1
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Roncucci N, Mastroeni P, Salvini L, Lamponi S, Trezza A, Santucci A. Enhancing Industrial Hemp ( Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications. Int J Mol Sci 2025; 26:548. [PMID: 39859264 PMCID: PMC11765263 DOI: 10.3390/ijms26020548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. Cannabis sativa biomass, in particular, has emerged as a valuable resource within this context. This study focuses on the hydroethanolic extract of C. sativa leaves (CSE), which exhibited significant levels of phenolic compounds contributing to robust antioxidant activity. Evaluation using potassium ferricyanide, ABTS, and DPPH methods revealed potent radical scavenging activity comparable to the Trolox standard. UPLC-MS/MS profiling identified cannabinoids as the predominant secondary metabolites in CSE, with flavonoids also present in substantial quantities. This study investigated the anti-inflammatory potential of CSE on RAW 264.7 macrophages and IL-1β-stimulated C-20/A4 immortalized human chondrocytes, demonstrating protective effects without cytotoxic or mutagenic effects. Mechanistically, CSE reduced inflammation by inhibiting the MAPK and NF-κB signaling pathways. In silico approaches showed the ability of CSE's main metabolites to bind and influence MAPK and NF-κB activity, confirming in vitro evidence. Incorporating C. sativa leaf extract into a hyaluronic acid-based formulation showed biotechnological promise for treating joint inflammation. Future research should aim to elucidate the molecular mechanisms underlying these effects and explore the potential of CSE-derived compounds in mitigating osteoarthritis progression. This approach highlights the significance of utilizing annually increasing biomass waste for sustainable bioactivity and environmental impact reduction.
Collapse
Affiliation(s)
- Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Tommaso Olmastroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Neri Roncucci
- Tenuta di Mensanello, Località Mensanello, 34, 53034 Colle di Val d’Elsa, Italy;
| | - Pierfrancesco Mastroeni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
2
|
Danilov I, Vlajkov V, Šumić Z, Milić A, Horecki AT, Dujković T, Živanović N, Simin N, Lesjak M, Grahovac J. Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods 2024; 13:3224. [PMID: 39456286 PMCID: PMC11507418 DOI: 10.3390/foods13203224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit processing. Hence, the appropriate treatment strategies are of the utmost importance to minimize the environmental footprint of food industry effluents. This study aimed to investigate the valorization routes for strawberry juice production wastewater (SJPW), both in terms of nutrient recovery and a circular approach to its utilization as a medium for plant biostimulant production. The results show a low antioxidant capacity and low content of polyphenols in SJPW; however, promising results were obtained for the in vitro seed germination and tomato growth promotion when investigating a biostimulant based on Bacillus sp. BioSol021, which was cultivated using SJPW in a lab-scale bioreactor, with root and shoot length improvements of approximately 30% and 25%, respectively, compared to the control samples. The plant growth promotion (PGP) traits indicated the ability of IAA production, in a concentration of 8.55 ± 0.05 mg/L, and the enzymatic activity was evaluated as through the enzymatic activity index (EAI), achieving the following: 2.26 ± 0.04 for cellulolytic activity, 2.49 ± 0.08 for hemicellulolytic activity, 2.91 ± 0.16 for pectinolytic activity, and 1.05 ± 0.00 for proteolytic activity. This study opens a new chapter of possibilities for the development of techno-economically viable circular bioprocess solutions aimed at obtaining value-added microbial products for sustainable agriculture based on the valorization of food industry effluents thus contributing to more sustainable food production at both the agricultural and industrial levels.
Collapse
Affiliation(s)
- Ivana Danilov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Zdravko Šumić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Anita Milić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Aleksandra Tepić Horecki
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Tatjana Dujković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| | - Nemanja Živanović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Nataša Simin
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Marija Lesjak
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.Ž.); (N.S.); (M.L.)
