesis and unmet therapeutic needs. OBJECTIVE To investigate the role of senescent CD4+ T cells in psoriatic lesion formation and explore the application of senolytics in treating psoriasis. METHODS We explored the expression levels of p16INK4a and p21, classical markers of cellular senescence, in CD4+ T cells from human psoriatic lesions and imiquimod (IMQ)-induced psoriatic lesions. We prepared a senolytic gel using B-cell lymphoma 2 (BCL-2) inhibitor ABT-737 and evaluated its therapeutic efficacy in treating psoriasis. RESULTS Using multispectrum immunohistochemistry (mIHC) staining, we detected increased expression levels of p16INK4a and p21 in CD4+ T cells from psoriatic lesions. After topical application of ABT-737 gel, significant alleviation of IMQ-induced psoriatic lesions was observed, with milder pathological alterations. Mechanistically, ABT-737 gel significantly decreased the percentage of senescent cells, expression of T cell receptor (TCR) α and β chains, and expression of Tet methylcytosine dioxygenase 2 (Tet2) in IMQ-induced psoriatic lesions, as determined by mIHC, high-throughput sequencing of the TCR repertoire, and RT-qPCR, respectively. Furthermore, the severity of psoriatic lesions in CD4creTet2f/f mice was milder than that in Tet2f/f mice in the IMQ-induced psoriasis model. CONCLUSION We revealed the roles of senescent CD4+ T cells in developing psoriasis and highlighted the therapeutic potential of topical ABT-737 gel in treating psoriasis through the elimination of senescent cells, modulation of the TCR αβ repertoire, and regulation of the TET2-Th17 cell pathway.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiao Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenghao He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, China
| | - Cailing Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Wenjing Pan
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Song Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
6
|
Delmonte OM, Oguz C, Dobbs K, Myint-Hpu K, Palterer B, Abers MS, Draper D, Truong M, Kaplan IM, Gittelman RM, Zhang Y, Rosen LB, Snow AL, Dalgard CL, Burbelo PD, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Anderson MV, Saracino A, Chironna M, Di Stefano M, Fiore JR, Santantonio T, Castagnoli R, Marseglia GL, Magliocco M, Bosticardo M, Pala F, Shaw E, Matthews H, Weber SE, Xirasagar S, Barnett J, Oler AJ, Dimitrova D, Bergerson JRE, McDermott DH, Rao VK, Murphy PM, Holland SM, Lisco A, Su HC, Lionakis MS, Cohen JI, Freeman AF, Snyder TM, Lack J, Notarangelo LD. Perturbations of the T-cell receptor repertoire in response to SARS-CoV-2 in immunocompetent and immunocompromised individuals. J Allergy Clin Immunol 2024; 153:1655-1667. [PMID: 38154666 PMCID: PMC11162338 DOI: 10.1016/j.jaci.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor β repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew L Snow
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Md; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Peter D Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Megan V Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari, Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Jose Ramon Fiore
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sarah E Weber
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jason Barnett
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Justin Lack
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
7
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
8
|
Feng HG, Wu CX, Zhong GC, Gong JP, Miao CM, Xiong B. Integrative analysis reveals that SLC38A1 promotes hepatocellular carcinoma development via PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism. J Cancer Res Clin Oncol 2023; 149:15879-15898. [PMID: 37673823 DOI: 10.1007/s00432-023-05360-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Although hepatocellular carcinoma (HCC) is rather frequent, little is known about the molecular pathways underlying its development, progression, and prognosis. In the current study, we comprehensively analyzed the deferentially expressed metabolism-related genes (MRGs) in HCC based on TCGA datasets attempting to discover the potentially prognostic genes in HCC. The up-regulated MRGs were further subjected to analyze their prognostic values and protein expressions. Twenty-seven genes were identified because their high expressions were significant in OS, PFS, DFS, DSS, and HCC tumor samples. They were then used for GO, KEGG, methylation, genetics changes, immune infiltration analyses. Moreover, we established a prognostic model in HCC using univariate assays and LASSO regression based on these MRGs. Additionally, we also found that SLC38A1, an amino acid metabolism closely related transporter, was a potential prognostic gene in HCC, and its function in HCC was further studied using experiments. We found that the knockdown of SLC38A1 notably suppressed the growth and migration of HCC cells. Further studies revealed that SLC38A1 modulated the development of HCC cells by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism. In conclusion, this study identified the potentially prognostic MRGs in HCC and uncovered that SLC38A1 regulated HCC development and progression by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism, which might provide a novel marker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Hua-Guo Feng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Chuan-Xin Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Chun-Mu Miao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Bin Xiong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China.
| |
Collapse
|
9
|
Xu AM, Chour W, DeLucia DC, Su Y, Pavlovitch-Bedzyk AJ, Ng R, Rasheed Y, Davis MM, Lee JK, Heath JR. Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities. Cell Syst 2023; 14:273-284.e5. [PMID: 37001518 PMCID: PMC10355346 DOI: 10.1016/j.cels.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/01/2022] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify "essential" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and "super-essential" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.
Collapse
Affiliation(s)
- Alexander M Xu
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - William Chour
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 91125, USA
| | - Diana C DeLucia
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rachel Ng
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yusuf Rasheed
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Mark M Davis
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
11
|
García-Valiente R, Merino Tejero E, Stratigopoulou M, Balashova D, Jongejan A, Lashgari D, Pélissier A, Caniels TG, Claireaux MAF, Musters A, van Gils MJ, Rodríguez Martínez M, de Vries N, Meyer-Hermann M, Guikema JEJ, Hoefsloot H, van Kampen AHC. Understanding repertoire sequencing data through a multiscale computational model of the germinal center. NPJ Syst Biol Appl 2023; 9:8. [PMID: 36927990 PMCID: PMC10019394 DOI: 10.1038/s41540-023-00271-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.
Collapse
Affiliation(s)
- Rodrigo García-Valiente
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Elena Merino Tejero
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Danial Lashgari
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aurélien Pélissier
- IBM Research Zurich, 8803, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu A F Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | | | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Park JJ, Lee KAV, Lam SZ, Moon KS, Fang Z, Chen S. Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity. Commun Biol 2023; 6:76. [PMID: 36670287 PMCID: PMC9853487 DOI: 10.1038/s42003-023-04447-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we perform a large-scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identify and characterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and sequence patterns. Here we show that T cell clonal expansion is associated with the upregulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma signaling pathways. We also demonstrate that machine learning approaches accurately predict COVID-19 infection based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores. These analyses provide a systems immunology view of T cell adaptive immune responses to COVID-19.
