1
|
Zhou L, Wu M, Guo J. Robust biogas upgrading process via homoacetogens against ammonia and sulfide toxicities. WATER RESEARCH 2025; 279:123440. [PMID: 40064140 DOI: 10.1016/j.watres.2025.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 05/06/2025]
Abstract
Using hydrogen derived from surplus green energy (e.g., solar and wind) to convert carbon dioxide to acetate via homoacetogens represents a promising technology for simultaneous biogas upgrading and biochemical production. However, effects of hydrogen sulfide and ammonia on activities of homoacetogens remain unknown, hindering their applications in biogas upgrading. This study investigated the impacts of ammonia and sulfide on homoacetogen-dominated microbial community for biogas upgrading process by combining short-term batch tests and long-term membrane biofilm reactor (MBfR) operation. Results showed that sulfide concentrations ≤ 2 mM TDS (total dissolved sulfide) increased H2 and CO2 uptake rates and acetate production both in the short-term and long-term tests. The relative abundance of Acetobacterium (typical homoacetogens) in the MBfR also increased from 30 % without TDS addition to 40 % with the addition of 2 mM TDS. These results suggest that sulfide addition (≤ 2 mM TDS) likely promoted the growth of homoacetogens, thereby enhancing the biogas upgrading efficiency. In terms of ammonia, results suggested that 0.5 g NH4+-N/L has negligible impacts on the homoacetogens' activities, while concentrations ≥ 1 g NH4+-N/L significantly inhibited homoacetogens' activities, resulting in negligible acetate production during the short-term tests. However, the long-term biogas upgrading performance remained unaffected by 1 g NH4+-N/L. Moreover, with the simultaneous additions of typical concentrations of sulfide (2 mM TDS, equivalent to the H2S concentration of 0.8 % in biogas) and ammonia (1 g NH4+-N/L, equivalent to the NH3 concentration of 0.1 % in biogas) in raw biogas, our MBfR still achieved high H2 and CO2 utilization efficiencies (95 % and 97 %, respectively) and acetate production rate (550 mg/L/d). These highlight the robustness of MBfR against ammonia and sulfide toxicities. Additionally, the injection of extra H2 could alleviate the ammonia and sulfide inhibitions on homoacetogens with acetate production increased by 13-80 times. This provides a new strategy to enhance the tolerance of homoacetogens against high concentrations of hydrogen sulfide and ammonia. Collectively, our findings advance the understanding of the response of homoacetogens to ammonia and sulfide stress and facilitate the development of a resilient and efficient homoacetogen-mediated bioprocess for upgrading biogas to biomethane and chemicals simultaneously.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Mahieux M, Braga Nan L, Zbair M, Aemig Q, Richard C, Delgenès JP, Juge M, Bennici S, Limousy L, Trably E, Escudié R. Physicochemical properties of carbon-based materials enhance in situ biomethanation performances under organic overload. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114869. [PMID: 40344975 DOI: 10.1016/j.wasman.2025.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Carbon-based materials gained attention for their potential to improve anaerobic digestion (AD) performance. Meanwhile, in situ biomethanation, where external H2 is injected into the AD process to enhance the CH4 content in biogas, is more subjected to process inhibition than AD while facing sudden changes in operational parameters. This study explored the effects of carbon-based materials on a semi-continuous in situ biomethanation process performance and stability. Two biochars and one granular activated carbon were tested at a concentration of 10 g·L-1. The experiment was conducted in three phases: a one-week start-up phase in AD conditions, an 8-week phase of in situ biomethanation, reaching a steady state, and a 2-week overload phase performed to create instability during the in situ biomethanation process. All additives significantly mitigated process failure under overload conditions, with CH4 production reaching 117 ± 16 vs 160 ± 16 NmL CH4·d-1 on the first week of organic overload (control vs average of all supplemented conditions). Specifically, the use of GAC-BC, with the highest surface area, pore volume, and diameter, led to a tenfold increase in CH4 production compared to the control in the overload phase. This improvement was associated with higher archaeal diversity and dominance of the Bacteroidales class. Conversely, the biochars, with lower surface properties, did not enhance microbial growth or improve final VFA consumption, resulting in final VFA concentrations similar to the control (11gCOD·L-1). These findings highlight the importance of surface properties in additives for mitigating VFA accumulation under stressed conditions during in situ biomethanation.
Collapse
Affiliation(s)
- M Mahieux
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France; ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - L Braga Nan
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Zbair
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Haute Alsace (UHA), 68093 Mulhouse, France
| | - Q Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - C Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - J-P Delgenès
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - S Bennici
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| | - L Limousy
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Haute Alsace (UHA), 68093 Mulhouse, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France.
| |
Collapse
|
3
|
Zhang W, Kong X, Bo L, Yin D, Zhang Z, Fan X, Chen H, Yuan J. Utilizing zeolitic imidazolate framework-8 for enhanced carbon dioxide/methane separation and improved carbon dioxide methanation performance. BIORESOURCE TECHNOLOGY 2025; 422:132233. [PMID: 39961519 DOI: 10.1016/j.biortech.2025.132233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) has been widely employed for carbon dioxide (CO2) and methane (CH4) separation, and CO2 adsorption and storage owing to its high porosity and tunable pore structure. However, its potential to enhance CO2-to-CH4 conversion by grasping CO2 in hydrogenotrophic methanogenic systems, thereby increasing CH4 percentage in biogas, remains unexplored. This study synthesized ZIF-8 material and applied it in a biological biogas upgrading system. The results indicated that the CO2-to-CH4 conversion rate was maximized in the system with 0.75 g/L of ZIF-8 added. Over a single reaction cycle (5 days), the CH4 proportion increased from 60 % to 97 %. Furthermore, in continuous operation over three reaction cycles, the ultimate CH4 proportion in this reactor consistently exceeded 95 %, meeting the standards of biomethane. The pathway analysis revealed that the ZIF-8 introducing could increase abundance of hydrogenotrophic methanogens and facilitated the transition of metabolic pathway from acetotrophic to hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Weiqi Zhang
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xin Kong
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Linlin Bo
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Chinacoal Resources Comprehensive Utilization Co. Ltd, Taiyuan 030000, China
| | - Delin Yin
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Zhichun Zhang
- Shanxi Chinacoal Resources Comprehensive Utilization Co. Ltd, Taiyuan 030000, China
| | - Xiaojun Fan
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Hongping Chen
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jin Yuan
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
4
|
Lu X, Yue Z, Chen H, Liu S, Wei S, Wang Z. Synergistic interactions between g-C 3N 4 and Cu-Zn-MOFs via electrostatic assembly for enhanced electrocatalytic CO 2 reduction. Dalton Trans 2025; 54:4956-4964. [PMID: 39981756 DOI: 10.1039/d4dt03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Electrocatalytic carbon dioxide reduction (eCO2R) represents a sustainable technique for converting CO2 into valuable chemicals and fuels. Metal-organic frameworks (MOFs) are recognized as promising candidates in eCO2R due to their favorable adsorption of CO2. However, the insufficiency of adequate active sites restricts their in-depth investigation. Herein, inspired by the interfacial electronic effects, the layered g-C3N4 with unpaired electron characteristics is integrated into Cu-Zn-MOFs with nucleophilic imidazolate ligands via electrostatic assembly. The resultant g-C3N4@Cu-Zn-MOFs-1 : 1 exhibits excellent CO2 reduction performance for CO in a wide potential range, where the peak faradaic efficiency reaches 85% at -1.3 V. g-C3N4 with a graphitic carbon backbone significantly stabilizes the Cu-Zn-MOF structure and enhances the exposure of active sites. The excellent performance stems from the significant activation of active sites by the efficient electron transfer induced by π-π stacking interactions between g-C3N4 and Cu-Zn-MOFs-1 : 1. This work proposes an innovative approach to stabilizing MOFs and activating the active sites in MOFs through interfacial electron engineering for CO2 reduction.
