1
|
Rincon-Torroella J, Dal Molin M, Mog B, Han G, Watson E, Wyhs N, Ishiyama S, Ahmedna T, Minn I, Azad N, Bettegowda C, Papadopoulos N, Kinzler KW, Zhou S, Vogelstein B, Gabrielson K, Sur S. ME3BP-7 is a targeted cytotoxic agent that rapidly kills pancreatic cancer cells expressing high levels of monocarboxylate transporter MCT1. eLife 2025; 13:RP94488. [PMID: 40391649 PMCID: PMC12092006 DOI: 10.7554/elife.94488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Nearly 30% of pancreatic ductal adenocarcinomas (PDACs) exhibit a marked overexpression of monocarboxylate transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study, we present an alternative approach using 3-bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), which is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule.
Collapse
Affiliation(s)
- Jordina Rincon-Torroella
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marco Dal Molin
- Department of Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Brian Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Gyuri Han
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shun Ishiyama
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins UniversityBaltimoreUnited States
| | - Taha Ahmedna
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins UniversityBaltimoreUnited States
| | - Il Minn
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nilofer Azad
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| | - Kathleen Gabrielson
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins UniversityBaltimoreUnited States
| | - Surojit Sur
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer CenterBaltimoreUnited States
| |
Collapse
|
2
|
Tasan I, Eres I, Wei C, Bryant EE, Brisan E, Hubert R. Identification of Loci with High Transgene Expression in CHO Cells. ACS Synth Biol 2025. [PMID: 40357755 DOI: 10.1021/acssynbio.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Chinese Hamster Ovary (CHO) cells are commonly used for producing therapeutic proteins in the biopharmaceutical industry. Targeted integration (TI) of therapeutic protein-encoding transgenes into predetermined high and stably expressing genomic loci can simplify the cell line development processes for biologics production. Establishing a successful TI system requires identifying genomic loci that allow a high expression of the integrated transgenes. In this work, we demonstrated that the Thousands of Reporters Integrated in Parallel (TRIP) technology can identify such transcriptional hotspots in CHO cells. TRIP simplifies screening for transcriptional hotspots since it utilizes randomly integrated barcoded reporters and uses each barcode as a unique identifier to track the genomic location and activity of the corresponding reporter by next-generation sequencing. Transcriptional hotspots identified by TRIP resulted in up to a 9.4-fold increase in mRNA levels and a 5.6-fold increase in fed-batch titers of a test molecule compared with a medium-expressing control locus. Moreover, single copy expression from one of the identified transcriptional hotspots resulted in up to a 1.6-fold higher titer in comparison to the piggyBac-mediated stable expression of the same molecule. Reporter expression levels from TRIP loci showed positive correlations with active chromatin marks; however, the proximity to active marks was not consistently deterministic. These results suggest that TRIP is a powerful functional screening method for identifying transcriptional hotspots in CHO cells without the need for more complex epigenomic analyses.
Collapse
Affiliation(s)
- Ipek Tasan
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ittai Eres
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Christopher Wei
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Eric Edward Bryant
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Emil Brisan
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Rene Hubert
- Amgen Research, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
3
|
Wang C, Guo X, Wang W, Li JX, Wang TY. From Cell Clones to Recombinant Protein Product Heterogeneity in Chinese Hamster Ovary Cell Systems. Int J Mol Sci 2025; 26:1324. [PMID: 39941092 PMCID: PMC11818180 DOI: 10.3390/ijms26031324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Chinese hamster ovary (CHO) cells are commonly used to produce recombinant therapeutic proteins (RTPs). The yield of RTPs in CHO cells has been greatly improved through cell editing and optimization of culture media, cell culture processes, and expression vectors. However, the heterogeneity of cell clones and product aggregation considerably affect the yield and quality of RTPs. Recently, novel technologies such as semi-targeted and site-specific transgene integration, endoplasmic reticulum-residents, and cell culture process optimization have been used to address these issues. In this review, novel developments in the field of CHO cell expression system heterogeneity are summarized. Moreover, the advantages and limitations of the new strategies are discussed, and important methods for the control of RTP quality are outlined.
Collapse
Affiliation(s)
- Chong Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Xiao Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wen Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Jia-Xin Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
| | - Tian-Yun Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| |
Collapse
|
4
|
Szkodny AC, Lee KH. A Flexible Hybrid Site-Specific Integration-Based Expression System in CHO Cells for Higher-Throughput Evaluation of Monoclonal Antibody Expression Cassettes. Biotechnol J 2025; 20:e202400520. [PMID: 39834086 PMCID: PMC11747262 DOI: 10.1002/biot.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting. This study presents a recombinase-mediated cassette exchange (RMCE)-capable SSI system that uses only chemical selection to enrich for transgene-expressing RMCE pools in less than one month. The system was used to compare eight mAb expression cassettes containing two novel genetic regulatory elements, the Azin1 CpG island and the Piggybac transposase 5' terminal repeat, in various orientations to improve the expression of two therapeutic mAbs from two genomic loci. Similar patterns of productivity and mRNA expression were observed across sites and mAbs, and the best performing cassette universally increased mAb productivity by 7- to 11-fold. This flexible system allows for higher-throughput comparison of expression cassettes from a consistent clonal and transcriptional background to optimize RMCE-derived cell lines for industrial production of mAbs.
Collapse
Affiliation(s)
- Alana C. Szkodny
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
5
|
Woo HJ, Kim J, Kim SM, Kim D, Moon JY, Park D, Lee JS. Context-dependent genomic locus effects on antibody production in recombinant Chinese hamster ovary cells generated through random integration. Comput Struct Biotechnol J 2024; 23:1654-1665. [PMID: 38680870 PMCID: PMC11046053 DOI: 10.1016/j.csbj.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
High-yield production of therapeutic protein using Chinese hamster ovary (CHO) cells requires stable cell line development (CLD). CLD typically uses random integration of transgenes; however, this results in clonal variation and subsequent laborious clone screening. Therefore, site-specific integration of a protein expression cassette into a desired chromosomal locus showing high transcriptional activity and stability, referred to as a hot spot, is emerging. Although positional effects are important for therapeutic protein expression, the sequence-specific mechanisms by which hotspots work are not well understood. In this study, we performed whole-genome sequencing (WGS) to locate randomly inserted vectors in the genome of recombinant CHO cells expressing high levels of monoclonal antibodies (mAbs) and experimentally validated these locations and vector compositions. The integration site was characterized by active histone marks and potential enhancer activities, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated indel mutations in the region upstream of the integration site led to a significant reduction in specific antibody productivity by up to 30%. Notably, the integration site and its core region did not function equivalently outside the native genomic context, showing a minimal effect on the increase in exogenous protein expression in the host cell line. We also observed a superior production capacity of the mAb expressing cell line compared to that of the host cell line. Collectively, this study demonstrates that developing recombinant CHO cell lines to produce therapeutic proteins at high levels requires a balance of factors including transgene configuration, genomic locus landscape, and host cell properties.