Collapse
Affiliation(s)
- Jonathan J. Park
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710MD-PhD Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT USA
| | - Kyoung A V. Lee
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Department of Biostatistics, Yale School of Public Health, New Haven, CT USA
| | - Stanley Z. Lam
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Katherine S. Moon
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Zhenhao Fang
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA
| | - Sidi Chen
- grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, West Haven, CT USA ,grid.47100.320000000419368710Center for Cancer Systems Biology, Yale University, West Haven, CT USA ,grid.47100.320000000419368710MD-PhD Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Immunobiology Program, Yale University, New Haven, CT USA ,grid.47100.320000000419368710Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Yale Stem Cell Center, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Yale Center for Biomedical Data Science, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
13
|
Dascalu S, Preston SG, Dixon RJ, Flammer PG, Fiddaman S, Boyd A, Sealy JE, Sadeyen JR, Kaspers B, Velge P, Iqbal M, Bonsall MB, Smith AL. The influences of microbial colonisation and germ-free status on the chicken TCRβ repertoire. Front Immunol 2023; 13:1052297. [PMID: 36685492 PMCID: PMC9847582 DOI: 10.3389/fimmu.2022.1052297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Microbial colonisation is paramount to the normal development of the immune system, particularly at mucosal sites. However, the relationships between the microbiome and the adaptive immune repertoire have mostly been explored in rodents and humans. Here, we report a high-throughput sequencing analysis of the chicken TCRβ repertoire and the influences of microbial colonisation on tissue-resident TCRβ+ cells. The results reveal that the microbiome is an important driver of TCRβ diversity in both intestinal tissues and the bursa of Fabricius, but not in the spleen. Of note, public TCRβ sequences (shared across individuals) make a substantial contribution to the repertoire. Additionally, different tissues exhibit biases in terms of their V family and J gene usage, and these effects were influenced by the gut-associated microbiome. TCRβ clonal expansions were identified in both colonised and germ-free birds, but differences between the groups were indicative of an influence of the microbiota. Together, these findings provide an insight into the avian adaptive immune system and the influence of the microbiota on the TCRβ repertoire.
Collapse
Affiliation(s)
- Stefan Dascalu
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Stephen G. Preston
- Department of Biology, University of Oxford, Oxford, United Kingdom
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Robert J. Dixon
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Steven Fiddaman
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Amy Boyd
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Joshua E. Sealy
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Jean-Remy Sadeyen
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Bernd Kaspers
- Veterinary Faculty, Ludwig Maximillians University of Munich, Planegg, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique (INRAE), Université François Rabelais de Tours, Unités Mixtes de Recherche, Infectiologie et Santé Publique (ISP), Nouzilly, France
| | - Munir Iqbal
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Adrian L. Smith
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Blazso P, Csomos K, Tipton CM, Ujhazi B, Walter JE. Lineage Reconstruction of In Vitro Identified Antigen-Specific Autoreactive B Cells from Adaptive Immune Receptor Repertoires. Int J Mol Sci 2022; 24:ijms24010225. [PMID: 36613668 PMCID: PMC9820449 DOI: 10.3390/ijms24010225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis.
Collapse
Affiliation(s)
- Peter Blazso
- Department of Pediatrics, University of Szeged, 6720 Szeged, Hungary
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
- Correspondence: (P.B.); (J.E.W.)
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA 30322, USA
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
- Correspondence: (P.B.); (J.E.W.)
| |
Collapse
|
15
|
Han J, Masserey S, Shlesinger D, Kuhn R, Papadopoulou C, Agrafiotis A, Kreiner V, Dizerens R, Hong KL, Weber C, Greiff V, Oxenius A, Reddy ST, Yermanos A. Echidna: integrated simulations of single-cell immune receptor repertoires and transcriptomes. BIOINFORMATICS ADVANCES 2022; 2:vbac062. [PMID: 36699357 PMCID: PMC9710610 DOI: 10.1093/bioadv/vbac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/31/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Motivation Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest. Currently, there is no tool that can be used to simulate single-cell datasets incorporating immune receptor repertoires and gene expression. Results We developed Echidna, an R package that simulates immune receptors and transcriptomes at single-cell resolution with user-tunable parameters controlling a wide range of features such as clonal expansion, germline gene usage, somatic hypermutation, transcriptional phenotypes and spatial location. Echidna can additionally simulate time-resolved B cell evolution, producing mutational networks with complex selection histories incorporating class-switching and B cell subtype information. We demonstrated the benchmarking potential of Echidna by simulating clonal lineages and comparing the known simulated networks with those inferred from only the BCR sequences as input. Finally, we simulated immune repertoire information onto existing spatial transcriptomic experiments, thereby generating novel datasets that could be used to develop and integrate methods to profile clonal selection in a spatially resolved manner. Together, Echidna provides a framework that can incorporate experimental data to simulate single-cell immune repertoires to aid software development and bioinformatic benchmarking of clonotyping, phylogenetics, transcriptomics and machine learning strategies. Availability and implementation The R package and code used in this manuscript can be found at github.com/alexyermanos/echidna and also in the R package Platypus (Yermanos et al., 2021). Installation instructions and the vignette for Echidna is described in the Platypus Computational Ecosystem (https://alexyermanos.github.io/Platypus/index.html). Publicly available data and corresponding sample accession numbers can be found in Supplementary Tables S2 and S3. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Solène Masserey
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Cédric Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo 0450, Norway
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | | |
Collapse
|
16
|
Mark M, Reich-Zeliger S, Greenstein E, Reshef D, Madi A, Chain B, Friedman N. A hierarchy of selection pressures determines the organization of the T cell receptor repertoire. Front Immunol 2022; 13:939394. [PMID: 35967295 PMCID: PMC9372880 DOI: 10.3389/fimmu.2022.939394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
We systematically examine the receptor repertoire in T cell subsets in young, adult, and LCMV-infected mice. Somatic recombination generates diversity, resulting in the limited overlap between nucleotide sequences of different repertoires even within the same individual. However, statistical features of the repertoire, quantified by the V gene and CDR3 k-mer frequency distributions, are highly conserved. A hierarchy of immunological processes drives the evolution of this structure. Intra-thymic divergence of CD4+ and CD8+ lineages imposes subtle but dominant differences observed across repertoires of all subpopulations in both young and adult mice. Differentiation from naive through memory to effector phenotype imposes an additional gradient of repertoire diversification, which is further influenced by age in a complex and lineage-dependent manner. The distinct repertoire of CD4+ regulatory T cells is more similar to naive cells in young mice and to effectors in adults. Finally, we describe divergent (naive and memory) and convergent (CD8+ effector) evolution of the repertoire following acute infection with LCMV. This study presents a quantitative framework that captures the structure of the repertoire in terms of its fundamental statistical properties and describes how this structure evolves as individual T cells differentiate, migrate and mature in response to antigen exposure.