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.D.); (Z.Š.); (A.M.); (A.T.H.); (T.D.); (J.G.)
| |
Collapse
|
3
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Scavello G, Rossi M, Mastroeni P, Nyong'a CN, Salvini L, Lamponi S, Parisi ML, Sinicropi A, Costa L, Spiga O, Trezza A, Santucci A. Exploring the Antioxidant and Anti-Inflammatory Potential of Saffron ( Crocus sativus) Tepals Extract within the Circular Bioeconomy. Antioxidants (Basel) 2024; 13:1082. [PMID: 39334741 PMCID: PMC11428576 DOI: 10.3390/antiox13091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Repurposing saffron (Crocus sativus) waste presents a sustainable strategy for generating high-value products within the bioeconomy framework. Typically, flower components are discarded after stigma harvest, resulting in significant waste-350 kg of tepals per kilogram of stigmas. This research employed a comprehensive approach, integrating bioactivity studies (in vitro and in silico) with Life Cycle Assessment (LCA) evaluations, to extract and assess bioactive compounds from C. sativus tepals sourced in Tuscany, Italy. Phytochemical characterization using UPLC-MS/MS revealed a high abundance and variety of flavonoids in the hydro-ethanolic extract (CST). The antioxidant capacity was validated through various assays, and the ability to mitigate H2O2-induced oxidative stress and enhance fermentation was demonstrated in Saccharomyces cerevisiae. This study reports that C. sativus tepals extract reduces oxidative stress and boosts ethanol fermentation in yeast, paving the way for applications in the food and biofuels sectors. Further validation in RAW 264.7 macrophages confirmed CST's significant anti-inflammatory effects, indicating its potential for pharmaceutical, cosmeceutical, and nutraceutical applications. In silico studies identified potential targets involved in antioxidant and anti-inflammatory processes, shedding light on possible interaction mechanisms with Kaempferol 3-O-sophoroside (KOS-3), the predominant compound in the extract. The integration of LCA studies highlighted the environmental benefits of this approach. Overall, this research underscores the value of using waste-derived extracts through "green" methodologies, offering a model that may provide significant advantages for further evaluations compared to traditional methodologies and supporting the circular bioeconomy.
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Giorgia Scavello
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Martina Rossi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Collins Nyaberi Nyong'a
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Maria Laura Parisi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Lorenzo Costa
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
4
|
Desnoes E, Deshaies P, Bideau B, Rubiano J. Thermoformed products from high-density polyethylene and Softwood kraft pulp. NORDIC PULP & PAPER RESEARCH JOURNAL 2024; 39:339-348. [PMID: 39211427 PMCID: PMC11350244 DOI: 10.1515/npprj-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/09/2024] [Indexed: 09/04/2024]
Abstract
Plastic recycling, waste minimization such as process outfall valorization promotes a circular economy. Herein, food trays have been produced in the moulded pulp thermoforming process. To this end, high-density polyethylene (HDPE) outfall has been dispersed in water via Poly vinyl alcohol (PVA) addition in a Northern Bleached Softwood Kraft Pulp (NBSKP) slurry. Samples physical and mechanical properties have been evaluated. With an increasing HDPE content, parts air permeability was drastically reduced to a minimum of 2.4 ± 0.8 mL min-1. In addition, water and grease hold out properties have been increased with minimum water Cobb1800 value of 10.9 ± 5.4 gm-2 and oil Cobb1800 value of 13.18 ± 6.5 gm-2. Samples with high HDPE content demonstrated hydrophobic surface with water contact angle value above 90°. HDPE melting and binding to wood pulp fibers was monitored by SEM images. Regarding the mechanical properties, HDPE induced plastic deformation with a reduced Young modulus by 17 %. Moreover, the addition of HDPE increased wet strength by 81 %. However, the produced food tray composites with high HDPE content demonstrated low repulpability index.