Collapse
Affiliation(s)
- Hyun Jee Woo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Molecular Science and Technology Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Yun Moon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Cho K, Lee JS. Revisiting the impact of genomic hot spots: C12orf35 locus as a hot spot and engineering target. Biotechnol Bioeng 2024; 121:3642-3649. [PMID: 38978356 DOI: 10.1002/bit.28801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Traditional Chinese hamster ovary (CHO) cell line development is based on random integration (RI) of transgene that causes clonal variation and subsequent large-scale clone screening. Therefore, site-specific integration (SSI) of transgenes into genomic hot spots has recently emerged as an alternative method for cell line development. However, the specific mechanisms underlying hot spot site formation remain unclear. In this study, we aimed to generate landing pad (LP) cell lines via the RI of transgenes encoding fluorescent reporter proteins flanked by recombination sites to facilitate recombinase-mediated cassette exchange. The RI-based LP cell line expressing high reporter levels with spontaneous C12orf35 locus deletion exhibited similar reporter fluorescent protein levels compared to targeted integrants with an identical reporter LP construct at the CHO genome hot spot, the C12orf35 locus. Additionally, Resf1, a C12orf35 locus gene, knockout (KO) in the RI-based LP cell line with conserved C12orf35 increased reporter expression levels, comparable to those in cell lines with C12orf35 locus disruption. These results indicate that the effect of SSI into the C12orf35 locus, a genomic hot spot, on high-level transgene expression was caused by C12orf35 disruption. In contrast to C12orf35 KO, KO at other well-known hot spot sites at specific loci of genes, including Fer1L4, Hprt1, Adgrl4, Clcc1, Dop1b, and Ddc, did not increase transgene expression. Overall, our findings suggest that C12orf35 is a promising engineering target and a hot spot for SSI-based cell line development.
Collapse
Affiliation(s)
- Kyuhee Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Rincon-Torroella J, Dal Molin M, Mog B, Han G, Watson E, Wyhs N, Ishiyama S, Ahmedna T, Minn I, Azad NS, Bettegowda C, Papadopoulos N, Kinzler KW, Zhou S, Vogelstein B, Gabrielson K, Sur S. ME3BP-7 is a targeted cytotoxic agent that rapidly kills pancreatic cancer cells expressing high levels of monocarboxylate transporter MCT1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550207. [PMID: 37546808 PMCID: PMC10401962 DOI: 10.1101/2023.07.23.550207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.
Collapse
|
8
|
Ganguly J, Zongming F, James M, Pan Y, Ruano J, Dahle M, Li X. Fluorescent-protein co-expression to select CHO cells expressing high quantities of vaccine antigens. Biotechnol J 2024; 19:e2300671. [PMID: 38797725 DOI: 10.1002/biot.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Cell line development for production of vaccine antigens or therapeutic proteins typically involves transfection, selection, and enrichment for high-expressing cells. Enrichment methods include minipool enrichment, antibody-based enrichment, and enrichment based on co-expressed fluorescent biosensor proteins. However, these methods have limitations regarding labor and cost intensity, the generation of antibodies and assurance of their viral safety, and potential expression-interference or signal-saturation of the co-expressed fluorescent protein. To improve the method of fluorescent-protein co-expression, expression constructs were created that constitutively express a model vaccine antigen together with one of three fluorescent proteins having translation initiation controlled by a wildtype or mutant internal ribosome entry site (IRES), for a total of six constructs. The constructs were transfected into Chinese hamster ovary cells (CHO) cells, enriched for high fluorescence, cultured, and tested in a mini bioreactor to identify the most promising construct. The fluorescent protein, Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) with a mutant IRES performed best and was further tested with three additional vaccine antigens. Across the four vaccine antigens, the FUCCI fluorescent protein yielded productivity enhancements, without the need for generating an antibody and assuring its viral safety. Furthermore, FUCCI protein was present in negligible quantities in the cell supernatant, indicating a low risk for contaminating drug substances or vaccine antigen.
Collapse
Affiliation(s)
| | | | | | - Yan Pan
- GSK, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
9
|
Hozumi S, Chen YC, Takemoto T, Sawatsubashi S. Cas12a and MAD7, genome editing tools for breeding. BREEDING SCIENCE 2024; 74:22-31. [PMID: 39246434 PMCID: PMC11375424 DOI: 10.1270/jsbbs.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/15/2024] [Indexed: 09/10/2024]
Abstract
Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding. Breeding by genome editing is receiving substantial attention because it can efficiently modify the target gene to obtain desired traits compared with conventional methods. Among the programmable sequence-specific nucleases that have been developed for genome editing, CRISPR-Cas12a and CRISPR-MAD7 nucleases are becoming more broadly adopted for the application of genome editing in grains, vegetables and fruits. Additionally, ST8, an improved variant of MAD7, has been developed to enhance genome editing efficiency and has potential for application to breeding of crops.
Collapse
Affiliation(s)
- Shunya Hozumi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-Chen Chen
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tatsuya Takemoto
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shun Sawatsubashi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Research and Innovation Liaison Office, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Hertel O, Neuss A. Enhancing Cell Line Stability by CRISPR/Cas9-Mediated Site-Specific Integration Based on Histone Modifications. Methods Mol Biol 2024; 2810:211-233. [PMID: 38926282 DOI: 10.1007/978-1-0716-3878-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In traditional cell line design pipelines, cost- and time-intensive long-term stability studies must be performed due to random integration of the transgene into the genome. By this, integration into epigenetically silenced regions can lead to silencing of the recombinant promoter over time. Site-specific integration into regions with active chromatin structure can overcome this problem and lead to strong and stable gene expression. Here, we describe a detailed protocol to identify integration sites with epigenetically preferable properties by chromatin immunoprecipitation sequencing and use them for stable and strong gene expression by applying CRISPR/Cas9. Furthermore, the examination of the integration sites with focus on Cas9-targeted sequencing with nanopores is described.
