1
|
Sonawane JM, Chia E, Ueki T, Woodard T, Greener J, Nonnenmann SS, Yao J, Lovley DR. Sensing devices fabricated with Escherichia coli expressing genetically tunable nanowires incorporated into a water-stable polymer. Biosens Bioelectron 2025; 278:117378. [PMID: 40112522 DOI: 10.1016/j.bios.2025.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Electrically conductive, genetically tunable, pilin-based protein nanowires (ePNs) expressed in Escherichia coli grown on the biodiesel byproduct glycerol are a sustainable electronic material. They were previously shown to effectively function as sensing components for volatile analytes when deployed as thin films in electronic devices. However, thin-film devices are not suitable for analyzing components dissolved in water. To evaluate the possibility of fabricating a water-stable ePN matrix, ePNs purified from cells were mixed with polyvinyl butyral (PVB) to produce a transparent, electrically conductive, water-stable composite. ePN/PVB composite conductivity was tuned by changing the concentration of ePNs in the composite or genetically tailoring ePNs for different conductivities. Devices with an ePN/PVB sensing component rapidly responded in a linear fashion to changes in concentrations of dissolved ammonia or acetate. Genetically modifying nanowires to display an analyte-binding peptide on the ePN outer surface that was specific for ammonia or acetate increased sensing sensitivity and specificity. Composites comprised of whole cells of E. coli expressing ePNs and PVB were also electrically conductive. They functioned as sensing components whose sensitivity could also be tuned with the expression of ePNs displaying specific analyte-binding peptides. This approach avoids the laborious and time-consuming purification of protein nanowires from cells. The simplicity of sustainably fabricating an electronic sensing component with ePN-expressing E. coli mixed with a polymer, coupled with the potential of exquisitely tuning sensing specificity with facile 'plug and play' nanowire design, demonstrates the possibility of simply and inexpensively producing sensing devices for detecting a broad range of analytes.
Collapse
Affiliation(s)
- Jayesh M Sonawane
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, MA, USA
| | - Eric Chia
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Drive, Amherst, MA, 01003, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, MA, USA
| | - Trevor Woodard
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, MA, USA
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec, QC, Canada; CHU de Québec, Centre de Recherche, Université Laval, 10 Rue de L'Espinay, Québec, QC, Canada
| | - Stephen S Nonnenmann
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Drive, Amherst, MA, 01003, USA; Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA; Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, MA, USA; Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Stiefelmaier J. Cable Bacteria and Their Biotechnological Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40094968 DOI: 10.1007/10_2025_284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cable bacteria grow as multicellular filaments several centimetres deep into the sediment of freshwaters and oceans. Hereby, cable bacteria show unique characteristics such as electrogenic sulphur oxidation, extremely high conductivity and ability for CO2 fixation. This offers several possibilities of future applications in biotechnology with an outlook to sustainable processes. So far, research on cable bacteria is mostly concerning metabolism, electron transfer and effect on the surrounding sediment. Cultures are always performed on sediment from the natural habitat and in simple, small-scale reaction tubes, requiring further development for reproducible cultivation with scale-up capabilities. However, based on the known properties of cable bacteria, possible areas of application can already be derived. The use of cable bacteria in bioremediation is a promising approach, as the degradation of hydrocarbons has already been proven. Co-cultivation with plants could open up a further field of application, such as the described reduction of methane emissions from rice fields. Due to the extremely high conductivity of the filaments, cable bacteria are also very promising for incorporation into biodegradable microelectronics. By integrating electrodes into a suitable reactor system, bioelectrochemical processes could be implemented, either with the goal of electron uptake and product formation or for electricity generation.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Kalathil S, Rahaman M, Lam E, Augustin TL, Greer HF, Reisner E. Solar-Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride. Angew Chem Int Ed Engl 2024; 63:e202409192. [PMID: 39091276 DOI: 10.1002/anie.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Semi-biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c-type cytochromes (c-Cyts) and electrically conductive protein filaments (e-PFs) made of polymerized c-Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri-KN400 co-culture with a synthetic photosensitizer, carbon nitride, demonstrates that c-Cyts and e-PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long-term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi-biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions.