Collapse
Affiliation(s)
- Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zhaolong Yue
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Fachal-Suárez M, Krishnan S, Chaiprapat S, González D, Gabriel D. An overview of biomethanation and the use of membrane technologies as a candidate to overcome H 2 mass transfer limitations. Biotechnol Adv 2024; 77:108465. [PMID: 39413888 DOI: 10.1016/j.biotechadv.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Energy produced from renewable sources such as sun or wind are intermittent, depending on circumstantial factors. This fact explains why energy supply and demand do not match. In this context, the interest in biomethanation has increased as an interesting contribution to the Power-to-gas concept (P2G), transforming the extra amount of produced electricity into methane (CH4). The reaction between green hydrogen (H2) (produced by electrolysis) and CO2 (pollutant present in biogas) can be catalysed by different microorganisms to produce biomethane, that can be injected into existing natural gas grid if reaching the standards. Thus, energy storage for both hydrogen and electricity, as well as transportation problems would be solved. However, H2 diffusion to the liquid phase for its further biological conversion is the main bottleneck due to the low solubility of H2. This review includes the state-of-the-art in biological hydrogenotrophic methanation (BHM) and membrane-based technologies. Specifically, the use of hollow-fiber membrane bioreactors as a technology to overcome H2 diffusion limitations is reviewed. Furthermore, the influence of operating conditions, microbiology, H2 diffusion and H2 injection methods are critically discussed before setting the main recommendations about BHM.
Collapse
Affiliation(s)
- Manuel Fachal-Suárez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Daniel González
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Baransi-Karkaby K, Yanuka-Golub K, Hassanin M, Massalha N, Sabbah I. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects. Biotechnol Bioeng 2024; 121:3471-3483. [PMID: 39036861 DOI: 10.1002/bit.28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.
Collapse
Affiliation(s)
- Katie Baransi-Karkaby
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Keren Yanuka-Golub
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Mahdi Hassanin
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
7
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, Lam SS, Nadda AK, Tong YW. Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. Crit Rev Biotechnol 2024; 44:1040-1060. [PMID: 37643972 DOI: 10.1080/07388551.2023.2241112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Sheetal Kishor Parakh
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - To Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction, and Molecular Immunology Laboratory, Integral University, Lucknow, India
| | - Surendra Pratap Singh
- Department of Botany, Plant Molecular Biology Laboratory, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, C.M.P. Degree College, a Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
9
|
Ling Chan H, Xu H, Zhou Y. External ceramic membrane contactor for in-situ H 2 assisted biogas upgrading. BIORESOURCE TECHNOLOGY 2024; 406:130981. [PMID: 38879053 DOI: 10.1016/j.biortech.2024.130981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
Biological H2-assisted biogas upgrading has gained significant attention as an environmentally friendly substitute to common physico-chemical upgrading techniques, but is largely limited by the low solubility of H2. This study evaluated the design of a ceramic membrane contactor module for H2 injection. H2 dissolution was maintained at high efficiency by controlling gas supply and sludge recirculation rate, achieving a biogas quality of average 98.8% CH4 during the stable operation phase with a 108% increase in the CH4 production rate. This also outperforms conventional H2 injection using diffuser sparging which could only achieve a biogas quality of 84% CH4 content. Microbial community analysis found high Methanobacterium spp. abundance within the archaea at 95.2% at the end of the operation, allowing the dominance of the hydrogenotrophic methanogenesis pathway for high upgrading efficiencies. The system is a high-performance external membrane connector module coupled to common anaerobic digestion systems for biogas upgrading.
Collapse
Affiliation(s)
- Hui Ling Chan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Hui Xu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
10
|
Zhou L, Lai CY, Wu M, Guo J. Simultaneous Biogas Upgrading and Valuable Chemical Production Using Homoacetogens in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12509-12519. [PMID: 38963393 DOI: 10.1021/acs.est.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
11
|
Mahieux M, Richard C, Aemig Q, Delgenès JP, Juge M, Trably E, Escudié R. Archaeal community composition as key driver of H2 consumption rates at the start-up of the biomethanation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172922. [PMID: 38701927 DOI: 10.1016/j.scitotenv.2024.172922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The performance of hydrogen consumption by various inocula derived from mesophilic anaerobic digestion plants was evaluated under ex situ biomethanation. A panel of 11 mesophilic inocula was operated at a concentration of 15 gVS.L-1 at a temperature of 35 °C in batch system with two successive injections of H2:CO2 (4:1 mol:mol). Hydrogen consumption and methane production rates were monitored from 44 h to 72 h. Hydrogen consumption kinetics varies significantly based on the inoculum origin, with no accumulation of volatile fatty acids. Microbial community analyses revealed that microbial indicators such as the increase in Methanosarcina sp. abundance and the increase of the Archaea/Bacteria ratio were associated to high initial hydrogen consumption rates. The improvement in the hydrogen consumption rate between the two injections was correlated with the enrichment in hydrogenotrophic methanogens. This work provides new insights into the early response of microbial communities to hydrogen injection and on the microbial structures that may favor their adaptation to the biomethanation process.
Collapse
Affiliation(s)
- M Mahieux
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France; ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - C Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - Q Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - J-P Delgenès
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France.
| |
Collapse
|
12
|
Wang S, Hadji-Thomas A, Adekunle A, Raghavan V. The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172737. [PMID: 38663611 DOI: 10.1016/j.scitotenv.2024.172737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Microplastic (MP) pollution has caused severe concern due to its harmful effect on human beings and ecosystems. Existing MP removal methods face many obstacles, such as high cost, high energy consumption, low efficiency, release of toxic chemicals, etc. Thus, it is crucial to find appropriate and sustainable methods to replace common MP removal approaches. Bio-electrochemical system (BES) is a sustainable clean energy technology that has been successfully applied to wastewater treatment, seawater desalination, metal removal, energy production, biosensors, etc. However, research reports on BES technology to eliminate MP pollution are limited. This paper reviews the mechanism, hazards, and common treatment methods of MP removal and discusses the application of BES systems to improve MP removal efficiency and sustainability. Firstly, the characteristics and limitations of common MP removal techniques are systematically summarized. Then, the potential application of BES technology in MP removal is explored. Furthermore, the feasibility and stability of the potential BES MP removal application are critically evalauted while recommendations for further research are proposed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Andre Hadji-Thomas
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
13
|
Li Y, Zhang Z, Tang J, Ruan W, Shi W, Huang Z, Zhao M. In-situ methane enrichment in anaerobic digestion of food waste slurry by nano zero-valent iron: Long-term performance and microbial community succession. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120733. [PMID: 38531140 DOI: 10.1016/j.jenvman.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
In this work, nano zero-valent iron (nZVI) was added to a lab-scale continuous stirring tank reactor (CSTR) for food waste slurry treatment, and the effect of dosing rate and dosage of nZVI were attempted to be changed. The results showed that anaerobic digestion (AD) efficiency and biomethanation stability were optimum under the daily dosing and dosage of 0.48 g/gTCOD. The average daily methane (CH4) yield reached 495.38 mL/gTCOD, which was 43.65% higher than that at control stage, and the maximum CH4 content reached 95%. However, under single dosing rate conditions, high nZVI concentrations caused microbial cell rupture and loosely bound extracellular polymeric substances (LB-EPS) precipitation degradation. The daily dosing rate promoted the hydrogenotrophic methanogenesis pathway, and the activity of coenzyme F420 increased by 400.29%. The microbial analysis indicated that daily addition of nZVI could promote the growth of acid-producing bacteria (Firmicutes and Bacteroidetes) and methanogens (Methanothrix).