Collapse
Affiliation(s)
- Oliver Hertel
- Cell Culture Technology, Bielefeld University, Bielefeld, Germany.
| | - Anne Neuss
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Nguyen NTB, Leung HW, Pang KT, Tay SJ, Walsh I, Choo ABH, Yang Y. Optimizing effector functions of monoclonal antibodies via tailored N-glycan engineering using a dual landing pad CHO targeted integration platform. Sci Rep 2023; 13:15620. [PMID: 37731040 PMCID: PMC10511539 DOI: 10.1038/s41598-023-42925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) eliminate cancer cells via various effector mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are influenced by the N-glycan structures on the Fc region of mAbs. Manipulating these glycan structures on mAbs allows for optimization of therapeutic benefits associated with effector functions. Traditional approaches such as gene deletion or overexpression often lead to only all-or-nothing changes in gene expression and fail to modulate the expression of multiple genes at defined ratios and levels. In this work, we have developed a CHO cell engineering platform enabling modulation of multiple gene expression to tailor the N-glycan profiles of mAbs for enhanced effector functions. Our platform involves a CHO targeted integration platform with two independent landing pads, allowing expression of multiple genes at two pre-determined genomic sites. By combining with internal ribosome entry site (IRES)-based polycistronic vectors, we simultaneously modulated the expression of α-mannosidase II (MANII) and chimeric β-1,4-N-acetylglucosaminyl-transferase III (cGNTIII) genes in CHO cells. This strategy enabled the production of mAbs carrying N-glycans with various levels of bisecting and non-fucosylated structures. Importantly, these engineered mAbs exhibited different degrees of effector cell activation and CDC, facilitating the identification of mAbs with optimal effector functions. This platform was demonstrated as a powerful tool for producing antibody therapeutics with tailored effector functions via precise engineering of N-glycan profiles. It holds promise for advancing the field of metabolic engineering in mammalian cells.
Collapse
Affiliation(s)
- Ngan T B Nguyen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Hau Wan Leung
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Kuin Tian Pang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Andre B H Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
12
|
Torres M, Betts Z, Scholey R, Elvin M, Place S, Hayes A, Dickson AJ. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol Bioeng 2023; 120:2389-2402. [PMID: 37060548 DOI: 10.1002/bit.28399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, İzmit, Turkey
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Mark Elvin
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Svetlana Place
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Sacco SA, McAtee Pereira AG, Trenary I, Smith KD, Betenbaugh MJ, Young JD. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺) in Chinese hamster ovary cells increases oxidative metabolism and IgG productivity. Metab Eng 2023; 79:108-117. [PMID: 37473833 DOI: 10.1016/j.ymben.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Dehdilani N, Goshayeshi L, Yousefi Taemeh S, Bahrami AR, Rival Gervier S, Pain B, Dehghani H. Integrating Omics and CRISPR Technology for Identification and Verification of Genomic Safe Harbor Loci in the Chicken Genome. Biol Proced Online 2023; 25:18. [PMID: 37355580 DOI: 10.1186/s12575-023-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent questions in the field of transgenesis is 'Where in the genome to integrate a transgene?'. Escape from epigenetic silencing and promoter shutdown of the transgene needs reliable genomic safe harbor (GSH) loci. Advances in genome engineering technologies combined with multi-omics bioinformatics data have enabled rational evaluation of GSH loci in the host genome. Currently, no validated GSH loci have been evaluated in the chicken genome. RESULTS Here, we analyzed and experimentally examined two GSH loci in the genome of chicken cells. To this end, putative GSH loci including chicken HIPP-like (cHIPP; between DRG1 and EIF4ENIF1 genes) and chicken ROSA-like (cROSA; upstream of the THUMPD3 gene) were predicted using multi-omics bioinformatics data. Then, the durable expression of the transgene was validated by experimental characterization of continuously-cultured isogenous cell clones harboring DsRed2-ΔCMV-EGFP cassette in the predicted loci. The weakened form of the CMV promoter (ΔCMV) allowed the precise evaluation of GSH loci in a locus-dependent manner compared to the full-length CMV promoter. CONCLUSIONS cHIPP and cROSA loci introduced in this study can be reliably exploited for consistent bio-manufacturing of recombinant proteins in the genetically-engineered chickens. Also, results showed that the genomic context dictates the expression of transgene controlled by ΔCMV in GSH loci.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
15
|
Han HJ, Kim DH, Baik JY. A splinkerette PCR-based genome walking technique for the identification of transgene integration sites in CHO cells. J Biotechnol 2023:S0168-1656(23)00105-0. [PMID: 37257509 DOI: 10.1016/j.jbiotec.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Identification of recombinant gene integrations sites in the Chinese hamster ovary (CHO) cell genome is increasingly important to assure monoclonality. While next-generation sequencing (NGS) is commonly used for the gene integration site analysis, it is a time-consuming and costly technique as it analyzes the entire genome. Hence, simple, easy, and inexpensive methods to analyze transgene insertion sites are necessary. To selectively capture the integration site of transgene in the CHO genome, we applied splinkerette-PCR (spPCR). SpPCR is an adaptor ligation-based method using splinkerette adaptors that have a stable hairpin loop. Restriction enzymes with high frequencies in the CHO genome were chosen using a Python script and used for the in vitro spPCR assay development. After testing on two CHO housekeeping genes with known loci, the spPCR-based genome walking technique was successfully applied to recombinant CHO cells to identify the transgene integration site. Finally, the comparison with NGS methods exhibited that the time and cost required for the analysis can be substantially reduced. Taken together, the established technique would aid the stable cell line development process by providing a rapid and cost-effective method for transgene integration site analysis.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Dae Hoon Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea.