Collapse
Affiliation(s)
- Shafeer Kalathil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Motiar Rahaman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Teresa L Augustin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Heather F Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Zang S, Chen J, Yamauchi Y, Sharshir SW, Huang H, Yun J, Wang L, Wang C, Lin X, Melhi S, Kim M, Yuan Z. Moisture Power Generation: From Material Selection to Device Structure Optimization. ACS NANO 2024. [PMID: 39052842 DOI: 10.1021/acsnano.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Moisture power generation (MPG) technology, producing clean and sustainable energy from a humid environment, has drawn significant attention and research efforts in recent years as a means of easing the energy crisis. Despite the rapid progress, MPG technology still faces numerous challenges with the most significant one being the low power-generating performance of individual MPG devices. In this review, we introduce the background and underlying principles of MPG technology while thoroughly explaining how the selection of suitable materials (carbons, polymers, inorganic salts, etc.) and the optimization of the device structure (pore structure, moisture gradient structure, functional group gradient structure, and electrode structure) can address the existing and anticipated challenges. Furthermore, this review highlights the major scientific and engineering hurdles on the way to advancing MPG technology and offers potential insights for the development of high-performance MPG systems.
Collapse
Affiliation(s)
- Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junbo Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Swellam W Sharshir
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Chong Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangfeng Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Qi X, Gao X, Wang X, Xu P. Harnessing Pseudomonas putida in bioelectrochemical systems. Trends Biotechnol 2024; 42:877-894. [PMID: 38184440 DOI: 10.1016/j.tibtech.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Bioelectrochemical systems (BESs), a group of promising integrated systems that combine the advantages of biotechnology and electrochemical techniques, offer new opportunities to address environmental and energy challenges. Exoelectrogens capable of extracellular electron transfer (EET) are the critical factor enabling electrocatalytic activity in BESs. Pseudomonas putida, an aerobe widely used in environmental bioremediation, the biosynthesis of valuable chemicals, and energy bioproduction, has attracted much attention due to its unique application potential in BESs. This review provides a comprehensive understanding of the working principles, key factors, and applications of BESs using P. putida as the exoelectrogen. The challenges and perspectives for the development of BESs with P. putida as the exoelectrogen are also proposed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xinyu Gao
- College of Arts and Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
7
|
Lin T, Ding W, Zhang D, You Z, Yang Y, Li F, Xu D, Lovley DR, Song H. Expression of filaments of the Geobacter extracellular cytochrome OmcS in Shewanella oneidensis. Biotechnol Bioeng 2024; 121:2002-2012. [PMID: 38555482 DOI: 10.1002/bit.28702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.
Collapse
Affiliation(s)
- Tong Lin
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Wenqi Ding
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Danni Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Zixuan You
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Feng Li
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Derek R Lovley
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Hao Song
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Qi X, Cai H, Wang X, Liu R, Cai T, Wang S, Liu X, Wang X. Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates. ENGINEERING MICROBIOLOGY 2024; 4:100148. [PMID: 39629331 PMCID: PMC11610965 DOI: 10.1016/j.engmic.2024.100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 12/07/2024]
Abstract
Microbial fuel cells (MFCs) employing Pseudomonas putida B6-2 (ATCC BAA-2545) as an exoelectrogen have been developed to harness energy from various conventional substrates, such as acetate, lactate, glucose, and fructose. Owing to its metabolic versatility, P. putida B6-2 demonstrates adaptable growth rates on diverse, cost-effective carbon sources within MFCs, exhibiting distinct energy production characteristics. Notably, the anode chamber's pH rises with carboxylates' (acetate and lactate) consumption and decreases with carbohydrates' (glucose and fructose) utilization. The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m-2. Initial analysis revealed that P. putida B6-2 forms biofilms covered with nanowires, contributing to bioelectricity generation. These microbial nanowires are likely key players in direct extracellular electron transport through physical contact. This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems (BESs) utilizing P. putida as an exoelectrogen.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huangwei Cai
- Chemical Engineering Department, Columbia University, New York, NY 10027, United States
| | - Xiaolei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruijun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ting Cai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueying Liu