Collapse
Affiliation(s)
- Eric Desnoes
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Pascale Deshaies
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Benoit Bideau
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Jorge Rubiano
- Dupont inc., 461 Front Road, Kingston, ON, K7L 5A5, Canada
| |
Collapse
|
5
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
Holland C, Shapira P. Building the bioeconomy: A targeted assessment approach to identifying biobased technologies, challenges and opportunities. ENGINEERING BIOLOGY 2024; 8:1-15. [PMID: 38525250 PMCID: PMC10959757 DOI: 10.1049/enb2.12030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024] Open
Abstract
The authors explore opportunities, challenges, and strategies to translate and responsibly scale innovative biobased technologies to build more sustainable bioeconomies. The pandemic and other recent disruptions increased exposure to issues of resilience and regional imbalance, highlighting a need for production and consumption regimes centred more on local biobased resources and dispersed production. The authors review potential biobased technology strategies and identify promising and feasible options for the United Kingdom. Initial landscape and bibliometric analysis identified 50 potential existing and emerging biobased technologies, which were assessed for their ability to fulfil requirements related to biobased production, national applicability, and economic-, societal-, and environmental-benefits, leading to identification of 18 promising biobased production technologies. Further analysis and focus-group discussion with industrial, governmental, academic, agricultural, and social stakeholders, identified three technology clusters for targeted assessment, drawing on cellulose-, lignin-, and seaweed feedstocks. Case studies were developed for each cluster, addressing conversations around sustainable management, use of biomass feedstocks, and associated environmental-, social-, and economic challenges. Cases are presented with discussion of insights and implications for policy. The approach presented is put forward as a scalable assessment method that can be useful in prompting, informing, and advancing discussion and deliberation on opportunities and challenges for biobased transformations.
Collapse
Affiliation(s)
- Claire Holland
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Philip Shapira
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
- School of Public PolicyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Ramírez Rojas A, Brinkmann CK, Köbel TS, Schindler D. DuBA.flow─A Low-Cost, Long-Read Amplicon Sequencing Workflow for the Validation of Synthetic DNA Constructs. ACS Synth Biol 2024; 13:457-465. [PMID: 38295293 PMCID: PMC10877597 DOI: 10.1021/acssynbio.3c00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
Modern biological science, especially synthetic biology, relies heavily on the construction of DNA elements, often in the form of plasmids. Plasmids are used for a variety of applications, including the expression of proteins for subsequent purification, the expression of heterologous pathways for the production of valuable compounds, and the study of biological functions and mechanisms. For all applications, a critical step after the construction of a plasmid is its sequence validation. The traditional method for sequence determination is Sanger sequencing, which is limited to approximately 1000 bp per reaction. Here, we present a highly scalable in-house method for rapid validation of amplified DNA sequences using long-read Nanopore sequencing. We developed two-step amplicon and transposase strategies to provide maximum flexibility for dual barcode sequencing. We also provide an automated analysis pipeline to quickly and reliably analyze sequencing results and provide easy-to-interpret results for each sample. The user-friendly DuBA.flow start-to-finish pipeline is widely applicable. Furthermore, we show that construct validation using DuBA.flow can be performed by barcoded colony PCR amplicon sequencing, thus accelerating research.
Collapse
Affiliation(s)
- Adán
A. Ramírez Rojas
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Cedric K. Brinkmann
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Tania S. Köbel
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Schindler
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-University
Marburg, Karl-von-Frisch-Str.
14, 35032 Marburg, Germany
| |
Collapse
|
8
|
Grilli G, Cantillo T, Turner K, Erazo J, Murcia López MA, Valle Parra JS, Cardona FG, Ferrini S. A decision support procedure for the bioeconomy transition: A Colombian case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120042. [PMID: 38198843 DOI: 10.1016/j.jenvman.2024.120042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
An increasing number of countries and regions consider the bioeconomy transition a strategic policy priority. When approached through the lens of a circular economy perspective, investments in bioeconomy have the potential to enhance resource utilisation efficiency, preserve biodiversity and ecosystems, and foster sustainable development with low emissions. At the same time, if requirements and contextual factors of bioeconomy strategies are not formally analysed, bioeconomic investments might lead to unintended negative consequences. This paper proposes a decision support procedure to design, assess, prioritise, and monitor bioeconomy investments and policies. The flexibility and scalability of our decision support procedure is tested in Colombia to foster a regional and local transition to bioeconomy initiatives that consider the local capital assets and the stakeholders' views. The heterogeneous character of the Colombian environment, economy, society and culture represents an ideal condition to test the strength of the decision support procedure to promote bioeconomy in low and middle-income countries. Our empirical results highlight the benefit of adopting a formal assessment framework that includes strategic national indicators, regional features and stakeholders' views. In terms of the Colombian regional bioeconomy ambitions, we highlight the need for expanding knowledge hubs and participatory stakeholder networks and buttressing appropriate financial mechanisms.