| |
Collapse
|
16
|
Kheirandish MH, Rahmani B, Zarei Jaliani H, Barkhordari F, Mazlomi MA, Davami F. Efficient site-specific integration in CHO-K1 cells using CRISPR/Cas9-modified donors. Mol Biol Rep 2023:10.1007/s11033-023-08529-8. [PMID: 37244887 DOI: 10.1007/s11033-023-08529-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Conventional methods applied to develop recombinant CHO (rCHO) cell line as a predominant host for mammalian protein expression are limited to random integration approaches, which can prolong the process of getting the desired clones for months. CRISPR/Cas9 could be an alternative by mediating site-specific integration into transcriptionally active hot spots, promoting homogenous clones, and shortening the clonal selection process. However, applying this approach for the rCHO cell line development depends on an acceptable integration rate and robust sites for the sustained expression. METHODS AND RESULTS In this study, we aimed at improving the rate of GFP reporter integration to the Chromosome 3 (Chr3) pseudo-attP site of the CHO-K1 genome via two strategies; these include the PCR-based donor linearization and increasing local concentration of donor in the vicinity of DSB site by applying the monomeric streptavidin (mSA)-biotin tethering approach. According to the results, compared to the conventional CRISPR-mediated targeting, donor linearization and tethering methods exhibited 1.6- and 2.4-fold improvement in knock-in efficiency; among on-target clones, 84% and 73% were determined to be single copy by the quantitative PCR, respectively. Finally, to evaluate the expression level of the targeted integration, the expression cassette of hrsACE2 as a secretory protein was targeted to the Chr3 pseudo-attP site by applying the established tethering method. The generated cell pool reached 2-fold productivity, as compared to the random integration cell line. CONCLUSION Our study suggested reliable strategies for enhancing the CRISPR-mediated integration, introducing Chr3 pseudo-attP site as a potential candidate for the sustained transgene expression, which might be applied to promote the rCHO cell line development.
Collapse
Affiliation(s)
- Mohammad Hassan Kheirandish
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohammad Ali Mazlomi
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
18
|
Kim SM, Lee J, Lee JS. Implementation of ubiquitous chromatin opening elements as artificial integration sites for CRISPR/Cas9‐mediated knock‐in in mammalian cells. Eng Life Sci 2023; 23:e2200047. [PMID: 37025191 PMCID: PMC10071570 DOI: 10.1002/elsc.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
CRISPR/Cas9-mediated targeted gene integration (TI) has been used to generate recombinant mammalian cell lines with predictable transgene expression. Identifying genomic hot spots that render high and stable transgene expression and knock-in (KI) efficiency is critical for fully implementing TI-mediated cell line development (CLD); however, such identification is cumbersome. In this study, we developed an artificial KI construct that can be used as a hot spot at different genomic loci. The ubiquitous chromatin opening element (UCOE) was employed because of its ability to open chromatin and enable stable and site-independent transgene expression. UCOE KI cassettes were randomly integrated into CHO-K1 and HEK293T cells, followed by TI of enhanced green fluorescent protein (EGFP) onto the artificial UCOE KI site. The CHO-K1 random pool harboring 5'2.2A2UCOE-CMV displayed a significant increase in EGFP expression level and KI efficiency compared with that of the control without UCOE. In addition, 5'2.2A2UCOE-CMV showed improved Cas9 accessibility in the HEK293T genome, leading to an increase in indel frequency and homology-independent KI. Overall, this assessment revealed the potential of UCOE KI constructs as artificial integration sites in streamlining the screening of high-production targeted integrants by mitigating the selection of genomic hot spots.
Collapse
Affiliation(s)
- Seul Mi Kim
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jaejin Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| |
Collapse
|
19
|
Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system. Appl Microbiol Biotechnol 2023; 107:769-783. [PMID: 36536089 PMCID: PMC9763083 DOI: 10.1007/s00253-022-12322-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Recombinant Chinese hamster ovary (CHO) cell line development for complex biotherapeutic production is conventionally based on the random integration (RI) approach. Due to the lack of control over the integration site and copy number, RI-generated cell pools are always coupled with rigorous screening to find clones that satisfy requirements for production titers, quality, and stability. Targeted integration into a well-defined genomic site has been suggested as a possible strategy to mitigate the drawbacks associated with RI. In this work, we employed the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system in combination with the Bxb1 recombinase-mediated cassette exchange (RMCE) system to generate an isogenic transgene-expressing cell line. We successfully utilized the CRIS-PITCh system to target a 2.6 kb Bxb1 landing pad with homology arms as short as 30 bp into the upstream region of the S100A gene cluster, achieving a targeting efficiency of 10.4%. The platform cell line (PCL) with a single copy of the landing pad was then employed for the Bxb1-mediated landing pad exchange with an EGFP encoding cassette to prove its functionality. Finally, to accomplish the main goal of our cell line development method, the PCL was applied for the expression of a secretory glycoprotein, human recombinant soluble angiotensin-converting enzyme 2 (hrsACE2). Taken together, on-target, single-copy, and stable expression of the transgene over long-term cultivation demonstrated our CRIS-PITCh/RMCE hybrid approach might possibly improve the cell line development process in terms of timeline, specificity, and stability. KEY POINTS: • CRIS-PITCh system is an efficient method for single copy targeted integration of the landing pad and generation of platform cell line • Upstream region of the S100A gene cluster of CHO-K1 is retargetable by recombinase-mediated cassette exchange (RMCE) approach and provides a stable expression of the transgene • CRIS-PITCh/Bxb1 RMCE hybrid system has the potential to overcome some limitations of the random integration approach and accelerate the cell line development timeline.
Collapse
|
20
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Hertel O, Neuss A, Busche T, Brandt D, Kalinowski J, Bahnemann J, Noll T. Enhancing stability of recombinant CHO cells by CRISPR/Cas9-mediated site-specific integration into regions with distinct histone modifications. Front Bioeng Biotechnol 2022; 10:1010719. [PMID: 36312557 PMCID: PMC9606416 DOI: 10.3389/fbioe.2022.1010719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most important platform for producing biotherapeutics. Random integration of a transgene into epigenetically instable regions of the genome results in silencing of the gene of interest and loss of productivity during upstream processing. Therefore, cost- and time-intensive long-term stability studies must be performed. Site-specific integration into safe harbors is a strategy to overcome these limitations of conventional cell line design. Recent publications predict safe harbors in CHO cells based on omics data sets or by learning from random integrations, but those predictions remain theory. In this study, we established a CRISPR/Cas9-mediated site-specific integration strategy based on ChIP-seq data to improve stability of recombinant CHO cells. Therefore, a ChIP experiment from the exponential and stationary growth phase of a fed-batch cultivation of CHO-K1 cells yielded 709 potentially stable integration sites. The reporter gene eGFP was integrated into three regions harboring specific modifications by CRISPR/Cas9. Targeted Cas9 nanopore sequencing showed site-specific integration in all 3 cell pools with a specificity between 23 and 73%. Subsequently, the cells with the three different integration sites were compared with the randomly integrated donor vector in terms of transcript level, productivity, gene copy numbers and stability. All site-specific integrations showed an increase in productivity and transcript levels of up to 7.4-fold. In a long-term cultivation over 70 generations, two of the site-specific integrations showed a stable productivity (>70%) independent of selection pressure.