Collapse
Affiliation(s)
- Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Michal Mark, ; Benny Chain,
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Madi
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
| | - Benny Chain
- Department of Computer Science, University College London, UCL, London, United Kingdom
- *Correspondence: Michal Mark, ; Benny Chain,
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Mahita J, Kim DG, Son S, Choi Y, Kim HS, Bailey-Kellogg C. Computational epitope binning reveals functional equivalence of sequence-divergent paratopes. Comput Struct Biotechnol J 2022; 20:2169-2180. [PMID: 35615020 PMCID: PMC9118127 DOI: 10.1016/j.csbj.2022.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Epitope binning groups target-specific protein binders recognizing the same binding region. The “Epibin” method utilizes docking models to computationally predict competition and identify bins. Epibin recapitulated binding competition of repebody variants as determined by immunoassays. In addition, Epibin enabled identification of ‘paratope-equivalent’ residues in sequence-dissimilar variants. Computational epitope binning can scale to allow characterization of entire antigen-specific antibody repertoires.
The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its binding affinity. Advances in in vitro library display screening and next-generation sequencing have enabled accelerated development of strong binders, yet identifying their binding sites still remains a major challenge. The differentiation, or “binning”, of binders into different groups that recognize distinct binding sites on their target is a promising approach that facilitates high-throughput screening of binders that may show different biological activity. Here we study the extent to which the information contained in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them, inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat binding scaffold known as a “repebody” as the source of diversity in recognition against interleukin-6 (IL-6), we show that the “Epibin” approach introduced here effectively utilized structural modelling and docking to extract specificity information encoded in the repebody amino acid sequences and thereby successfully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retrospectively comparing its predictions to results from antigen-specific antibody competition studies. The study thus demonstrates the utility of modeling structure and binding from the amino acid sequences of different binders against the same target, and paves the way for larger-scale binning and analysis of entire repertoires.
Collapse
|
18
|
Aoki H, Shichino S, Matsushima K, Ueha S. Revealing Clonal Responses of Tumor-Reactive T-Cells Through T Cell Receptor Repertoire Analysis. Front Immunol 2022; 13:807696. [PMID: 35154125 PMCID: PMC8829044 DOI: 10.3389/fimmu.2022.807696] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
CD8+ T cells are the key effector cells that contribute to the antitumor immune response. They comprise various T-cell clones with diverse antigen-specific T-cell receptors (TCRs). Thus, elucidating the overall antitumor responses of diverse T-cell clones is an emerging challenge in tumor immunology. With the recent advancement in next-generation DNA sequencers, comprehensive analysis of the collection of TCR genes (TCR repertoire analysis) is feasible and has been used to investigate the clonal responses of antitumor T cells. However, the immunopathological significance of TCR repertoire indices is still undefined. In this review, we introduce two approaches that facilitate an immunological interpretation of the TCR repertoire data: inter-organ clone tracking analysis and single-cell TCR sequencing. These approaches for TCR repertoire analysis will provide a more accurate understanding of the response of tumor-specific T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Hygiene, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
19
|
Wu H, Zhou Z, Xie S, Yan R, Gong M, Tian X, Wang Z. Similarity measurements of B cell receptor repertoire in baseline mice showed spectrum convergence of IgM. BMC Immunol 2022; 23:11. [PMID: 35246036 PMCID: PMC8895918 DOI: 10.1186/s12865-022-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The B cell receptor (BCR) repertoire is highly diverse among individuals. Poor similarity of the spectrum among inbred baseline mice may limit the ability to discriminate true signals from those involving specific experimental factors. The repertoire similarity of the baseline status lacks intensive measurements. RESULTS We measured the repertoire similarity of IgH in blood and spleen samples from untreated BALB/c and C57BL/6J mice to investigate the baseline status of the two inbred strains. The antibody pool was stratified by the isotype of IgA, IgG and IgM. Between individuals, the results showed better convergence of CDR3 and clonal lineage profiles in IgM than in IgA and IgG, and better robustness of somatic mutation networks in IgM than in IgA and IgG. It also showed that the CDR3 clonotypes and clonal lineages shared better in the spleen samples than in the blood samples. The animal batch differences were detected in CDR3 evenness, mutated clonotype proportions, and maximal network degrees. A cut-off of 95% identity in the CDR3 nucleotide sequences was suitable for clonal lineage establishment. CONCLUSIONS Our findings reveal a natural landscape of BCR repertoire similarities between baseline mice and provide a solid reference for designing studies of mouse BCR repertoires.
Collapse
Affiliation(s)
- Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Ionov S, Lee J. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by Serological Repertoire Profiling. Front Immunol 2022; 13:832533. [PMID: 35178051 PMCID: PMC8843944 DOI: 10.3389/fimmu.2022.832533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in various disease contexts. Until recently, characterization of antibody molecules in biological fluids was limited to bulk serology, which identifies clinically relevant features of polyclonal antibody responses. The past decade, however, has seen the rise of mass-spectrometry-enabled proteomics methods that have allowed profiling of the antibody response at the molecular level, with the disease-specific serological repertoire elucidated in unprecedented detail. In this review, we present an up-to-date survey of insights into the disease-specific immunological repertoire by examining how quantitative proteomics-based approaches have shed light on the humoral immune response to infection and vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the tumor-specific repertoire in cancer. We address limitations of this technology with a focus on emerging potential solutions and discuss the promise of high-resolution immunoproteomics in therapeutic discovery and novel vaccine design.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
21
|
Wang Q, Zeng H, Zhu Y, Wang M, Zhang Y, Yang X, Tang H, Li H, Chen Y, Ma C, Lan C, Liu B, Yang W, Yu X, Zhang Z. Dual UMIs and Dual Barcodes With Minimal PCR Amplification Removes Artifacts and Acquires Accurate Antibody Repertoire. Front Immunol 2021; 12:778298. [PMID: 35003093 PMCID: PMC8727365 DOI: 10.3389/fimmu.2021.778298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Antibody repertoire sequencing (Rep-seq) has been widely used to reveal repertoire dynamics and to interrogate antibodies of interest at single nucleotide-level resolution. However, polymerase chain reaction (PCR) amplification introduces extensive artifacts including chimeras and nucleotide errors, leading to false discovery of antibodies and incorrect assessment of somatic hypermutations (SHMs) which subsequently mislead downstream investigations. Here, a novel approach named DUMPArts, which improves the accuracy of antibody repertoires by labeling each sample with dual barcodes and each molecule with dual unique molecular identifiers (UMIs) via minimal PCR amplification to remove artifacts, is developed. Tested by ultra-deep Rep-seq data, DUMPArts removed inter-sample chimeras, which cause artifactual shared clones and constitute approximately 15% of reads in the library, as well as intra-sample chimeras with erroneous SHMs and constituting approximately 20% of the reads, and corrected base errors and amplification biases by consensus building. The removal of these artifacts will provide an accurate assessment of antibody repertoires and benefit related studies, especially mAb discovery and antibody-guided vaccine design.