Collapse
Affiliation(s)
- Gaetano Grilli
- Norwich Business School, University of East Anglia, Norwich, United Kingdom; Centre for Social and Economic Research on the Global Environment, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.
| | | | - Kerry Turner
- Centre for Social and Economic Research on the Global Environment, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jaime Erazo
- University of Los Andes, Bogotá D.C., Colombia
| | | | | | - Felipe Garcia Cardona
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C., Colombia
| | - Silvia Ferrini
- Centre for Social and Economic Research on the Global Environment, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Department of Political and International Sciences, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Pravin R, Baskar G, Rokhum SL, Pugazhendhi A. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future. CHEMOSPHERE 2023; 339:139724. [PMID: 37541444 DOI: 10.1016/j.chemosphere.2023.139724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Marine macroalgae have attracted significant interest as a viable resource for biofuel and value-added chemical production due to their abundant availability, low production costs, and high carbohydrate and lipid content. The growing awareness of socio-economic factors worldwide has led to a greater consideration of marine macroalgae as a sustainable source for biofuel production and the generation of valuable products. The integration of biorefinery techniques into biofuel production processes holds immense potential for fostering the development of a circular bioeconomy on a broad scale. Extensive research was focused on the technoeconomic and environmental impact analysis of biofuel production from macroalgal biomass. The integrated biorefinery processes offers valuable pathways for the practical implementation of macroalgae in diverse conversion technologies. These studies provided crucial insights into the large-scale industrial production of biofuels and associated by-products. This review explores the utilization of marine macroalgal biomass for the production of biofuels and biochemicals. It examines the application of assessment tools for evaluating the sustainability of biorefinery processes, including process integration and optimization, life cycle assessment, techno-economic analysis, socio-economic analysis, and multi-criteria decision analysis. The review also discusses the limitations, bottlenecks, challenges, and future perspectives associated with utilizing macroalgal biomass for the production of biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India.
| | | | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
11
|
Kuzma J, Grieger K, Cimadori I, Cummings CL, Loschin N, Wei W. Parameters, practices, and preferences for regulatory review of emerging biotechnology products in food and agriculture. Front Bioeng Biotechnol 2023; 11:1256388. [PMID: 37840660 PMCID: PMC10569304 DOI: 10.3389/fbioe.2023.1256388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
This paper evaluates the U.S. regulatory review of three emerging biotechnology products according to parameters, practices, and endpoints of assessments that are important to stakeholders and publics. First, we present a summary of the literature on variables that are important to non-expert publics in governing biotech products, including ethical, social, policy process, and risk and benefit parameters. Second, we draw from our USDA-funded project results that surveyed stakeholders with subject matter expertise about their attitudes towards important risk, benefit, sustainability, and societal impact parameters for assessing novel agrifood technologies, including biotech. Third, we evaluate the regulatory assessments of three food and agricultural biotechnology case studies that have been reviewed under U.S. regulatory agencies and laws of the Coordinated Framework for the Regulation of Biotechnology, including gene-edited soybeans, beef cattle, and mustard greens. Evaluation of the regulatory review process was based on parameters identified in steps 1 and 2 which were deemed important to both publics and stakeholders. Based on this review, we then propose several policy options for U.S. federal agencies to strengthen their oversight processes to better align with a broader range of parameters to support sustainable agrifood products that rely on novel technologies. These policy options include 1) those that would not require new institutions or legal foundations (such as conducting Environmental Impact Statements and/or requiring a minimal level of safety data), 2) those that would require a novel institutional or cross-institutional framework (such as developing a publicly-available website and/or performing holistic sustainability assessments), and 3) those that would require the agencies to have additional legal authorities (such as requiring agencies to review biotech products according to a minimal set of health, environmental, and socio-economic parameters). Overall, the results of this analysis will be important for guiding policy practice and formulation in the regulatory assessment of emerging biotechnology products that challenge existing legal and institutional frameworks.