Collapse
Affiliation(s)
- Oliver Hertel
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- *Correspondence: Oliver Hertel,
| | - Anne Neuss
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - David Brandt
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Ong HK, Nguyen NTB, Bi J, Yang Y. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antib Ther 2022; 5:288-300. [PMID: 36518226 PMCID: PMC9743168 DOI: 10.1093/abt/tbac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Two-armed FabscFv-Fc is a favoured bispecific antibody (BsAb) format due to its advantages of the conventional IgG structure. Production of FabscFv-Fc requires expression of three polypeptide chains, one light chain (LC), one heavy chain (HC) and a scFv fused to the Fc (scFvFc) at optimal ratios. METHODS We designed a set of internal ribosome entry site (IRES)-mediated multi-cistronic vectors tailoring to various expression ratios of the three polypeptides to study how the chain ratios affect the FabscFv-Fc production. RESULTS Expression of HC and scFvFc chains at 1:1 ratio and excess LC gave the highest yield of correctly assembled product. Compared to the use of IRES and multiple promoters, using 2A peptides for co-expression of the three polypeptides gave the highest titre and correctly assembled product. CONCLUSION The results obtained in this work provide insights to the impacts of hetero-chain ratios on the BsAb production.
Collapse
Affiliation(s)
- Han Kee Ong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Ngan T B Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| |
Collapse
|
23
|
Min H, Kim SM, Kim D, Lee S, Lee S, Lee JS. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Front Bioeng Biotechnol 2022; 10:977193. [PMID: 36185448 PMCID: PMC9521551 DOI: 10.3389/fbioe.2022.977193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific integration has emerged as a promising strategy for streamlined and predictable Chinese hamster ovary (CHO) cell line development (CLD). However, the low specific productivity of the targeted integrants limits their practical application. In this study, we developed a hybrid CLD platform combining site-specific integration of a transgene and dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification to generate high-producing recombinant CHO cell lines. We used the CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform to integrate the DHFR expression cassette and transgene landing pad into a CHO genomic hot spot, C12orf35 locus, of DHFR-knockout CHO-K1 host cell lines. When subjected to various MTX concentrations up to 1 μM, EGFP-expressing targeted integrants showed a 3.6-fold increase in EGFP expression in the presence of 200 nM MTX, accompanied by an increase in the DHFR and EGFP copy number. A single-step 200 nM MTX amplification increased the specific monoclonal antibody (mAb) productivity (qmAb) of recombinant mAb-producing targeted integrants by 2.8-folds, reaching a qmAb of 9.1–11.0 pg/cell/day. Fluorescence in situ hybridization analysis showed colocalization of DHFR and mAb sequences at the intended chromosomal locations without clear amplified arrays of signals. Most MTX-amplified targeted integrants sustained recombinant mAb production during long-term culture in the absence of MTX, supporting stable gene expression in the amplified cell lines. Our study provides a new CLD platform that increases the productivity of targeted integrants by amplifying the transgene copies.
Collapse
Affiliation(s)
- Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Solhwi Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sumin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
- *Correspondence: Jae Seong Lee,
| |
Collapse
|
24
|
Duran AG, Schwestka M, Nazari-Shafti TZ, Neuber S, Stamm C, Gossen M. Limiting Transactivator Amounts Contribute to Transgene Mosaicism in Tet-On All-in-One Systems. ACS Synth Biol 2022; 11:2623-2635. [PMID: 35815862 DOI: 10.1021/acssynbio.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play an essential role in cell homeostasis and have been proposed as therapeutic agents. One strategy to deliver microRNAs is to genetically engineer target cells to express microRNAs of interest. However, to control dosage and timing, as well as to limit potential side-effects, microRNAs' expression should ideally be under exogenous, inducible control. Conditional expression of miRNA-based short hairpin RNAs (shRNAmirs) via gene regulatory circuits such as the Tet-system is therefore a promising strategy to control shRNAmirs' expression in research and therapy. Single vector approaches like Tet-On all-in-one designs are more compatible with potential clinical applications by providing the Tet-On system components in a single round of genetic engineering. However, all-in-one systems often come at the expense of heterogeneous and unstable expression. In this study, we aimed to understand the causes that lead to such erratic transgene expression. By using a reporter cell, we found that the degree of heterogeneity mostly correlated with reverse tetracycline transactivator (rtTA) expression levels. Moreover, the targeted integration of a potent rtTA expression cassette into a genomic safe harbor locus functionally rescued previously silenced rtTA-responsive transcription units. Overall, our results suggest that ensuring homogenous and stable rtTA expression is essential for the robust and reliable performance of future Tet-On all-in-one designs.
Collapse
Affiliation(s)
- Ana G Duran
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Christof Stamm
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|
25
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|
26
|
Park JH, Lee HM, Jin EJ, Lee EJ, Kang YJ, Kim S, Yoo SS, Lee GM, Kim YG. Development of an in vitro screening system for synthetic signal peptide in mammalian cell-based protein production. Appl Microbiol Biotechnol 2022; 106:3571-3582. [PMID: 35581431 DOI: 10.1007/s00253-022-11955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Optimizing appropriate signal peptides in mammalian cell-based protein production is crucial given that most recombinant proteins produced in mammalian cells are thought to be secreted proteins. Until now, most studies on signal peptide in mammalian cells have replaced native signal peptides with well-known heterologous signal peptides and bioinformatics-based signal peptides. In the present study, we successfully established an in vitro screening system for synthetic signal peptide in CHO cells by combining a degenerate codon-based oligonucleotides library, a site-specific integration system, and a FACS-based antibody detection assay. Three new signal peptides were screened using this new screening system, confirming to have structural properties as signal peptides by the SignalP web server, a neural network-based algorithm that quantifies the signal peptide-ness of amino acid sequences. The novel signal peptides selected in this study increased Fc-fusion protein production in CHO cells by increasing specific protein productivity, whereas they did not negatively affect cell growth. Particularly, the SP-#149 clone showed the highest qp, 0.73 ± 0.01 pg/cell/day from day 1 to day 4, representing a 1.47-fold increase over the native signal peptide in a serum-free suspension culture mode. In addition, replacing native signal peptide with the novel signal peptides did not significantly affect sialylated N-glycan formation, N-terminal cleavage pattern, and biological function of Fc-fusion protein produced in CHO cells. The overall results indicate the utility of a novel in vitro screening system for synthetic signal peptide for mammalian cell-based protein production. KEY POINTS: • An in vitro screening system for synthetic signal peptide in mammalian cells was established • This system combined a degenerate codon-based library, site-specific integration, and a FACS-based detection assay • The novel signal peptides selected in this study could increase Fc-fusion protein production in mammalian cells.