Collapse
Affiliation(s)
- Yong Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhou Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jieyu Tang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Tomczak W, Gryta M, Daniluk M, Żak S. Biogas Upgrading Using a Single-Membrane System: A Review. MEMBRANES 2024; 14:80. [PMID: 38668108 PMCID: PMC11051867 DOI: 10.3390/membranes14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Sławomir Żak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| |
Collapse
|
15
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
16
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
17
|
Rao Y, Lin TY, Ling F, He Z. Biological upgrading of biogas assisted with membrane supplied hydrogen gas in a three-phase upflow reactor. BIORESOURCE TECHNOLOGY 2024; 394:130260. [PMID: 38151211 DOI: 10.1016/j.biortech.2023.130260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Biogas upgrading via CO2 conversion to CH4 is an emerging technology for renewable natural gas production and carbon management, but its development is limited by the low H2 gas to liquid phase transfer. Herein, an innovative biogas upgrading system employing a three-phase design was studied for CO2 conversion with H2 supply via gas-permeable membrane. The system produced biogas consisted of 74.1 ± 7.1 % CH4 and 25.9 ± 7.1 % CO2 with intermittent injection of H2. When H2 supply was continuous, the CH4 content increased to 91.6 ± 2.2 % at a H2:CO2 ratio of 4.4. Although a higher ratio of 5.5 could result in a higher CH4 percentage of 95.2 ± 2.5 %, biogas production rate started to decrease. The removal efficiency of organic contents remained above 90 % throughout the experiment. Microbial community analysis corroborated the findings, showing that hydrogenotrophic Methanobacteriaceae was more prevalent in the biofilm (71.9 %) compared to that in anaerobic digestion (15.8 %) and effluent (14.1 %).
Collapse
Affiliation(s)
- Yue Rao
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tzu-Yu Lin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fangqiong Ling
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
18
|
Xu H, Miao J, Wang J, Deng J, Zhang J, Kou Q, Xiong X, Holmes DE. Integrated CO 2 capture and conversion via H 2-driven CO 2 biomethanation: Cyclic performance and microbial community response. BIORESOURCE TECHNOLOGY 2024; 393:130055. [PMID: 37995871 DOI: 10.1016/j.biortech.2023.130055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the use of H2-driven CO2 biomethanation for integrated CO2 capture and conversion (iCCC). Anaerobic chambers containing Na2CO3-amended microbial growth medium provided with H2 were inoculated with anaerobic granular sludge. Microorganisms were enriched that could regenerate carbonate by using the bicarbonate formed from CO2 absorption to generate methane. Multiple absorption-regeneration cycles were performed and effective restoration of CO2 absorption capacity and stable carbonate recycling via CO2 biomethanation were observed for CO2 absorbents adjusted to three different pH values (9.0, 9.5, and 10.0). The pH = 10.0 group had the highest CO2 absorption capacity; 65.3 mmol/L in the 5th cycle. A slight alkaline inhibition of acetoclastic methanogenesis occurred near the end of regeneration, but had limited impact on the cyclic performance of the iCCC process. Microbial communities were dominated by H2-utilizing and alkali-tolerant species that could participate in CO2 biomethanation and survive under alternating neutral and alkaline conditions.
Collapse
Affiliation(s)
- Heng Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiahui Miao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiushuai Deng
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiayin Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingshuang Kou
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Xia Xiong
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, United States
| |
Collapse
|
19
|
Wu KK, Zhao L, Wang ZH, Sun ZF, Wu JT, Chen C, Xing DF, Yang SS, Wang AJ, Zhang YF, Ren NQ. Simultaneous biogas upgrading and medium-chain fatty acids production using a dual membrane biofilm reactor. WATER RESEARCH 2024; 249:120915. [PMID: 38029487 DOI: 10.1016/j.watres.2023.120915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Utilizing H2-assisted ex-situ biogas upgrading and acetate recovery holds great promise for achieving high value utilization of biogas. However, it faces a significant challenge due to acetate's high solubility and limited economic value. To address this challenge, we propose an innovative strategy for simultaneous upgrading of biogas and the production of medium-chain fatty acids (MCFAs). A series of batch tests evaluated the strategy's efficiency under varying initial gas ratios (v/v) of H2, CH4, CO2, along with varying ethanol concentrations. The results identified the optimal conditions as initial gas ratios of 3H2:3CH4:2CO2 and an ethanol concentration of 241.2 mmol L-1, leading to maximum CH4 purity (97.2 %), MCFAs yield (54.2 ± 2.1 mmol L-1), and MCFAs carbon-flow distribution (62.3 %). Additionally, an analysis of the microbial community's response to varying conditions highlighted the crucial roles played by microorganisms such as Clostridium, Proteiniphilum, Sporanaerobacter, and Bacteroides in synergistically assimilating H2 and CO2 for MCFAs production. Furthermore, a 160-day continuous operation using a dual-membrane aerated biofilm reactor (dMBfR) was conducted. Remarkable achievements were made at a hydraulic retention time of 2 days, including an upgraded CH4 content of 96.4 ± 0.3 %, ethanol utilization ratio (URethanol) of 95.7 %, MCFAs production rate of 28.8 ± 0.3 mmol L-1 d-1, and MCFAs carbon-flow distribution of 70 ± 0.8 %. This enhancement is proved to be an efficient in biogas upgrading and MCFAs production. These results lay the foundation for maximizing the value of biogas, reducing CO2 emissions, and providing valuable insights into resource recovery.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie-Ting Wu
- School of Environment, Liaoning University, Shenyang 110000, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yi-Feng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
20
|
Sharma V, Sharma D, Tsai ML, Ortizo RGG, Yadav A, Nargotra P, Chen CW, Sun PP, Dong CD. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. BIORESOURCE TECHNOLOGY 2023; 390:129829. [PMID: 37839650 DOI: 10.1016/j.biortech.2023.129829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Rhessa Grace Guanga Ortizo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
21
|
Shang G, Yu J, Cai W, Cui K, Shen X, Jin P, Guo K. Comparison of in-situ and ex-situ electrolytic H 2 supply for microbial methane production from CO 2. BIORESOURCE TECHNOLOGY 2023; 388:129728. [PMID: 37683710 DOI: 10.1016/j.biortech.2023.129728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Both in-situ and ex-situ electrolytic H2 supply have been used for biomethane production from CO2. However, the pros and cons of them have not been systematically compared. The present study makes this comparison using a 20 L continuous stirred-tank reactor equipped with external and internal electrolyzers. Compared to the ex-situ H2 supply, the in-situ electrolytic H2 bubbles were one order of magnitude smaller, which resulted in improved H2 mass transfer and biomass growth. Consequently, the methane production rate and the coulombic efficiency of the in-situ H2 supply (0.51 L·L-1·d-1, 96%) were higher than those of the ex-situ H2 supply (0.30 L·L-1·d-1, 56%). However, due to high internal resistance, the energy consumption for the in-situ electrolysis was 2.54 times higher than the ex-situ electrolysis. Therefore, the in-situ electrolytic H2 supply appears to be more promising, but reducing energy consumption is the key to the success of this technology.