Collapse
Affiliation(s)
- Jennifer Kuzma
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, United States
| | - Khara Grieger
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Ilaria Cimadori
- Yale School of the Environment, Yale University, New Haven, CT, United States
| | - Christopher L. Cummings
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Engineering Research and Development Center, United States Army Corps of Engineers, Vicksburg, MS, United States
- Gene Edited Foods Project, Iowa State University, Ames, IA, United States
| | - Nick Loschin
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Wei Wei
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Hankamer B, Pregelj L, O'Kane S, Hussey K, Hine D. Delivering impactful solutions for the bioeconomy. TRENDS IN PLANT SCIENCE 2023; 28:583-596. [PMID: 36941134 DOI: 10.1016/j.tplants.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 05/22/2023]
Abstract
We are increasingly challenged to operate within our planetary boundaries, while delivering on United Nations (UN) Sustainable Development Goal (SDG) 2030 targets, and net-zero emissions by 2050. Failure to solve these challenges risks economic, social, political, climate, food, water, and fuel security. Therefore, new, scalable, and adoptable circular economy solutions are urgently required. The ability of plants to use light, capture CO2, and drive complex biochemistry is pivotal to delivering these solutions. However, harnessing this capability efficiently also requires robust accompanying economic, financial, market, and strategic analytics. A framework for this is presented here in the Commercialization Tourbillon. It supports the delivery of emerging plant biotechnologies and bio-inspired light-driven industry solutions within the critical 2030-2050 timeframe, to achieve validated economic, social, and environmental benefits.
Collapse
Affiliation(s)
- Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lisette Pregelj
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shane O'Kane
- Treble Cone Advisory Brisbane Qld, Suite 75, 12 Welsby Street, New Farm, QLD 4005, Australia
| | - Karen Hussey
- Centre for Policy Futures, Faculty of Humanities and Social Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damian Hine
- Queensland Alliance for Agriculture and Food innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Ubando AT, Chen WH, Hurt DA, Conversion A, Rajendran S, Lin SL. Biohydrogen in a circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 366:128168. [PMID: 36283666 DOI: 10.1016/j.biortech.2022.128168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen produced from biomass feedstocks is considered an effective solution in moving toward a decarbonized economy. Biohydrogen is a clean energy source that has gained global attention for adoption as it promises to mitigate climate change and human environmental damage. Through the circular economy framework, sustainable biohydrogen production with other bioproducts while addressing issues such as waste management is possible. This study presents a comprehensive review of the various biomass feedstocks and processing technologies associated with biohydrogen generation, as well as the possible integration of existing industries into a circular bioeconomy framework. The currently standing challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Dennis A Hurt
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ariel Conversion
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
15
|
Sekabira H, Nijman E, Späth L, Krütli P, Schut M, Vanlauwe B, Wilde B, Kintche K, Kantengwa S, Feyso A, Kigangu B, Six J. Circular bioeconomy in African food systems: What is the status quo? Insights from Rwanda, DRC, and Ethiopia. PLoS One 2022; 17:e0276319. [PMID: 36264999 PMCID: PMC9584527 DOI: 10.1371/journal.pone.0276319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Increasing global food insecurity amidst a growing population and diminishing production resources renders the currently dominant linear production model insufficient to combat such challenges. Hence, a circular bioeconomy (CBE) model that ensures more conservative use of resources has become essential. Specifically, a CBE model that focuses on recycling and reusing organic waste is essential to close nutrient loops and establish more resilient rural-urban nexus food systems. However, the CBE status quo in many African food systems is not established. Moreover, scientific evidence on CBE in Africa is almost inexistent, thus limiting policy guidance to achieving circular food systems. Using a sample of about 2,100 farmers and consumers from key food value chains (cassava in Rwanda, coffee in DRC, and bananas in Ethiopia), we explored existing CBE practices; awareness, knowledge, and support for CBE practices; consumers' opinions on eating foods grown on processed organic waste (CBE fertilizers), and determinants of such opinions. We analysed data in Stata, first descriptively, and then econometrically using the ordered logistic regression, whose proportional odds assumption was violated, thus resorting to the generalized ordered logistic regression. Results show that communities practice aspects of CBE, mainly composting, and are broadly aware, knowledgeable, supportive of CBE practices, and would broadly accept eating foods grown CBE fertilizers. Households with heads that used mobile phones, or whose heads were older, or married, or had a better education and agricultural incomes were more likely to strongly agree that they were knowledgeable and supportive of CBE practices and would eat CBE foods (foods grown on processed organic waste). However, the reverse was true for households that were severely food insecure or lived farther from towns. Rwandan and Ethiopian households compared to DRC were less likely to eat CB foods. Policies to stimulate CBE investments in all three countries were largely absent, and quality scientific evidence to guide their development and implementation is currently insufficient.