Collapse
Affiliation(s)
- Jong-Ho Park
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ju Jin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Ju Kang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Sungkyun Kim
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Sung-Sick Yoo
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
27
|
Kyeong M, Lee JS. Endogenous BiP reporter system for simultaneous identification of ER stress and antibody production in Chinese hamster ovary cells. Metab Eng 2022; 72:35-45. [PMID: 35182754 DOI: 10.1016/j.ymben.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone, and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development.
Collapse
Affiliation(s)
- Minji Kyeong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
28
|
Establishment of a glycoengineered CHO cell line for enhancing the antennary structure and sialylation of CTLA4-Ig. Enzyme Microb Technol 2022; 157:110007. [DOI: 10.1016/j.enzmictec.2022.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
29
|
Wang XY, Du QJ, Zhang WL, Xu DH, Zhang X, Jia YL, Wang TY. Enhanced Transgene Expression by Optimization of Poly A in Transfected CHO Cells. Front Bioeng Biotechnol 2022; 10:722722. [PMID: 35141210 PMCID: PMC8819543 DOI: 10.3389/fbioe.2022.722722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The generation of the stable, high-level recombinant protein-producing cell lines remains a significant challenge in the biopharmaceutical industry. Expression vector optimization is an effective strategy to increase transgene expression levels and stability, and the choice of suitable poly A element is crucial for the expression of recombinant protein. In this study, we investigated the effects of different poly A elements on transgene expression in Chinese hamster ovary (CHO) cells. Five poly A elements, including bovine growth hormone (BGH), mutant BGH, herpes simplex virus type 1 thymidine kinase (HSV-TK), SV40, and a synthetic (Synt) poly A, were cloned into the expression vector and transfected into CHO cells. The results indicated the SV40 and Synt poly A sequences can significant improve eGFP transgene expression in stable transfected CHO cells and maintain long-term expression. However, qPCR results showed that the eGFP expression at protein level was not related to the gene copy number and mRNA level. Importantly, the SV40 and Synt poly A elements decreased the variation of eGFP transgene expression. Furthermore, it also showed that the SV40 and Synt poly A elements induced higher levels of adalimumab expression. In conclusion, SV40 poly A and Synt poly A are stronger elements that increase stable transgene expression and decrease the variation of expression, and the choice of suitable poly A element is helpful to improve the expression of recombinant protein.
Collapse
Affiliation(s)
- Xiao-yin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qiu-jie Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wei-li Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dan-hua Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xi Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Yan-long Jia
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tian-yun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-yun Wang,
| |
Collapse
|
30
|
Aznauryan E, Yermanos A, Kinzina E, Devaux A, Kapetanovic E, Milanova D, Church GM, Reddy ST. Discovery and validation of human genomic safe harbor sites for gene and cell therapies. CELL REPORTS METHODS 2022; 2:100154. [PMID: 35474867 PMCID: PMC9017210 DOI: 10.1016/j.crmeth.2021.100154] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
Existing approaches to therapeutic gene transfer are marred by the transient nature of gene expression following non-integrative gene delivery and by safety concerns due to the random mechanism of viral-mediated genomic insertions. The disadvantages of these methods encourage future research in identifying human genomic sites that allow for durable and safe expression of genes of interest. We conducted a bioinformatic search followed by the experimental characterization of human genomic sites, identifying two that demonstrated the stable expression of integrated reporter and therapeutic genes without malignant changes to the cellular transcriptome. The cell-type agnostic criteria used in our bioinformatic search suggest widescale applicability of identified sites for engineering of a diverse range of tissues for clinical and research purposes, including modified T cells for cancer therapy and engineered skin to ameliorate inherited diseases and aging. In addition, the stable and robust levels of gene expression from identified sites allow for the industry-scale biomanufacturing of proteins in human cells.
Collapse
Affiliation(s)
- Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Systems Biology Program, Life Science Zürich Graduate School, Zürich, Switzerland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elvira Kinzina
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Devaux
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Denitsa Milanova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
31
|
Casey AB, Mukherjee M, McGlynn RP, Cui M, Kohut SJ, Booth RG. A new class of serotonin 5-HT 2A /5-HT 2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2-aminotetralins. Br J Pharmacol 2021; 179:2610-2630. [PMID: 34837227 DOI: 10.1111/bph.15756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT receptor (5-HTR) subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and closely related histamine H1 Rs is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C Rs for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta position. Affinity, function, molecular modeling, and 5-HT2A R mutagenesis studies were undertaken to understand structure-activity relationships at 5-HT2 -type and H1 Rs. Lead 4-PAT-type selective 5-HT2A /5-HT2C R inverse agonists were compared to pimavanserin, a selective 5-HT2A /5-HT2C R inverse agonist approved to treat psychoses, in the mouse head twitch response, and locomotor activity assays, as models relevant to antipsychotic drug development. KEY RESULTS Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C, and H1 Rs, with >100-fold selectivity over 5-HT2B Rs, whereas, diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C Rs and had >100-fold selectivity over 5-HT2B and H1 Rs. Results suggest that G2385.42 and V2355.39 in 5-HT2A Rs (conserved in 5-HT2C Rs) are important for high affinity binding, whereas, interactions with T1945.42 and W1584.56 determine H1 R affinity. The 4-PAT (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C R inverse agonist, had activity like pimavanserin in the mouse head-twitch response assay, but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS We provide evidence that the novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C R inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. We also show that chirality can be exploited to attain selectivity over H1 Rs which may circumvent sedative effects.