Collapse
Affiliation(s)
- Qilong Wang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huikun Zeng
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Zhu
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfang Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiujia Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haipei Tang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongliang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yuan Chen
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cuiyu Ma
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunhong Lan
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| |
Collapse
|
22
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
23
|
Agathangelidis A, Vlachonikola E, Davi F, Langerak AW, Chatzidimitriou A. High-Throughput immunogenetics for precision medicine in cancer. Semin Cancer Biol 2021; 84:80-88. [PMID: 34757183 DOI: 10.1016/j.semcancer.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/20/2023]
Abstract
Cancer is characterized by an extremely complex biological background, which hinders personalized therapeutic interventions. Precision medicine promises to overcome this obstacle through integrating information from different 'subsystems', including the host, the external environment, the tumor itself and the tumor micro-environment. Immunogenetics is an essential tool that allows dissecting both lymphoid cancer ontogeny at both a cell-intrinsic and a cell-extrinsic level, i.e. through characterizing micro-environmental interactions, with a view to precision medicine. This is particularly thanks to the introduction of powerful, high-throughput approaches i.e. next generation sequencing, which allow the comprehensive characterization of immune repertoires. Indeed, NGS immunogenetic analysis (Immune-seq) has emerged as key to both understanding cancer pathogenesis and improving the accuracy of clinical decision making in oncology. Immune-seq has applications in lymphoid malignancies, assisting in the diagnosis e.g. through differentiating from reactive conditions, as well as in disease monitoring through accurate assessment of minimal residual disease. Moreover, Immune-seq facilitates the study of T cell receptor clonal dynamics in critical clinical contexts, including transplantation as well as innovative immunotherapy for solid cancers. The clinical utility of Immune-seq represents the focus of the present contribution, where we highlight what can be achieved but also what must be addressed in order to maximally realize the promise of Immune-seq in precision medicine in cancer.
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Vlachonikola
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frederic Davi
- Department of Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Anastasia Chatzidimitriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75236, Sweden.
| |
Collapse
|
24
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|
25
|
Arnaud M, Bobisse S, Chiffelle J, Harari A. The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients. Front Immunol 2021; 12:701636. [PMID: 34394096 PMCID: PMC8363295 DOI: 10.3389/fimmu.2021.701636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mutation-derived neoantigens are now established as attractive targets for cancer immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly reshaped by tumor neoantigens and is now moving towards the genetic engineering of T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of neoantigen-reactive TCRs remains challenging and the process needs to be adapted to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-ACT and discuss the next-generation methods for rapid identification of relevant TCR candidates for gene transfer therapy.
Collapse
Affiliation(s)
- Marion Arnaud
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johanna Chiffelle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
26
|
Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB, Weber CR, Savic M, Rudolf F, Reddy ST. A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Reveals Age-Related Differences in Convalescent COVID-19 Patients. Front Immunol 2021; 12:701085. [PMID: 34322127 PMCID: PMC8312723 DOI: 10.3389/fimmu.2021.701085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023] Open
Abstract
COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Botnar Research Centre for Child Health, Basel, Switzerland
| | - Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,deepCDR Biologics AG, Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.,Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland.,Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Botnar Research Centre for Child Health, Basel, Switzerland
| |
Collapse
|
27
|
Lower Somatic Mutation Levels in the λ Light-Chain Repertoires with Chronic HBV Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5525369. [PMID: 34239579 PMCID: PMC8203402 DOI: 10.1155/2021/5525369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
To investigate the characteristics of the immunoglobulin light-chain repertoires with chronic HBV infection, the high-throughput sequencing and IMGT/HighV-QUEST were adapted to analyze the κ (IgK) and λ (IgL) light-chain repertoires from the inactive HBV carriers (IHB) and the healthy adults (HH). The comparative analysis revealed high similarity between the κ light-chain repertoires of the HBV carriers and the healthy adults. Nevertheless, the proportion of IGLV genes with ≥90% identity as the germline genes was higher in the IgL light-chain repertoire of the IHB library compared with that of HH library (74.6% vs. 69.1%). Besides, the frequency of amino acid mutations in the CDR1 regions was significantly lower in the IgL light-chain repertoire of the IHB library than that of the HH library (65.52% vs. 56.0%). These results suggested the lower somatic mutation level in the IgL repertoire of IHB library, which might indicate the biased selection of IGLV genes in the IgL repertoire with chronic HBV infection. These findings might lead to a better understanding of the characteristics of the light-chain repertoires of HBV chronically infected individuals.
Collapse
|
28
|
Tian G, Shen Y, Hu X, Zhang T, Zhang L, Bian B. The change of water content and role of microbe in the sludge drying process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112254. [PMID: 33676131 DOI: 10.1016/j.jenvman.2021.112254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, the pure terephthalic acid sludge was treated by a drying process which was an economical and environmentally method. The water change and metabolic pathways for bacterial community function prediction were analyzed. The microbial community changes were studied by high-throughput sequencing to draw the dynamic succession model. Then multiple statistics was used to determine the key factors of the reduction. The results showed that the main stage of water loss in the PTA sludge drying process was the high temperature period where the water lost by evaporation accounted for more than 90% of the total removal. The main metabolic pathways for bacterial community function were amino acid (7.72%-8.71% of Kyoto encyclopedia of genes and genomes relative abundance and 8.26%-9.51% of Cluster of orthologous groups of proteins relative abundance) and carbohydrate metabolism. The model describing the dynamic succession of microbial communities showed that the dominant bacteria changed from Nitrospira, Novosphingobium and Azohydromonas to Pseudomonas, Paeniglutamicibac and Pelotomaculum. The key factors for water loss were Gemmatimonas, Novosphingobium and Azohydromonas with the correlation coefficients of 0.887, 0.772, 0.783, respectively; the key factors for dry matter loss were Pelotomaculum, total organic matter, dissovlved organic carbon and carbon/nitrogen ratio; the key factors for toxic substance loss were Brevundimonas, Novosphingobium and Gemmatimonas. These results provided theoretical support for the application and demonstration for hazardous waste sludge reduction.