Collapse
Affiliation(s)
- Gaoyuan Shang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinpeng Yu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenfang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Shen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
22
|
Nawaz A, Aamir F, Huang R, Haq IU, Wu F, Munir M, Chaudhary R, Rafique A, Jiang K. Co-production of biohydrogen and biomethane utilizing halophytic biomass Atriplexcrassifolia by two-stage anaerobic fermentation process. Front Chem 2023; 11:1233494. [PMID: 37483269 PMCID: PMC10360132 DOI: 10.3389/fchem.2023.1233494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The excessive use of fossil has resulted in the drastic exhaustion of natural energy sources, leading to environmental challenges and energy crises. Owing to rising energy demand there is a dire need to shift towards renewable energies from lignocellulosic biomass. The present study assessed the co-production of biohydrogen (H2) and biomethane (CH4) by utilizing a less explored halophyte Atriplexcrassifolia. Various reaction parameters were evaluated for their effect on biohydrogen and biomethane production in batch experiments. One parameter at a time experimental strategy was chosen for production optimization. Hydrogen and methane yields along with their production rates were assessed at different incubation times, temperatures, pH, substrate concentrations, and inoculum sizes in acidogenesis and methanogenesis stages, respectively. In the first stage, maximum cumulative hydrogen production of 66 ± 0.02 mL, with hydrogen yield of 13.2 ± 0.03 mL/g, and hydrogen production rate (HPR) of 1.37 ± 0.05 mL/h was attained when the reaction mixture (5 g Atriplexcrassifolia and 10 mL pretreated sewage sludge) was processed at 37°C and pH 5.5 after 48 h of incubation. While in the second stage, maximum cumulative methane production, i.e., 343 ± 0.12 mL, methane yield (MY) of 8.5 ± 0.07 mL/mL, and methane production rate (MPR) of 0.8 ± 0.05 mL/h was achieved after 18 days of incubation of reaction mixture (40 mL of hydrogenic slurry with 80 mL inoculum) at 45°C and pH 8. Furthermore, a 51% and 24% rise in biohydrogen and biomethane production respectively were recorded when the gases were produced at these optimized reaction conditions. The results ensure halophyte Atriplexcrassifolia as an imperative renewable energy resource and proposed that effective optimization of the process further increased the coproduction of biohydrogen and biomethane.
Collapse
Affiliation(s)
- Ali Nawaz
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Farheen Aamir
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Fangyu Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Marium Munir
- Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ayesha Rafique
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Ale Enriquez F, Ahring BK. Strategies to overcome mass transfer limitations of hydrogen during anaerobic gaseous fermentations: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 377:128948. [PMID: 36963702 DOI: 10.1016/j.biortech.2023.128948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Fermentation of gaseous substrates such as carbon dioxide (CO2) has emerged as a sustainable approach for transforming greenhouse gas emissions into renewable fuels and biochemicals. CO2 fermentations are catalyzed by hydrogenotrophic methanogens and homoacetogens, these anaerobic microorganisms selectively reduce CO2 using hydrogen (H2) as electron donor. However, H2 possesses low solubility in liquid media leading to slow mass transport, limiting the reaction rates of CO2 reduction. Solving the problems of mass transport of H2 could boost the advance of technologies for valorizing industrial CO2-rich streams, like biogas or syngas. The application could further be extended to combustion flue gases or even atmospheric CO2. In this work, an overview of strategies for overcoming H2 mass transport limitations during methanogenic and acetogenic fermentation of H2 and CO2 is presented. The potential for using these strategies in future full-scale facilities and the knowledge gaps for these applications are discussed in detail.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
24
|
Wu KK, Zhao L, Zheng XC, Sun ZF, Wang ZH, Chen C, Xing DF, Yang SS, Ren NQ. Recovery of methane and acetate during ex-situ biogas upgrading via novel dual-membrane aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 382:129181. [PMID: 37210035 DOI: 10.1016/j.biortech.2023.129181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Biological biogas upgrading has been well-proven to be a promising approach for renewable bioenergy recovery, but hydrogen (H2)-assisted ex-situ biogas upgrading is hindered by a large solubility discrepancy between H2 and carbon dioxide (CO2). This study established a new dual-membrane aerated biofilm reactor (dMBfR) to improve the upgrading efficiency. Results showed that dMBfR operated at 1.25 atm H2 partial pressure, 1.5 atm biogas partial pressure, and 1.0 d hydraulic retention time could significantly improve the efficiency. The maximum methane purity of 97.6%, acetate production rate of 34.5 mmol L-1d-1, and H2 and CO2 utilization ratios of 96.5% and 96.3% were achieved. Further analysis showed that the improved performances of biogas upgrading and acetate recovery were positively correlated with the total abundances of functional microorganisms. Taken together, these results suggest that the dMBfR, which facilitates the precise CO2 and H2 supply, is an ideal approach for efficient biological biogas upgrading.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Chuan Zheng
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Prakash O, Mostafa A, Im S, Kang S, Shi X, Kim DH. Upflow anaerobic sludge blanket reactor operation under high pressure for energy-rich biogas production. BIORESOURCE TECHNOLOGY 2023; 376:128897. [PMID: 36931446 DOI: 10.1016/j.biortech.2023.128897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Autogenerative high-pressure digestion has an advantage of producing CH4-rich biogas directly from the reactor. However, its continuous operation has rarely been reported, and has never been attempted in an upflow anaerobic sludge blanket reactor (UASB). Here, UASB was continuously operated at 10 g COD/L/d with increasing pressure from 1 to 8 bar. As the pressure increased, the CH4 content in the biogas increased gradually, reaching 96.7 ± 0.8% at 8 bar (309 MJ/m3 biogas). The pH was dropped from 8.2 to 7.2 with pressure increase, but COD removal efficiency was maintained > 90%. The high pressure up to 8 bar did not adversely impact the physicochemical properties of granules, which was due to the increased production of extracellular polymeric substances (EPS), particularly, tightly bound EPS (34% increase). With pressure increase, there was no changes in the microbial community and ATPase gene expression, but 41% increase in carbonic anhydrase gene expression was observed.