Collapse
Affiliation(s)
- Austen B Casey
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Meng Cui
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Stephen J Kohut
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Behavioral Neuroimaging Laboratory, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
32
|
Enhancement of Transgene Expression by Mild Hypothermia Is Promoter Dependent in HEK293 Cells. Life (Basel) 2021; 11:life11090901. [PMID: 34575051 PMCID: PMC8469586 DOI: 10.3390/life11090901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mild hypothermia has been widely used to enhance transgene expression and improve the cellular productivity of mammalian cells. This study investigated mild hypothermia-responsive exogenous promoters in human embryonic kidney 293 (HEK293) cells using site-specific integration of various promoter sequences, including CMV, EF1α, SV40, and TK promoters, into the well-known genomic safe harbor site, AAVS1. EGFP expression driven by the CMV promoter increased up to 1.5-fold at 32 °C versus 37 °C under stable expression, while others showed no hypothermic response. Integration of short CMV variants revealed that the CMV-enhancer region is responsible for the positive hypothermic response. CMV-enhancer-specific transcription factors (TFs) were then predicted through in silico analysis and RNA-sequencing analysis, resulting in the selection of one TF, NKX3-1. At 37 °C, overexpression of NKX3-1 in recombinant HEK293 cells expressing EGFP through the CMV promoter (CMV-EGFP) increased EGFP expression up to 1.6-fold, compared with that in CMV-EGFP, the expression level of which was comparable to that of CMV-EGFP at 32 °C. Taken together, this work demonstrates promoter-dependent hypothermia responses in HEK293 cells and emphasizes interactions between endogenous TFs and promoter sequences.
Collapse
|
33
|
Nmagu D, Singh SK, Lee KH. Creation of monoclonal antibody expressing CHO cell lines grown with sodium butyrate and characterization of resulting antibody glycosylation. Methods Enzymol 2021; 660:267-295. [PMID: 34742393 DOI: 10.1016/bs.mie.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes.
Collapse
Affiliation(s)
- Douglas Nmagu
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sumit K Singh
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
34
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Nguyen NTB, Lin J, Tay SJ, Mariati, Yeo J, Nguyen-Khuong T, Yang Y. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep 2021; 11:12969. [PMID: 34155258 PMCID: PMC8217518 DOI: 10.1038/s41598-021-92320-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies are decorated with complex-type N-glycans that significantly affect their biodistribution and bioactivity. The N-glycan structures on antibodies are incompletely processed in wild-type CHO cells due to their limited glycosylation capacity. To improve N-glycan processing, glycosyltransferase genes have been traditionally overexpressed in CHO cells to engineer the cellular N-glycosylation pathway by using random integration, which is often associated with large clonal variations in gene expression levels. In order to minimize the clonal variations, we used recombinase-mediated-cassette-exchange (RMCE) technology to overexpress a panel of 42 human glycosyltransferase genes to screen their impact on antibody N-linked glycosylation. The bottlenecks in the N-glycosylation pathway were identified and then released by overexpressing single or multiple critical genes. Overexpressing B4GalT1 gene alone in the CHO cells produced antibodies with more than 80% galactosylated bi-antennary N-glycans. Combinatorial overexpression of B4GalT1 and ST6Gal1 produced antibodies containing more than 70% sialylated bi-antennary N-glycans. In addition, antibodies with various tri-antennary N-glycans were obtained for the first time by overexpressing MGAT5 alone or in combination with B4GalT1 and ST6Gal1. The various N-glycan structures and the method for producing them in this work provide opportunities to study the glycan structure-and-function and develop novel recombinant antibodies for addressing different therapeutic applications.
Collapse
Affiliation(s)
- Ngan T. B. Nguyen
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianer Lin
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shi Jie Tay
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mariati
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jessna Yeo
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Terry Nguyen-Khuong
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
36
|
Inclusion of maintenance energy improves the intracellular flux predictions of CHO. PLoS Comput Biol 2021; 17:e1009022. [PMID: 34115746 PMCID: PMC8221792 DOI: 10.1371/journal.pcbi.1009022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the leading platform for the production of biopharmaceuticals with human-like glycosylation. The standard practice for cell line generation relies on trial and error approaches such as adaptive evolution and high-throughput screening, which typically take several months. Metabolic modeling could aid in designing better producer cell lines and thus shorten development times. The genome-scale metabolic model (GSMM) of CHO can accurately predict growth rates. However, in order to predict rational engineering strategies it also needs to accurately predict intracellular fluxes. In this work we evaluated the agreement between the fluxes predicted by parsimonious flux balance analysis (pFBA) using the CHO GSMM and a wide range of 13C metabolic flux data from literature. While glycolytic fluxes were predicted relatively well, the fluxes of tricarboxylic acid (TCA) cycle were vastly underestimated due to too low energy demand. Inclusion of computationally estimated maintenance energy significantly improved the overall accuracy of intracellular flux predictions. Maintenance energy was therefore determined experimentally by running continuous cultures at different growth rates and evaluating their respective energy consumption. The experimentally and computationally determined maintenance energy were in good agreement. Additionally, we compared alternative objective functions (minimization of uptake rates of seven nonessential metabolites) to the biomass objective. While the predictions of the uptake rates were quite inaccurate for most objectives, the predictions of the intracellular fluxes were comparable to the biomass objective function. There is an increasing demand for protein pharmaceuticals, especially monoclonal antibodies. Chinese Hamster Ovary (CHO) are currently the leading production host due to their ability to perform human-like post-translational modifications. However, it typically takes several months of trial-and-error approaches to develop a high-producer cell line. Metabolic modelling has the potential to make cell line and process development faster and cheaper by predicting targeted modifications to the cell line genome, cultivation medium or bioprocess. In fact, genome-scale metabolic reconstructions of CHO are already available, and ready for use in cell line development. However, in order to successfully use these models, we need to make sure that they are able to accurately predict metabolic phenotypes. Here we use genome-scale metabolic models of CHO to evaluate the models’ ability to correctly predict intracellular flux distributions. We find that a crucial key ingredient for the correct estimation of central carbon fluxes is the non-growth associated maintenance energy (mATP). We estimated mATP computationally and confirmed it experimentally. Adding this single constraint leads to significantly better predictions of intracellular fluxes, especially in glycolysis and the tricarboxylic acid cycle.