Collapse
Affiliation(s)
- Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Yue Shen
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Xiuren Hu
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
29
|
Johansson G, Kaltak M, Rîmniceanu C, Singh AK, Lycke J, Malmeström C, Hühn M, Vaarala O, Cardell S, Ståhlberg A. Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular Identifiers. Clin Chem 2021; 66:1228-1237. [PMID: 32814950 DOI: 10.1093/clinchem/hvaa159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune repertoire sequencing of the T-cell receptor can identify clonotypes that have expanded as a result of antigen recognition or hematological malignancies. However, current sequencing protocols display limitations with nonuniform amplification and polymerase-induced errors during sequencing. Here, we developed a sequencing method that overcame these issues and applied it to γδ T cells, a cell type that plays a unique role in immunity, autoimmunity, homeostasis of intestine, skin, adipose tissue, and cancer biology. METHODS The ultrasensitive immune repertoire sequencing method used PCR-introduced unique molecular identifiers. We constructed a 32-panel assay that captured the full diversity of the recombined T-cell receptor delta loci in γδ T cells. The protocol was validated on synthetic reference molecules and blood samples of healthy individuals. RESULTS The 32-panel assay displayed wide dynamic range, high reproducibility, and analytical sensitivity with single-nucleotide resolution. The method corrected for sequencing-depended quantification bias and polymerase-induced errors and could be applied to both enriched and nonenriched cells. Healthy donors displayed oligoclonal expansion of γδ T cells and similar frequencies of clonotypes were detected in both enrichment and nonenriched samples. CONCLUSIONS Ultrasensitive immune repertoire sequencing strategy enables quantification of individual and specific clonotypes in a background that can be applied to clinical as well as basic application areas. Our approach is simple, flexible, and can easily be implemented in any molecular laboratory.
Collapse
Affiliation(s)
- Gustav Johansson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Melita Kaltak
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cristiana Rîmniceanu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Avadhesh K Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Outi Vaarala
- Respiratory Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Chronister WD, Crinklaw A, Mahajan S, Vita R, Koşaloğlu-Yalçın Z, Yan Z, Greenbaum JA, Jessen LE, Nielsen M, Christley S, Cowell LG, Sette A, Peters B. TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence Similarity to Previously Characterized Receptors. Front Immunol 2021; 12:640725. [PMID: 33777034 PMCID: PMC7991084 DOI: 10.3389/fimmu.2021.640725] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The adaptive immune system in vertebrates has evolved to recognize non-self antigens, such as proteins expressed by infectious agents and mutated cancer cells. T cells play an important role in antigen recognition by expressing a diverse repertoire of antigen-specific receptors, which bind epitopes to mount targeted immune responses. Recent advances in high-throughput sequencing have enabled the routine generation of T-cell receptor (TCR) repertoire data. Identifying the specific epitopes targeted by different TCRs in these data would be valuable. To accomplish that, we took advantage of the ever-increasing number of TCRs with known epitope specificity curated in the Immune Epitope Database (IEDB) since 2004. We compared seven metrics of sequence similarity to determine their power to predict if two TCRs have the same epitope specificity. We found that a comprehensive k-mer matching approach produced the best results, which we have implemented into TCRMatch, an openly accessible tool (http://tools.iedb.org/tcrmatch/) that takes TCR β-chain CDR3 sequences as an input, identifies TCRs with a match in the IEDB, and reports the specificity of each match. We anticipate that this tool will provide new insights into T cell responses captured in receptor repertoire and single cell sequencing experiments and will facilitate the development of new strategies for monitoring and treatment of infectious, allergic, and autoimmune diseases, as well as cancer.
Collapse
Affiliation(s)
| | - Austin Crinklaw
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Swapnil Mahajan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | | | - Zhen Yan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Jason A Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Leon E Jessen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Lindsay G Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
31
|
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat Commun 2021; 12:1605. [PMID: 33707415 PMCID: PMC7952906 DOI: 10.1038/s41467-021-21879-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Deep learning algorithms have been utilized to achieve enhanced performance in pattern-recognition tasks. The ability to learn complex patterns in data has tremendous implications in immunogenomics. T-cell receptor (TCR) sequencing assesses the diversity of the adaptive immune system and allows for modeling its sequence determinants of antigenicity. We present DeepTCR, a suite of unsupervised and supervised deep learning methods able to model highly complex TCR sequencing data by learning a joint representation of a TCR by its CDR3 sequences and V/D/J gene usage. We demonstrate the utility of deep learning to provide an improved 'featurization' of the TCR across multiple human and murine datasets, including improved classification of antigen-specific TCRs and extraction of antigen-specific TCRs from noisy single-cell RNA-Seq and T-cell culture-based assays. Our results highlight the flexibility and capacity for deep neural networks to extract meaningful information from complex immunogenomic data for both descriptive and predictive purposes.
Collapse
|
32
|
A general strategy to control antibody specificity against targets showing molecular and biological similarity: Salmonella case study. Sci Rep 2020; 10:18439. [PMID: 33116156 PMCID: PMC7595100 DOI: 10.1038/s41598-020-75285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
The control of antibody specificity plays pivotal roles in key technological fields such as diagnostics and therapeutics. During the development of immunoassays (IAs) for the biosensing of pathogens in food matrices, we have found a way to rationalize and control the specificity of polyclonal antibodies (sera) for a complex analytical target (the Salmonella genus), in terms of number of analytes (Salmonella species) and potential cross-reactivity with similar analytes (other bacteria strains). Indeed, the biosensing of Salmonella required the development of sera and serum mixtures displaying homogeneous specificity for a large set of strains showing broad biochemical variety (54 Salmonella serovars tested in this study), which partially overlaps with the molecular features of other class of bacteria (like specific serogroups of E. coli). To achieve a trade-off between specificity harmonisation and maximization, we have developed a strategy based on the conversion of the specificity profiles of individual sera in to numerical descriptors, which allow predicting the capacity of serum mixtures to detect multiple bacteria strains. This approach does not imply laborious purification steps and results advantageous for process scaling-up, and may help in the customization of the specificity profiles of antibodies needed for diagnostic and therapeutic applications such as multi-analyte detection and recombinant antibody engineering, respectively.