Collapse
Affiliation(s)
- Om Prakash
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Alsayed Mostafa
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Dong-Hoon Kim
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
26
|
Tian Y, Wu J, Liang D, Li J, Liu G, Lin N, Li D, Feng Y. Insights into the Electron Transfer Behaviors of a Biocathode Regulated by Cathode Potentials in Microbial Electrosynthesis Cells for Biogas Upgrading. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6733-6742. [PMID: 37036348 DOI: 10.1021/acs.est.2c09871] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioelectrochemical-based biogas upgrading is a promising technology for the storage of renewable energy and reduction of the global greenhouse gas emissions. Understanding the electron transfer behavior between the electrodes and biofilm is crucial for the development of this technology. Herein, the electron transfer pathway of the biofilm and its catalytic capability that responded to the cathode potential during the electromethanogenesis process were investigated. The result suggested that the dominant electron transfer pathway shifted from a direct (DET) to indirect (IDET) way when decreasing the cathode potential from -0.8 V (Bio-0.8 V) to -1.0 V (Bio-1.0 V) referred to Ag/AgCl. More IDET-related redox substances and high content of hydrogenotrophic methanogens (91.9%) were observed at Bio-1.0 V, while more DET-related redox substances and methanogens (82.3%) were detected at Bio-0.8 V. H2, as an important electron mediator, contributed to the electromethanogenesis up to 72.9% of total CH4 yield at Bio-1.0 V but only ∼17.3% at Bio-0.8 V. Much higher biogas upgrading performance in terms of CH4 production rate, final CH4 content, and carbon conversion rate was obtained with Bio-1.0 V. This study provides insight into the electron transfer pathway in the mixed culture constructed biofilm for biogas upgrading.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Jing Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Nan Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| |
Collapse
|
27
|
Tauber J, Möstl D, Vierheilig J, Saracevic E, Svardal K, Krampe J. Biological Methanation in an Anaerobic Biofilm Reactor—Trace Element and Mineral Requirements for Stable Operation. Processes (Basel) 2023. [DOI: 10.3390/pr11041013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Biological methanation of carbon dioxide using hydrogen makes it possible to improve the methane and energy content of biogas produced from sewage sludge and organic residuals and to reach the requirements for injection into the natural gas network. Biofilm reactors, so-called trickling bed reactors, offer a relatively simple, energy-efficient, and reliable technique for upgrading biogas via ex-situ methanation. A mesophilic lab-scale biofilm reactor was operated continuously for nine months to upgrade biogas from anaerobic sewage sludge digestion to a methane content >98%. To supply essential trace elements to the biomass, a stock solution was fed to the trickling liquid. Besides standard parameters and gas quality, concentrations of Na, K, Ca, Mg, Ni, and Fe were measured in the liquid and the biofilm using ICP-OES (inductively coupled plasma optical emission spectrometry) to examine the biofilms load-dependent uptake rate and to calculate quantities required for a stable operation. Additionally, microbial community dynamics were monitored by amplicon sequencing (16S rRNA gene). It was found that all investigated (trace) elements are taken up by the biomass. Some are absorbed depending on the load, others independently of it. For example, a biomass-specific uptake of 0.13 mg·g−1·d−1 for Ni and up to 50 mg·g−1·d−1 for Mg were measured.
Collapse
|
28
|
Kadam R, Khanthong K, Park B, Jun H, Park J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116927. [PMID: 36473349 DOI: 10.1016/j.jenvman.2022.116927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byeongchang Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
29
|
Yellezuome D, Zhu X, Liu X, Liu X, Liu R, Wang Z, Li Y, Sun C, Hemida Abd-Alla M, Rasmey AHM. Integration of two-stage anaerobic digestion process with in situ biogas upgrading. BIORESOURCE TECHNOLOGY 2023; 369:128475. [PMID: 36509302 DOI: 10.1016/j.biortech.2022.128475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.
Collapse
Affiliation(s)
- Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuwei Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yingkai Li
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez 43721, Egypt
| |
Collapse
|
30
|
Oxygenated Hydrocarbons from Catalytic Hydrogenation of Carbon Dioxide. Catalysts 2023. [DOI: 10.3390/catal13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories, have been explained in previous studies. With respect to catalyst design, photocatalytic activity, and the reaction mechanism, recent advances in obtaining oxygenated hydrocarbons from CO2 processing have been made both through experiments and through density functional theory (DFT) simulations. This review highlights the progress made in the use of three-dimensional (3D) nanomaterials and their compounds and methods for their synthesis in the process of hydrogenation of CO2. Recent advances in catalytic performance and the conversion mechanism for CO2 hydrogenation into hydrocarbons that have been made using both experiments and DFT simulations are also discussed. The development of 3D nanomaterials and metal catalysts supported on 3D nanomaterials is important for CO2 conversion because of their stability and the ability to continuously support the catalytic processes, in addition to the ability to reduce CO2 directly and hydrogenate it into oxygenated hydrocarbons.
Collapse
|
31
|
Moretti ER, Roston DM, da Silva AJ, Reyes IP. Biogas from aquatic plants: A bioenergetics incentive for constructed wetlands usage. Heliyon 2022; 9:e12537. [PMID: 36820048 PMCID: PMC9937903 DOI: 10.1016/j.heliyon.2022.e12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Our study demonstrated the energy gains when using biomass from three macrophyte, used commonly in constructed wetlands for wastewater treatment, the water hyacinth, cattail, and dwarf papyrus, as a substrate for biogas generation. The biochemical methane potential for the three biomass was evaluated in batch and at bench at 37 °C. A kinetic analysis of anaerobic digestion was also conducted for these substrates, evaluating the biogas composition and energy potential. Anaerobic digestion resulted in 94.27, and 25 mLCH4/gVSsubstrate of dry mass; and 19,569.65, 5617.88, and 6068.45 kJ/t of cattail, water hyacinth, and dwarf papyrus, respectively. Biomass from water hyacinth did sustain the fastest degradation, indicating that models considering the lag phase are more adequate to evaluate the anaerobic digestion of this type of substrate. Higher digestion speed resulted in the generation of 2901.88 kJ/t more energy with biomass from water hyacinth versus cattail, highlighting its value for use in constructed wetlands.
Collapse
Affiliation(s)
- Erika Rabello Moretti
- Universidade Estadual de Campinas (UNICAMP) - School of Agricultural Engineering, (FEAGRI), Avenida Cândido Rondon, 501, Barão Geraldo, CEP 13.083-875, Campinas, SP, Brazil
| | - Denis Miguel Roston
- Universidade Estadual de Campinas (UNICAMP) - School of Agricultural Engineering, (FEAGRI), Avenida Cândido Rondon, 501, Barão Geraldo, CEP 13.083-875, Campinas, SP, Brazil
| | - Ariovaldo José da Silva
- Universidade Estadual de Campinas (UNICAMP) - School of Agricultural Engineering, (FEAGRI), Avenida Cândido Rondon, 501, Barão Geraldo, CEP 13.083-875, Campinas, SP, Brazil
- Corresponding author.
| | - Ileana Pereda Reyes
- Universidad Tecnológica de La Habana “José Antonio Echeverría" (Cujae), 3H3M+XJ6, La Habana, Cuba
| |
Collapse
|
32
|
Muñoz-Páez KM, Buitrón G. Bioconversion of H 2 and CO 2 from dark fermentation to methane: Effect of operating conditions on methane concentration. CHEMOSPHERE 2022; 308:136305. [PMID: 36064009 DOI: 10.1016/j.chemosphere.2022.136305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The main goal of this study was to assess the methane production in a biotrickling filter (BTF) using a synthetic gas mixture (H2/CO2: 60/40), evaluating the effect of the empty bed gas residence time (EBRT), pH, and temperature. The BTF was inoculated with acclimated granular anaerobic sludge. Three EBRT were tested: 11.6, 5.8, and 2.9 h. The decrease in EBRT (from 11.6 to 5.8 h) increased 1.3-fold the methane content (69 ± 3%) with H2 and CO2 removals of 100% and 24 ± 6%, respectively. The following reduction to 2.9 h showed no effect on CH4 content. The increment of the pH had no significant effect; however, the highest CH4 percentage (74%) was observed at a pH of 8.5. The system showed flexibility to adapt to changes in temperature without drastically diminishing CH4 concentration. In these stages, the principal hydrogenotrophic archaea detected was Methanobacterium flexile. Soluble microbial products such as butanol, caproate, and iso-valerate were detected in all the operating stages. This study demonstrates the potential of methane generation from a dark fermentation gaseous effluent.