Collapse
|
37
|
Dhiman H, Campbell M, Melcher M, Smith KD, Borth N. Predicting favorable landing pads for targeted integrations in Chinese hamster ovary cell lines by learning stability characteristics from random transgene integrations. Comput Struct Biotechnol J 2020; 18:3632-3648. [PMID: 33304461 PMCID: PMC7710658 DOI: 10.1016/j.csbj.2020.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023] Open
Abstract
Chinese Hamster Ovary (CHO) cell lines are considered to be the preferred platform for the production of biotherapeutics, but issues related to expression instability remain unresolved. In this study, we investigated potential causes for an unstable phenotype by comparing cell lines that express stably to such that undergo loss in titer across 10 passages. Factors related to transgene integrity and copy number as well as the genomic profile around the integration sites were analyzed. Horizon Discovery CHO-K1 (HD-BIOP3) derived production cell lines selected for phenotypes with low, medium or high copy number, each with stable and unstable transgene expression, were sequenced to capture changes at genomic and transcriptomic levels. The exact sites of the random integration events in each cell line were also identified, followed by profiling of the genomic, transcriptomic and epigenetic patterns around them. Based on the information deduced from these random integration events, genomic loci that potentially favor reliable and stable transgene expression were reported for use as targeted transgene integration sites. By comparing stable vs unstable phenotypes across these parameters, we could establish that expression stability may be controlled at three levels: 1) Good choice of integration site, 2) Ensuring integrity of transgene and observing concatemerization pattern after integration, and 3) Checking for potential stress related cellular processes. Genome wide favorable and unfavorable genomic loci for targeted transgene integration can be browsed at https://www.borthlabchoresources.boku.ac.at/
Collapse
Affiliation(s)
- Heena Dhiman
- University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Michael Melcher
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
38
|
Muralidharan-Chari V, Wurz Z, Doyle F, Henry M, Diendorfer A, Tenenbaum SA, Borth N, Eveleth E, Sharfstein ST. PTSelect™: A post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. J Biotechnol 2020; 325:360-371. [PMID: 33115662 DOI: 10.1016/j.jbiotec.2020.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Currently, stable Chinese hamster ovary cell lines producing therapeutic, recombinant proteins are established either by antibiotic and/or metabolic selection. Here, we report a novel technology, PTSelect™ that utilizes an siRNA cloned upstream of the gene of interest (GOI) that is processed to produce functional PTSelect™-siRNAs, which enable cell enrichment. Cells with stably integrated GOI are selected and separated from cells without GOI by transfecting CD4/siRNA mRNA regulated by PTSelect™-siRNAs and exploiting the variable expression of CD4 on the cell surface. This study describes the PTSelect™ principle and compares the productivity, doubling time and stability of clones developed by PTSelect™ with conventionally developed clones. PTSelect™ rapidly established a pool population with comparable stability and productivity to pools generated by traditional methods and can further be used to easily monitor productivity changes due to clonal drift, identifying individual cells with reduced productivity.
Collapse
Affiliation(s)
| | - Zachary Wurz
- HocusLocus, LLC, 253 Fuller Road, Albany NY 12203, USA
| | - Francis Doyle
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Matthew Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Andreas Diendorfer
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Scott A Tenenbaum
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA.
| |
Collapse
|
39
|
Shin SW, Lee JS. CHO Cell Line Development and Engineering via Site-specific Integration: Challenges and Opportunities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0093-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
41
|
Lee Y, Kwak JM, Lee JS. Endogenous p21-Dependent Transgene Control for CHO Cell Engineering. ACS Synth Biol 2020; 9:1572-1580. [PMID: 32539343 DOI: 10.1021/acssynbio.9b00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous engineering efforts have been made in Chinese hamster ovary (CHO) cells for high level production of therapeutic proteins. However, the dynamic regulation of transgene expression is limited in current systems. Here, we investigated the effective regulation of transgene expression in CHO cells via targeted integration-based endogenous gene tagging with engineering target genes. Targeted integration of EGFP-human Bcl-2 into the p21 locus effectively reduced the apoptosis, compared with random populations in which Bcl-2 expression was driven by cytomegalovirus (CMV) promoter. Endogenous p21 and EGFP-human Bcl-2 displayed similar expression dynamics in batch cultures, and the antiapoptotic effect altered the expression pattern of endogenous p21 showing the mutual influences between expression of p21 and Bcl-2. We further demonstrated the inducible transgene expression by adding low concentrations of hydroxyurea. The present engineering strategy will provide a valuable CHO cell engineering tool that can be used to control dynamic transgene expression in accordance with cellular states.
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jin Myeong Kwak
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
42
|
Shin S, Kim SH, Shin SW, Grav LM, Pedersen LE, Lee JS, Lee GM. Comprehensive Analysis of Genomic Safe Harbors as Target Sites for Stable Expression of the Heterologous Gene in HEK293 Cells. ACS Synth Biol 2020; 9:1263-1269. [PMID: 32470292 DOI: 10.1021/acssynbio.0c00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cell lines are being increasingly used as host cells to produce therapeutic glycoproteins, due to their human glycosylation machinery. In an attempt to develop a platform for generating isogenic human cell lines producing therapeutic proteins based on targeted integration, three well-known human genomic safe harbors (GSHs)-AAVS1, CCR5, and human ROSA26 loci-were evaluated with respect to the transgene expression level and stability in human embryonic kidney (HEK293) cells. Among the three GSHs, the AAVS1 locus showed the highest eGFP expression with the highest homogeneity. Transgene expression at the AAVS1 locus was sustained without selection for approximately 3 months. Furthermore, the CMV promoter showed the highest expression, followed by the EF1α, SV40, and TK promoters at the AAVS1 locus. Master cell lines were created using CRISPR/Cas9-mediated integration of the landing pad into the AAVS1 locus and were used for faster generation of recombinant cell lines that produce therapeutic proteins with recombinase-mediated cassette exchange.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Shin SW, Lee JS. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Biotechnol Bioeng 2020; 117:1895-1903. [PMID: 32086804 DOI: 10.1002/bit.27315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Site-specific integration has emerged as a promising strategy for precise Chinese hamster ovary (CHO) cell line engineering and predictable cell line development (CLD). CRISPR/Cas9 with the homology-directed repair (HDR) pathway enables precise integration of transgenes into target genomic sites. However, inherent recalcitrance to HDR-mediated targeted integration (TI) of transgenes results in low targeting efficiency, thus requiring a selection process to find a targeted integrant in CHO cells. Here, we explored several parameters that influence the targeting efficiency using a promoter-trap-based single- or double-knock-in (KI) monitoring system. A simple change in the donor template design by the addition of single-guide RNA recognition sequences strongly increased KI efficiency (2.9-36.0 fold), depending on integration sites and cell culture mode, compared to conventional circular donor plasmids. Furthermore, sequential and simultaneous KI strategies enabled us to obtain populations with ~1-4% of double-KI cells without additional enrichment procedures. Thus, this simple optimized strategy not only allows efficient CRISPR/Cas9-mediated TI in CHO cells but also paves the way for the applicability of multiplexed KIs in one experimental step without the need for sequential and independent CHO-CLD procedures.
Collapse
Affiliation(s)
- Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|