Collapse
|
33
|
Abstract
Recent advancements in paired B-cell receptor sequencing technologies have accelerated the development of simpler, high-throughput pipelines for generating native antibody heavy and light chain pairs used to elucidate novel antibodies and provide insights into antibody response against pathogenic targets. These technologies involve single-cell isolation, using either single wells or emulsified droplets to maintain physical separation of individual cells, followed by sequencing. The development of novel single wells and emulsion-based workflows addresses key challenges by improving throughput of single-cell analyses, reducing method complexity, and integrating functional assays into existing workflows. Enabled by paired B-cell receptor sequencing, functional characterization of pathogen-specific antibodies reveals immunological insights beyond bulk sequencing.
Collapse
Affiliation(s)
- Nicholas C Curtis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| |
Collapse
|
34
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Kidman J, Principe N, Watson M, Lassmann T, Holt RA, Nowak AK, Lesterhuis WJ, Lake RA, Chee J. Characteristics of TCR Repertoire Associated With Successful Immune Checkpoint Therapy Responses. Front Immunol 2020; 11:587014. [PMID: 33163002 PMCID: PMC7591700 DOI: 10.3389/fimmu.2020.587014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Immunotherapies have revolutionized cancer treatment. In particular, immune checkpoint therapy (ICT) leads to durable responses in some patients with some cancers. However, the majority of treated patients do not respond. Understanding immune mechanisms that underlie responsiveness to ICT will help identify predictive biomarkers of response and develop treatments to convert non-responding patients to responding ones. ICT primarily acts at the level of adaptive immunity. The specificity of adaptive immune cells, such as T and B cells, is determined by antigen-specific receptors. T cell repertoires can be comprehensively profiled by high-throughput sequencing at the bulk and single-cell level. T cell receptor (TCR) sequencing allows for sensitive tracking of dynamic changes in antigen-specific T cells at the clonal level, giving unprecedented insight into the mechanisms by which ICT alters T cell responses. Here, we review how the repertoire influences response to ICT and conversely how ICT affects repertoire diversity. We will also explore how changes to the repertoire in different anatomical locations can better correlate and perhaps predict treatment outcome. We discuss the advantages and limitations of current metrics used to characterize and represent TCR repertoire diversity. Discovery of predictive biomarkers could lie in novel analysis approaches, such as network analysis of amino acids similarities between TCR sequences. Single-cell sequencing is a breakthrough technology that can link phenotype with specificity, identifying T cell clones that are crucial for successful ICT. The field of immuno-sequencing is rapidly developing and cross-disciplinary efforts are required to maximize the analysis, application, and validation of sequencing data. Unravelling the dynamic behavior of the TCR repertoire during ICT will be highly valuable for tracking and understanding anti-tumor immunity, biomarker discovery, and ultimately for the development of novel strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Joel Kidman
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | | | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Willem Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
37
|
T-cell repertoire analysis and metrics of diversity and clonality. Curr Opin Biotechnol 2020; 65:284-295. [PMID: 32889231 DOI: 10.1016/j.copbio.2020.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The recent developments of high-throughput bulk and single-cell sequencing technologies accelerated the understanding of the complexity of immune repertoire dynamics combined to transcriptomics. Also, profiling of cellular repertoires in health or disease requires statistical metrics to capture clonal diversity characterized by clones frequency, repertoire richness and convergence. Here we present the common technologies of bulk and single-cell sequencing of T-cell receptors (TCRs), discuss current knowledge regarding computational tools clustering and predicting specificity of TCR repertoires based on shared structural motifs and review main indices for repertoire diversity and convergence analyses. These tools represent potential biomarkers to decipher the fitness of immune repertoires in diseased or treated patients but also the presages and promises of computational approaches to revolutionize personalized immunotherapy.
Collapse
|
38
|
Choi JR. Advances in single cell technologies in immunology. Biotechniques 2020; 69:226-236. [PMID: 32777935 DOI: 10.2144/btn-2020-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
The immune system is composed of heterogeneous populations of immune cells that regulate physiological processes and protect organisms against diseases. Single cell technologies have been used to assess immune cell responses at the single cell level, which are crucial for identifying the causes of diseases and elucidating underlying biological mechanisms to facilitate medical therapy. In the present review we first discuss the most recent advances in the development of single cell technologies to investigate cell signaling, cell-cell interactions and cell migration. Each technology's advantages and limitations and its applications in immunology are subsequently reviewed. The latest progress toward commercialization, the remaining challenges and future perspectives for single cell technologies in immunology are also briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
39
|
Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, Nakayama M. Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Front Immunol 2020; 11:633. [PMID: 32328071 PMCID: PMC7160884 DOI: 10.3389/fimmu.2020.00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.
Collapse
Affiliation(s)
- Sarah E. Mann
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Zhicheng Zhou
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aimon K. Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Fischer
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Peakman
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roberto Mallone
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
- Assistance Publique - Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Kristen Campbell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
40
|
Cashman KS, Jenks SA, Woodruff MC, Tomar D, Tipton CM, Scharer CD, Lee EH, Boss JM, Sanz I. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292:76-89. [PMID: 31755562 PMCID: PMC6935423 DOI: 10.1111/imr.12820] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.
Collapse
Affiliation(s)
- Kevin S. Cashman
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Scott A. Jenks
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Abstract
Immune repertoire is a collection of enormously diverse adaptive immune cells within an individual. As the repertoire shapes and represents immunological conditions, identification of clones and characterization of diversity are critical for understanding how to protect ourselves against various illness such as infectious diseases and cancers. Over the past several years, fast growing technologies for high throughput sequencing have facilitated rapid advancement of repertoire research, enabling us to observe the diversity of repertoire at an unprecedented level. Here, we focus on B cell receptor (BCR) repertoire and review approaches to B cell isolation and sequencing library construction. These experiments should be carefully designed according to BCR regions to be interrogated, such as heavy chain full length, complementarity determining regions, and isotypes. We also highlight preprocessing steps to remove sequencing and PCR errors with unique molecular index and bioinformatics techniques. Due to the nature of massive sequence variation in BCR, caution is warranted when interpreting repertoire diversity from error-prone sequencing data. Furthermore, we provide a summary of statistical frameworks and bioinformatics tools for clonal evolution and diversity. Finally, we discuss limitations of current BCR-seq technologies and future perspectives on advances in repertoire sequencing.