Collapse
Affiliation(s)
- Haruna Sekabira
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kigali, Rwanda
| | - Elke Nijman
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kigali, Rwanda
| | - Leonhard Späth
- Department of Environmental Systems Science, Sustainable Agroecosystems, ETH Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, Transdisciplinarity Lab (TdLab), ETH Zurich, Zurich, Switzerland
| | - Pius Krütli
- Department of Environmental Systems Science, Transdisciplinarity Lab (TdLab), ETH Zurich, Zurich, Switzerland
| | - Marc Schut
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kigali, Rwanda
- Knowledge, Technology and Innovation Group of Wageningen University, Wageningen, The Netherlands
| | - Bernard Vanlauwe
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Benjamin Wilde
- Department of Environmental Systems Science, Sustainable Agroecosystems, ETH Zurich, Zurich, Switzerland
| | - Kokou Kintche
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kalambo, DR Congo
| | - Speciose Kantengwa
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kigali, Rwanda
| | - Abayneh Feyso
- Department of Agribusiness and Value Chain Management, Arba Minch University, Arba Minch, Ethiopia
| | - Byamungu Kigangu
- Division of Natural Resources Management, International Institute of Tropical Agriculture, Kalambo, DR Congo
| | - Johan Six
- Department of Environmental Systems Science, Sustainable Agroecosystems, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Singh R, Paritosh K, Pareek N, Vivekanand V. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. BIORESOURCE TECHNOLOGY 2022; 360:127596. [PMID: 35809870 DOI: 10.1016/j.biortech.2022.127596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Agricultural and food waste have become major issue affecting the environment and climate owing to growing population. However, such wastes have potential to produce renewable fuels which will help to meet energy demands. Numerous valorization pathways like anaerobic digestion, pyrolysis, composting and landfilling have been employed for treating such wastes. However, it requires integrated system that could utilize waste and promote circular bioeconomy. This review explores integration of anaerobic digestion and pyrolysis for treating agricultural and food waste. Proposed system examines the production of biochar and pyro-oil by pyrolysis of digestate. The use of this biochar for stabilizing anaerobic digestion process, biogas purification and soil amendment will promote the circular bioeconomy. Kinetic models and framework of techno-economic analysis of system were discussed and knowledge gaps have been identified for future research. This system will provide sustainable approach and offer carbon capture and storage in form of biochar in soil.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Kunwar Paritosh
- Hybred Energy Solutions Private Limited, Gift City, Gandhinagar 382007, Gujarat, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
17
|
Smart and Sustainable Bioeconomy Platform: A New Approach towards Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14010466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The smart and sustainable bioeconomy represents a comprehensive perspective, in which economic, social, environmental, and technological dimensions are considered simultaneously in the planning, monitoring, evaluating, and redefining of processes and operations. In this context of profound transformation driven by rapid urbanization and digitalization, participatory and interactive strategies and practices have become fundamental to support policymakers, entrepreneurs, and citizens in the transition towards a smart and sustainable bioeconomy. This approach is applied by numerous countries around the world in order to redefine their strategy of sustainable and technology-assisted development. Specifically, real-time monitoring stations, sensors, Internet of Things (IoT), smart grids, GPS tracking systems, and Blockchain aim to develop and strengthen the quality and efficiency of the circularity of economic, social, and environmental resources. In this sense, this study proposes a systematic review of the literature of smart and sustainable bioeconomy strategies and practices implemented worldwide in order to develop a platform capable of integrating holistically the following phases: (1) planning and stakeholder management; (2) identification of social, economic, environmental, and technological dimensions; and (3) goals. The results of this analysis emphasise an innovative and under-treated perspective, further stimulating knowledge in the theoretical and managerial debate on the smart and sustainable aspects of the bioeconomy, which mainly concern the following: (a) the proactive involvement of stakeholders in planning; (b) the improvement of efficiency and quality of economic, social, environmental, and technological flows; and (c) the reinforcement of the integration between smartness and sustainability.