Collapse
Affiliation(s)
- Karla M Muñoz-Páez
- CONACYT - Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
33
|
Abbass R, Chlib Alkaaby HH, Kadhim ZJ, Izzat SE, Kadhim AA, Adhab AH, Pakravan P. Using the aluminum decorated graphitic-C 3N 4 quantum dote (QD) as a sensor, sorbent, and photocatalyst for artificial photosynthesis; a DFT study. J Mol Graph Model 2022; 117:108302. [PMID: 36049401 DOI: 10.1016/j.jmgm.2022.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δμh-e = 1.43 V), and for water splitting process for the H2 generation (Δμh-e = 1.23 V) as a clean fuel for near future.
Collapse
Affiliation(s)
- Rathab Abbass
- Medical Lab, Techniques Department, College of Medical Techology, Al-Farahidi University, Iraq
| | | | - Zainab Jawad Kadhim
- Optics Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Athmar Ali Kadhim
- Medical Laboratories Teachniques, Hilla University College, Babylon, Iraq
| | | | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
34
|
Ma Z, Cheah WY, Ng IS, Chang JS, Zhao M, Show PL. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol 2022; 40:1439-1453. [PMID: 36216714 DOI: 10.1016/j.tibtech.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| | - Min Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
35
|
Andronikou M, Lytras N, Chrysanthou G, Koutsokeras L, Constantinides G, Stylianou M, Agapiou A, Vyrides I. Biogas upgrading to methane and removal of volatile organic compounds in a system of zero-valent iron and anaerobic granular sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87245-87256. [PMID: 35802326 DOI: 10.1007/s11356-022-21750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The current study presented a novel process of biogas upgrading to biomethane (higher than 97%) based on anaerobic sludge and zero-valent iron (ZVI) system. When ZVI was added into an aquatic system with anaerobic granular sludge (AnGrSl) under anaerobic abiotic conditions, H2 was generated. Then, the H2 and CO2 were converted by the hydrogenotrophic methanogens to CH4. Biogas upgrading to biomethane was achieved in 4 days in the AnGrSl system (50 g L-1 ZVI, initial pH 5 and 20 g L-1 NaHCO3). In this system, when zero-valent scrap iron (ZVSI) was added instead of ZVI, a more extended period (21 days) was required to achieve biogas upgrading. X-ray diffraction (XRD) analysis revealed that the materials in a reactor with CO2 or biogas headspace, exhibited a mixture of ferrite and the iron carbonate phase of siderite (FeCO3), with the latter being the dominant phase. VOCs analysis in raw biogas (in the system of anaerobic sludge and ZVI) highlighted the reduction of low mass straight- and branched-chain alkanes (C6-C10). Also, H2S and NH3 were found to be substantially reduced when the anaerobic sludge was exposed to ZVI compared to the cases where ZVI was not added. This study found that simultaneously with biogas upgrading, VOCs, H2S and NH3 can be removed in a system of ZVI or ZVSI and AnGrSl under aquatic anaerobic conditions.
Collapse
Affiliation(s)
- Maria Andronikou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Nikolaos Lytras
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Georgia Chrysanthou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Loukas Koutsokeras
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
- Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
| | - Georgios Constantinides
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
- Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
| | - Marinos Stylianou
- Department of Chemistry, University of Cyprus, P.O. BOX 20537, 1678, Nicosia, Cyprus
| | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, P.O. BOX 20537, 1678, Nicosia, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus.
| |
Collapse
|
36
|
Sun ZF, Zhao L, Wu KK, Wang ZH, Wu JT, Chen C, Yang SS, Wang AJ, Ren NQ. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157824. [PMID: 35931172 DOI: 10.1016/j.scitotenv.2022.157824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of renewable and sustainable energy, biogas upgrading for producing high-quality biomethane as an alternative to natural gas has attracted worldwide attention. This paper comprehensively reviews the current state of biogas upgrading technologies. The advances in physicochemical, photosynthetic autotrophic, and chemical autotrophic biogas upgrading technologies are briefly described with particular attention to the key challenges. New chemical autotrophic biogas upgrading strategies, such as direct and indirect exogenous hydrogen supply, for overcoming barriers to biogas upgrading and realizing highly efficient bioconversion of carbon dioxide are summarized. For each approach to exogenous hydrogen supply for biogas upgrading, the key findings and technical limitations are summarized and critically analyzed. Finally, future developments are also discussed to provide a reference for the development of biogas upgrading technology that can address the global energy crisis and climate change issues related to the application of biogas.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kai-Kai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
37
|
Lv X, Ding S, Huang L, Li X, Zhang J. Constructing Dual-Transport Pathways by Incorporating Beaded Nanofillers in Mixed Matrix Membranes for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49233-49243. [PMID: 36259589 DOI: 10.1021/acsami.2c15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mixed matrix membranes (MMMs) have attracted significant attention in the field of CO2 separation because MMMs have potential to overcome an undesirable "trade-off" effect. In this study, the beaded nanofillers of ZIF-8@aminoclay (ZIF-8@AC) were synthesized using an in situ growth method, and they were doped into a Pebax MH 1657 (Pebax) matrix to fabricate MMMs for efficient CO2 separation. The beaded structure was formed by ZIF-8 particles joined together during the process of AC coating on the ZIF-8 surface. ZIF-8@AC played a vital role in the improvement of gas separation performance. It was mainly attributed to the following reasons: First, the inherent micropores of ZIF-8 constructed the internal pathways for gas transport in the beaded nanofillers, benefiting the improvement of gas permeability. Second, the staggered AC layers constructed the external pathways for gas transport in the beaded nanofillers, increasing the tortuosity of gas transport for larger molecules and favoring the improvement of gas selectivity. Therefore, the internal and external pathways of ZIF-8@AC co-constructed the dual-transport pathways for CO2 transport in MMMs. In addition, the abundant amino groups of the beaded nanofillers provided abounding carriers for CO2, facilitating CO2 transport in the dual-transport pathways. Therefore, the CO2 separation performance of Pebax/ZIF-8@AC-1 MMMs was significantly improved. The CO2 permeability and CO2/CH4 separation factor of Pebax/ZIF-8@AC-1-7 MMM were 620 ± 10 Barrer and 40 ± 0.4, which were 2.3 and 1.6 times those of a pure Pebax membrane, respectively. Furthermore, the CO2/CH4 separation performance of Pebax/ZIF-8@AC-1-7 MMM overcame successfully the "trade-off" effect and approached the 2019 upper bound. It is a novel strategy to design a beaded nanofiller doped into MMMs for carbon capture.