Collapse
Affiliation(s)
- Daeun Kim
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Korea
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Korea
| |
Collapse
|
42
|
Pogorelyy MV, Shugay M. A Framework for Annotation of Antigen Specificities in High-Throughput T-Cell Repertoire Sequencing Studies. Front Immunol 2019; 10:2159. [PMID: 31616409 PMCID: PMC6775185 DOI: 10.3389/fimmu.2019.02159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Recently developed molecular methods allow large-scale profiling of T-cell receptor (TCR) sequences that encode for antigen specificity and immunological memory of these cells. However, it is well-known that the even unperturbed TCR repertoire structure is extremely complex due to the high diversity of TCR rearrangements and multiple biases imprinted by VDJ rearrangement process. The latter gives rise to the phenomenon of "public" TCR clonotypes that can be shared across multiple individuals and non-trivial structure of the TCR similarity network. Here, we outline a framework for TCR sequencing data analysis that can control for these biases in order to infer TCRs that are involved in response to antigens of interest. We apply two previously published methods, ALICE and TCRNET, to detect groups of homologous TCRs that are enriched in samples of interest. Using an example dataset of donors with known HLA haplotype and CMV status, we demonstrate that by applying HLA restriction rules and matching against a database of TCRs with known antigen specificity, it is possible to robustly detect motifs of epitope-specific responses in individual repertoires. We also highlight potential shortcomings of TCR clustering methods and demonstrate that highly expanded TCRs should be individually assessed to get the full picture of antigen-specific response.
Collapse
Affiliation(s)
- Mikhail V Pogorelyy
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian Medical State University, Moscow, Russia
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian Medical State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
43
|
Magadan S, Jouneau L, Boudinot P, Salinas I. Nasal Vaccination Drives Modifications of Nasal and Systemic Antibody Repertoires in Rainbow Trout. THE JOURNAL OF IMMUNOLOGY 2019; 203:1480-1492. [PMID: 31413108 DOI: 10.4049/jimmunol.1900157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Bony fish represent the most basal vertebrate branch with a dedicated mucosal immune system, which comprises immunologically heterogeneous microenvironments armed with innate and adaptive components. In rainbow trout (Oncorhynchus mykiss), a nasopharynx-associated lymphoid tissue (NALT) was recently described as a diffuse network of myeloid and lymphoid cells located in the olfactory organ of fish. Several studies have demonstrated high levels of protection conferred by nasal vaccines against viral and bacterial pathogens; however, the mechanisms underlying the observed protection are not well understood. We applied 5'RACE and a deep sequencing-based approach to investigate the clonal structure of the systemic and mucosal rainbow trout B cell repertoire. The analysis of Ig repertoire in control trout suggests different structures of IgM and IgT spleen and NALT repertoires, with restricted repertoire diversity in NALT. Nasal and injection vaccination with a bacterial vaccine revealed unique dynamics of IgM and IgT repertoires at systemic and mucosal sites and the remarkable ability of nasal vaccines to induce spleen Ig responses. Our findings provide an important immunological basis for the effectiveness of nasal vaccination in fish and other vertebrate animals and will help the design of future nasal vaccination strategies.
Collapse
Affiliation(s)
- Susana Magadan
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, 36310 Pontevedra, Spain; and
| | - Luc Jouneau
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Pierre Boudinot
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Irene Salinas
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
44
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
45
|
Characterization of T-Cell Receptor Repertoire in Patients with Rheumatoid Arthritis Receiving Biologic Therapies. DISEASE MARKERS 2019; 2019:2364943. [PMID: 31360262 PMCID: PMC6642763 DOI: 10.1155/2019/2364943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/13/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systematic autoimmune disease, predominantly causing chronic polyarticular inflammation and joint injury of patients. For the treatment of RA, biologic disease-modifying antirheumatic drugs (bDMARDs) have been used to reduce inflammation and to interfere with disease progression through targeting and mediating the immune system. Although the therapeutic effects of bDMARDs in RA patients have been widely reported, whether these drugs also play important roles in T-cell repertoire status is still unclear. We therefore designed the study to identify the role of T-cell repertoire profiles in RA patients with different types of bDMARD treatments. A high-throughput sequencing approach was applied to profile the T-cell receptor beta chain (TCRB) repertoire of circulating T lymphocytes in eight patients given adalimumab (anti-TNF-α) with/without the following use of either rituximab (anti-CD20) or tocilizumab (anti-IL6R). We subsequently analyzed discrepancies in the clonal diversity and CDR3 length distribution as well as usages of the V and J genes of TCRB repertoire and interrogated the association between repertoire diversity and disease activities followed by the treatment of bDMARDs in these RA patients. All groups of patients showed well-controlled DAS28 scores (<2.6) after different treatment regimens of drugs and displayed no significant statistical differences in repertoire diversity, distribution of CDR3 lengths, and usage of V and J genes of TCRB. Nonetheless, a trend between overall TCRB repertoire diversity and disease activity scores in all bDMARD-treated RA patients was observed. Additionally, age was found to be associated with repertoire diversity in RA patients treated with bDMARDs. Through the profiling of the TCR repertoire in RA patients receiving different biologic medications, our study indicated an inverse tendency between TCR repertoire diversity and disease activity after biologic treatment in RA patients.