Collapse
|
18
|
Scarborough MJ, Lawson CE, DeCola AC, Gois IM. Microbiomes for sustainable biomanufacturing. Curr Opin Microbiol 2021; 65:8-14. [PMID: 34700205 DOI: 10.1016/j.mib.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew James Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States.
| | - Christopher Evan Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy Camille DeCola
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Ian Mateus Gois
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Loy ACM, Lim JY, How BS, Yoo CK. Blockchain as a frontier in biotechnology and bioenergy applications. Trends Biotechnol 2021; 40:255-258. [PMID: 34629171 DOI: 10.1016/j.tibtech.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023]
Abstract
The fourth Industrial Revolution is stimulating a fast-paced and resilient industrial internet of things (IIoT) ecosystem. Blockchain, a decentralized digital ledger technology, plays a crucial role in improvising, securing, and streamlining traditional biotechnology-related industrial processes with IoT and creates a sustainable nexus between social, economic, and environmental aspects.
Collapse
Affiliation(s)
- Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Juin Yau Lim
- Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Chang Kyoo Yoo
- Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
20
|
Catone CM, Ripa M, Geremia E, Ulgiati S. Bio-products from algae-based biorefinery on wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112792. [PMID: 34058450 DOI: 10.1016/j.jenvman.2021.112792] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Increasing resource demand, predicted fossil resources shortage in the near future, and environmental concerns due to the production of greenhouse gas carbon dioxide have motivated the search for alternative 'circular' pathways. Among many options, microalgae have been recently 'revised' as one of the most promising due to their high growth rate (with low land use and without competing with food crops), high tolerance to nutrients and salts stresses and their variability in biochemical composition, in so allowing the supply of a plethora of possible bio-based products such as animal feeds, chemicals and biofuels. The recent raising popularity of Circular Bio-Economy (CBE) further prompted investment in microalgae, especially in combination with wastewater treatment, under the twofold aim of allowing the production of a wide range of bio-based products while bioremediating wastewater. With the aim of discussing the potential bio-products that may be gained from microalgae grown on urban wastewater, this paper presents an overview on microalgae production with particular emphasis on the main microalgae species suitable for growth on wastewater and the obtainable bio-based products from them. By selecting and reviewing 76 articles published in Scopus between 1992 and 2020, a number of interesting aspects, including the selection of algal species suitable for growing on urban wastewater, wastewater pretreatment and algal-bacterial cooperation, were carefully reviewed and discussed in this work. In this review, particular emphasis is placed on understanding of the main mechanisms driving formation of microalgal products (such as biofuels, biogas, etc.) and how they are affected by different environmental factors in selected species. Lastly, the quantitative information gathered from the articles were used to estimate the potential benefits gained from microalgae grown on urban wastewater in Campania Region, a region sometimes criticized for poor wastewater management.
Collapse
Affiliation(s)
- C M Catone
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - M Ripa
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - E Geremia
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - S Ulgiati
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy; School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|