Collapse
Affiliation(s)
- Xia Lv
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Siyuan Ding
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lu Huang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jinli Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
39
|
Fu S, Lian S, Angelidaki I, Guo R. Micro-aeration: an attractive strategy to facilitate anaerobic digestion. Trends Biotechnol 2022; 41:714-726. [PMID: 36216713 DOI: 10.1016/j.tibtech.2022.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Collapse
|
40
|
Ferrari G, Holl E, Steinbrenner J, Pezzuolo A, Lemmer A. Environmental assessment of a two-stage high pressure anaerobic digestion process and biological upgrading as alternative processes for biomethane production. BIORESOURCE TECHNOLOGY 2022; 360:127612. [PMID: 35840023 DOI: 10.1016/j.biortech.2022.127612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Biomethane plays a key role in achieving decarbonization and sustainable development goals. According to the objectives that arise, choosing the most suitable production system allows optimization of production, thereby reducing CO2 emissions. In this study, three biomethane production scenario life cycle assessments were compared to determine which would maintain the lowest CO2 emissions. Conventional anaerobic digestion and an innovative process called two-stage high pressure anaerobic digestion were considered. These methods were combined with two upgrading processes: water scrubbing and biological upgrading. Cattle manure and sugar beets were used as substrates for the process. Emissions were 805.6 gCO2eq/m3CH4 for the traditional biogas production process combined with water scrubbing and 450.3 gCO2eq/m3CH4 for the two-stage anaerobic digestion process combined with biological upgrading. Furthermore, the analysis demonstrated that these values would be reduced by 29.5 % and 48.0 % if electrical energy were produced using only renewable energy sources.
Collapse
Affiliation(s)
- Giovanni Ferrari
- Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020, Legnaro, PD, Italy
| | - Elena Holl
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany
| | - Jörg Steinbrenner
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany
| | - Andrea Pezzuolo
- Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020, Legnaro, PD, Italy.
| | - Andreas Lemmer
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany
| |
Collapse
|
41
|
Wang S, Wang X, Fessler M, Jin B, Su Y, Zhang Y. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion. WATER RESEARCH 2022; 221:118844. [PMID: 35949067 DOI: 10.1016/j.watres.2022.118844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical anaerobic digestion (BEAD) is a promising next-generation technology for simultaneous wastewater treatment and bioenergy recovery. While knowledge on the inhibitory effect of emerging pollutants, such as microplastics, on the conventional wastewater anaerobic digestion processes is increasing, the impact of microplastics on the BEAD process remains unknown. This study shows that methane production decreased by 30.71% when adding 10 mg/L polyethylene microplastics (PE-MP) to the BEAD systems. The morphology of anaerobic granular sludge, which was the biocatalysts in the BEAD, changed with microbes shedding and granule crack when PE-MP existed. Additionally, the presence of PE-MP shifted the microbial communities, leading to a lower diversity but higher richness and tight clustering. Moreover, fewer fermentative bacteria, acetogens, and hydrogenotrophic methanogens (BEAD enhanced) grew under PE-MP stress, suggesting that PE-MP had an inhibitory effect on the methanogenic pathways. Furthermore, the abundance of genes relevant to extracellular electron transfer (omcB and mtrC) and methanogens (hupL and mcrA) decreased. The electron transfer efficiency reduced with extracellular cytochrome c down and a lower electron transfer system activity. Finally, phylogenetic investigation of communities by reconstruction of unobserved states analysis predicted the decrease of key methanogenic enzymes, including EC 1.1.1.1 (Alcohol dehydrogenase), EC 1.2.99.5 (Formylmethanofuran dehydrogenase), and EC 2.8.4.1 (Coenzyme-B sulfoethylthiotransferase). Altogether, these results provide insight into the inhibition mechanism of microplastics in wastewater methane recovery and further optimisation of the BEAD process.
Collapse
Affiliation(s)
- Song Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Xueting Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
42
|
Hafuka A, Fujino S, Kimura K, Oshita K, Konakahara N, Takahashi S. In-situ biogas upgrading with H 2 addition in an anaerobic membrane bioreactor (AnMBR) digesting waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154573. [PMID: 35302028 DOI: 10.1016/j.scitotenv.2022.154573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Biological in-situ biogas upgrading is a promising approach for sustainable energy-powered technologies. This method increases the CH4 content in biogas via hydrogenotrophic methanogenesis with an external H2 supply. In this study, an anaerobic membrane bioreactor (AnMBR) was employed for in-situ biogas upgrading. The AnMBR was operated in semi-batch mode using waste activated sludge as the substrate. Pulsed H2 addition into the reactor and biogas recirculation effectively increased the CH4 content in the biogas. The addition of 4 equivalents of H2 relative to CO2 did not lead to appreciable biogas upgrading, although the acetate concentration increased significantly. When 11 equivalents of H2 were introduced, the biogas was successfully upgraded, and the CH4 content increased to 92%. The CH4 yield and CH4 production rate were 0.31 L/g-VSinput and 0.086 L/L/d, respectively. In this phase of the process, H2 addition increased the acetate concentration and the pH because of CO2 depletion. Compared with a continuously-stirred tank reactor, the AnMBR system attained higher CH4 content, even without the addition of H2. The longer solid retention time (100 d) in the AnMBR led to greater degradation of volatile solids. Severe membrane fouling was not observed, and the transmembrane pressure remained stable under 10 kPa for 117 d of continuous filtration without cleaning of the membrane. The AnMBR could be a promising reactor configuration to achieve in-situ biogas upgrading during sludge digestion.
Collapse
Affiliation(s)
- Akira Hafuka
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan.
| | - Sota Fujino
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura C1-3, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Naoya Konakahara
- Technology Center, Takuma Co., Ltd., 2-2-33 Kinrakuji-cho, Amagasaki 660-0806, Japan
| | - Shigetoshi Takahashi
- Technology Center, Takuma Co., Ltd., 2-2-33 Kinrakuji-cho, Amagasaki 660-0806, Japan
| |
Collapse
|
43
|
Abstract
This paper takes the centralized biogas production project in the energy utilization of straw as a hypothetical item in investigation to discuss the straw collection mode based on the wishes of farmers. Through surveys of farmers in Shandong and Hebei provinces, under the current straw collection price, we found that 85% of farmers have the willingness to actively collect and transport straw, and the longest distance for active transportation is 3.22 km. The willingness of farmers to actively transport is not only affected by personal characteristics, family characteristics, and current energy consumption habits, but also the characteristics of behavioral intervention variables such as knowledge, attitude, and practice of environmental protection also significantly affect the distance of farmers’ active transportation. The behavioral intervention variables of these non-economic factors can be interfered and improved through multiple conventional propaganda tools. Therefore, it is necessary to establish a collection and storage point construction model based on the willingness of farmers to realize the transformation of the straw collection model from passive to active. This method also has an important reference value for most straw energy utilization projects. It will have an important impact on the planning, design, and operation of the project.