Collapse
|
46
|
Uddin I, Woolston A, Peacock T, Joshi K, Ismail M, Ronel T, Husovsky C, Chain B. Quantitative analysis of the T cell receptor repertoire. Methods Enzymol 2019; 629:465-492. [PMID: 31727254 DOI: 10.1016/bs.mie.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The T cell receptor repertoire provides a window into the cellular adaptive immune response. In the context of cancer, determining the repertoire within a tumor can give important insights into the evolution of the T cell anti-cancer response, and has the potential to identify specific personalized biomarkers for tracking host responses during cancer therapy, including immunotherapy. We describe a protocol for amplifying, sequencing and analyzing T cell receptors which is economical, robust, sensitive and versatile. The key experimental step is the ligation of a single stranded oligonucleotide to the 3' end of the T cell receptor cDNA, which allows easy amplification of all possible rearrangements using only a single set of primers per locus, while simultaneously introducing a unique molecular identifier to label each starting cDNA molecule. After sequencing, this molecular identifier can be used to correct both sequence errors and the effects of differential PCR amplification efficiency, thus producing a more accurate measure of the true T cell receptor frequency within the sample. We describe a detailed protocol describing this method to create libraries of T cell receptors from in vitro T cell cultures, blood or tissue samples. We combine this with a computational pipeline, which incorporates sample multiplexing, T cell receptor annotation and error correction to provide accurate counts of individual T cell receptor sequences within samples. The integrated experimental and computational pipeline should be of value to researchers interested in documenting and understanding the T cell immune response to cancer, and in manipulating it for therapeutic purposes.
Collapse
Affiliation(s)
- Imran Uddin
- Division of Infection and Immunity, UCL, London, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom
| | | | - Thomas Peacock
- Division of Infection and Immunity, UCL, London, United Kingdom; CoMPLEX, Department of Computer Science, University College London, London, United Kingdom
| | - Kroopa Joshi
- Cancer Immunology Unit, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Mazlina Ismail
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Tahel Ronel
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Connor Husovsky
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, UCL, London, United Kingdom; Department of Computer Science, UCL, London, United Kingdom.
| |
Collapse
|
47
|
Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 2019; 20:241. [PMID: 31092185 PMCID: PMC6521430 DOI: 10.1186/s12859-019-2864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Repertoire sequencing is enabling deep explorations into the cellular immune response, including the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility complex (MHC)-presented epitopes from putative antigens, and thus encode the determinants of recognition. Results We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3 repertoires by antigen specificity, and distinguishing general pathologies. Conclusion We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely to share specificities. Electronic supplementary material The online version of this article (10.1186/s12859-019-2864-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neerja Thakkar
- Department of Computer Science, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
48
|
López-Santibáñez-Jácome L, Avendaño-Vázquez SE, Flores-Jasso CF. The Pipeline Repertoire for Ig-Seq Analysis. Front Immunol 2019; 10:899. [PMID: 31114573 PMCID: PMC6503734 DOI: 10.3389/fimmu.2019.00899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
With the advent of high-throughput sequencing of immunoglobulin genes (Ig-Seq), the understanding of antibody repertoires and their dynamics among individuals and populations has become an exciting area of research. There is an increasing number of computational tools that aid in every step of the immune repertoire characterization. However, since not all tools function identically, every pipeline has its unique rationale and capabilities, creating a rich blend of useful features that may appear intimidating for newcomer laboratories with the desire to plunge into immune repertoire analysis to expand and improve their research; hence, all pipeline strengths and differences may not seem evident. In this review we provide a practical and organized list of the current set of computational tools, focusing on their most attractive features and differences in order to carry out the characterization of antibody repertoires so that the reader better decides a strategic approach for the experimental design, and computational pathways for the analyses of immune repertoires.
Collapse
Affiliation(s)
- Laura López-Santibáñez-Jácome
- Consorcio de Metabolismo de RNA, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Ciencia de Datos, Instituto Tecnológico Autónomo de México, Mexico City, Mexico
| | | | | |
Collapse
|
49
|
Finney J, Yeh CH, Kelsoe G, Kuraoka M. Germinal center responses to complex antigens. Immunol Rev 2019; 284:42-50. [PMID: 29944756 DOI: 10.1111/imr.12661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Germinal centers (GCs) are the primary sites of antibody affinity maturation, sites where B-cell antigen-receptor (BCR) genes rapidly acquire mutations and are selected for increasing affinity for antigen. This process of hypermutation and affinity-driven selection results in the clonal expansion of B cells expressing mutated BCRs and acts to hone the antibody repertoire for greater avidity and specificity. Remarkably, whereas the process of affinity maturation has been confirmed in a number of laboratories, models for how affinity maturation in GCs operates are largely from studies of genetically restricted B-cell populations competing for a single hapten epitope. Much less is known about GC responses to complex antigens, which involve both inter- and intraclonal competition for many epitopes. In this review, we (i) compare current methods for analysis of the GC B-cell repertoire, (ii) describe recent studies of GC population dynamics in response to complex antigens, discussing how the observed repertoire changes support or depart from the standard model of clonal selection, and (iii) speculate on the nature and potential importance of the large fraction of GC B cells that do not appear to interact with native antigen.
Collapse
Affiliation(s)
- Joel Finney
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.,Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
50
|
Chen H, Zou M, Teng D, Hu Y, Zhang J, He W. Profiling the pattern of the human T-cell receptor γδ complementary determinant region 3 repertoire in patients with lung carcinoma via high-throughput sequencing analysis. Cell Mol Immunol 2019; 16:250-259. [PMID: 30886423 PMCID: PMC6460488 DOI: 10.1038/cmi.2017.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023] Open
Abstract
γδ T cells function as sentinels in early host responses to infections and malignancies. Specifically, γδ T cells recognize tumor-associated stress antigens via T-cell receptor (TCR) γδ and play important roles in the antitumor immune response. In this study, we characterized the pattern of the human TCR γδ complementary determinant region 3 (CDR3) repertoire in patients with lung carcinoma (LC) via high-throughput sequencing. The results showed that the diversity of CDR3δ was significantly reduced, and that of CDR3γ was unchanged in LC patients compared with healthy individuals; in addition, LC patients shared significantly more CDR3δ sequences with each other than healthy individuals. The CDR3 length distribution and N-addition length distribution did not significantly differ between LC patients and healthy individuals. In addition, the CDR3 repertoire tended to use more Vδ2 and fewer Vδ1 germline gene fragments among LC patients. Moreover, we found a combination of four TCR γδ repertoire features that focus on CDR3δ and can be used as a biomarker for LC diagnosis. Our research suggests that the TCR γδ CDR3 repertoire changed in LC patients due to the antitumor immune response by γδ T cells in vivo, and these changes primarily focus on the amplification of certain tumor-specific CDR3δ clones among patients. This study demonstrates the role of γδ T cells from the TCR γδ CDR3 repertoire in tumor immunity and lays the foundation for elucidating the mechanism underlying the function of γδT cells in antitumor immunity.
Collapse
Affiliation(s)
- Hui Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Mingjin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Da Teng
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Yu Hu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Jianmin Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China.
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China.
| |
Collapse
|