Collapse
|
44
|
Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes (Basel) 2022. [DOI: 10.3390/pr10061202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The United Kingdom (UK) has a decarbonisation strategy that includes energy from both hydrogen and biomethane. The latter comes from the growing anaerobic digestion (AD) market, which in 2020 produced 23.3 TWh of energy in the form of biogas. According to the strategy, this must be upgraded to biomethane by removal of carbon dioxide (CO2): a goal that could also be fulfilled through CO2 biomethanisation, alleviating the need for carbon capture and storage. Results are presented from a survey of publicly available datasets coupled with modelling to identify potential scale and knowledge gaps. Literature data were used to estimate maximum biomethane concentrations by feedstock type: these ranged from 79% for food wastes to 93% for livestock manures. Data from various government sources were used to estimate the overall potential for CO2 biomethanisation with current AD infrastructure. Values for the uplift in biomethane production ranged from 57% to 61%, but the need for more consistent data collection methodologies was highlighted. On average, however, if CO2 biomethanisation was applied in all currently operating UK AD plants an energy production uplift of 12,954 GWh could be achieved based on 2020 figures. This is sufficient to justify the inclusion of CO2 biomethanisation in decarbonisation strategies, in the UK and worldwide.
Collapse
|
45
|
Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland. ENERGIES 2022. [DOI: 10.3390/en15093392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The importance of developing efficient and environmentally friendly means of biomass conversion into bioenergy, biofuels, and valuable products is currently high in Poland. Accordingly, herein, two new energy and biofuel units are proposed, namely, POLpec and POLbp, which are used as reference sources for comparing energy consumption and biofuel production in other countries or regions in the world. One POLpec equals 4400 PJ (195.1 Mtoe), reflecting the annual primary energy consumption of Poland in 2020. Meanwhile, one POLbp equals 42 PJ (1.0 Mtoe), referring to the annual production of biofuels in Poland in 2020. Additionally, a new import–export coefficient β is proposed in the current study, which indicates the relationship between the import and export of an energy carrier. More specifically, the potential of biomass and organic waste to be converted into energy, biofuels, and valuable products has been analysed for the rural areas of Poland. Results show that the annual biomass and organic waste potential is approximately 245 PJ (5.9 Mtoe). Finally, the concept of a biomass and organic waste refinery plant is proposed based on the locally available organic materials in rural areas. In particular, two models of biomass refinery plants are defined, namely, the Input/Output and Modular models. A four-module model is presented as a concept for building a refinery plant at the Institute of Technology and Life Sciences—National Research Institute in Poznan, Poland. The four modules include anaerobic digestion, gasification, transesterification, and alcoholic fermentation. The primary reason for combining different biomass conversion technologies is to reduce the cost of biomass products, which, currently, are more expensive than those obtained from oil and natural gas.
Collapse
|
46
|
Antukh T, Lee I, Joo S, Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front Bioeng Biotechnol 2022; 10:833482. [PMID: 35557857 PMCID: PMC9085624 DOI: 10.3389/fbioe.2022.833482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Biogas produced from anaerobic digestion consists of 55–65% methane and 35–45% carbon dioxide, with an additional 1–2% of other impurities. To utilize biogas as renewable energy, a process called biogas upgrading is required. Biogas upgrading is the separation of methane from carbon dioxide and other impurities, and is performed to increase CH4 content to more than 95%, allowing heat to be secured at the natural gas level. The profitability of existing biogas technologies strongly depends on operation and maintenance costs. Conventional biogas upgrading technologies have many issues, such as unstable high-purity methane generation and high energy consumption. However, hydrogenotrophs-based biological biogas upgrading offers an advantage of converting CO2 in biogas directly into CH4 without additional processes. Thus, biological upgrading through applying hydrogenotrophic methanogens for the biological conversion of CO2 and H2 to CH4 receives growing attention due to its simplicity and high technological potential. This review analyzes the recent advance of hydrogenotrophs-based biomethanation processes, addressing their potential impact on public acceptance of biogas plants for the promotion of biogas production.
Collapse
Affiliation(s)
| | | | - Sunghee Joo
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| | - Hyunook Kim
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| |
Collapse
|
47
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
48
|
Wang S, Xu M, Jin B, Wünsch UJ, Su Y, Zhang Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. WATER RESEARCH 2022; 211:118046. [PMID: 35030360 DOI: 10.1016/j.watres.2022.118046] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Exoelectrogenic biofilm and the associated microbial electrochemical processes have recently been intensively studied for water treatment, but their response to and interaction with polyethylene (PE) microplastics which are widespread in various aquatic environments has never been reported. Here, we investigated how and to what extent PE microplastics would affect the electrochemistry and microbiology of exoelectrogenic biofilm in both microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). When the PE microplastics concentration was increased from 0 to 75 mg/L in the MECs, an apparent decline in the maximum current density (from 1.99 to 0.74 A/m2) and abundance of electroactive bacteria (EAB) in the exoelectrogenic biofilm was noticed. While in the MFCs, the current output was not significantly influenced and the abundance of EAB lightly increased at 25 mg/L microplastics. In addition, PE microplastics restrained the viability of the exoelectrogenic biofilms in both systems, leading to a higher system electrode resistance. Moreover, the microbial community richness and the microplastics-related operational taxonomic units decreased with PE microplastics. Furthermore, the electron transfer-related genes (e.g., pilA and mtrC) and cytochrome c concentration decreased after adding microplastics. This study provides the first glimpse into the influence of PE microplastics on the exoelectrogenic biofilm with the potential mechanisms revealed at the gene level, laying a methodological foundation for the future development of efficient water treatment technologies.
Collapse
Affiliation(s)
- Song Wang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Urban J Wünsch
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
49
|
Aryal N, Zhang Y, Bajracharya S, Pant D, Chen X. Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. CHEMOSPHERE 2022; 291:132843. [PMID: 34767847 DOI: 10.1016/j.chemosphere.2021.132843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/11/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.
Collapse
Affiliation(s)
- Nabin Aryal
- Department of Microsystems, University of South-Eastern Norway, Borre, Norway.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Denmark
| | - Suman Bajracharya
- Biochemical Process Engineering Department, Luleå University of Technology, Sweden
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Xuyuan Chen
- Department of Microsystems, University of South-Eastern Norway, Borre, Norway
| |
Collapse
|
50
|
Logroño W, Nikolausz M, Harms H, Kleinsteuber S. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms 2022; 10:microorganisms10020355. [PMID: 35208809 PMCID: PMC8877471 DOI: 10.3390/microorganisms10020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Mixed or pure cultures can be used for biomethanation of hydrogen. Sodium 2-bromoethanesulfonate (BES) is an inhibitor of methanogenesis used to investigate competing reactions like homoacetogenesis in mixed cultures. To understand the effect of BES on the hydrogenotrophic metabolism in a biomethanation process, anaerobic granules from a wastewater treatment plant, a hydrogenotrophic enrichment culture, and pure cultures of Methanococcus maripaludis and Methanobacterium formicicum were incubated under H2/CO2 headspace in the presence or absence of BES, and the turnover of H2, CO2, CH4, formate and acetate was analyzed. Anaerobic granules produced the highest amount of formate after 24 h of incubation in the presence of BES. Treating the enrichment culture with BES led to the accumulation of formate. M. maripaludis produced more formate than M. formicicum when treated with BES. The non-inhibited methanogenic communities produced small amounts of formate whereas the pure cultures did not. The highest amount of acetate was produced by the anaerobic granules concomitantly with formate consumption. These results indicate that formate is an important intermediate of hydrogenotrophic metabolism accumulating upon methanogenesis inhibition.
Collapse
|