- Powerchina Renewable Energy Co., Ltd., Beijing, 100101, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Liu X, Gao H, Sun L, Yao J. Generic Air-Gen Effect in Nanoporous Materials for Sustainable Energy Harvesting from Air Humidity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300748. [PMID: 37144425 DOI: 10.1002/adma.202300748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Air humidity is a vast, sustainable reservoir of energy that, unlike solar and wind, is continuously available. However, previously described technologies for harvesting energy from air humidity are either not continuous or require unique material synthesis or processing, which has stymied scalability and broad deployment. Here, a generic effect for continuous energy harvesting from air humidity is reported, which can be applied to a broad range of inorganic, organic, and biological materials. The common feature of these materials is that they are engineered with appropriate nanopores to allow air water to pass through and undergo dynamic adsorption-desorption exchange at the porous interface, resulting in surface charging. The top exposed interface experiences this dynamic interaction more than the bottom sealed interface in a thin-film device structure, yielding a spontaneous and sustained charging gradient for continuous electric output. Analyses of material properties and electric outputs lead to a "leaky capacitor" model that can describe how electricity is harvested and predict current behaviors consistent with experiments. Predictions from the model guide the fabrication of devices made from heterogeneous junctions of different materials to further expand the device category. The work opens a wide door for the broad exploration of sustainable electricity from air.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hongyan Gao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lu Sun
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Yu SC, Huang TY, Lin TE. MXene Nanosheets-Decorated Paper as a Green Electronics Material for Biosensing. ACS MEASUREMENT SCIENCE AU 2024; 4:81-91. [PMID: 38404497 PMCID: PMC10885338 DOI: 10.1021/acsmeasuresciau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 02/27/2024]
Abstract
This research delves into the development and optimization of MXene nanosheet-based paper electrodes, emphasizing their adaptability in green electronics and diverse applications. Xuan paper, a cellulose-based material, was identified as an ideal substrate for its mechanical attributes and capacity to accommodate MXene, further yielding outstanding electrical conductivity. The MXene paper electrode demonstrated consistent performance under various conditions, showing its potential in the field of wearable electronics and medical devices. Notably, its impressive electrothermal capabilities and environmentally conscious decomposition mechanism make it a promising candidate for future green electronic applications. Overall, this study underscores the electrode's harmonization of performance and environmental sustainability, paving the way for its integration into futuristic electronic solutions.
Collapse
Affiliation(s)
- Shan-Chu Yu
- Institute
of Biomedical Engineering, National Yang
Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Tzu-Yen Huang
- Kaohsiung
Medical University Hospital, Kaohsiung Medical
University, 807378 Kaoshiung, Taiwan
| | - Tzu-En Lin
- Institute
of Biomedical Engineering, National Yang
Ming Chiao Tung University, 30010 Hsinchu, Taiwan
- Department
of Electrical and Computer Engineering, College of Electrical and
Computer Engineering, National Yang Ming
Chiao Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
12
|
Li F, Zhang J, Liu D, Yu H, Li C, Liu Q, Chen Z, Song H. Engineering extracellular polymer substrates biosynthesis and carbon felt-carbon nanotube hybrid electrode to promote biofilm electroactivity and bioelectricity production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166595. [PMID: 37659546 DOI: 10.1016/j.scitotenv.2023.166595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Organic-rich thin stillage is a significant by-product of the liquor brewing industry, and its direct release into the environment can cause severe water pollution. Microbial fuel cells (MFCs) offer the possibility for converting organic matters in thin stillage into clean electricity. However, limited biofilm formation and conductivity are crucial bottlenecks in restricting the power harvest of MFCs. Here, to efficiently harvest electricity power from thin stillage of liquor industry, we adopted a modular engineering strategy to increase biofilm formation and conductivity of Shewanella oneidensis via enhancing the component biosynthesis of extracellular polymer substrates (EPS) matrix, regulating intracellular c-di-GMP level, and constructing of artificial hybrid system. The results showed that the constructed CNTs@CF-EnBF2 hybrid system with low charge-transfer resistance enabled a maximum output power density of 576.77 mW/m2 in lactate-fed MFCs. Also, to evaluate the capability of harvesting electricity from actual wastewater, the CNTs@CF-EnBF2 system was employed to treat actual thin stillage, obtaining a maximum output power density of 495.86 mW/m2, 3.3-fold higher than the wild-type strain. Our research suggested that engineering and regulating EPS biosynthesis effectively promoted bioelectricity harvest, providing a green and sustainable treatment strategy for thin stillage.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zheng Chen
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Yuan J, Zhao K, Tan X, Xue R, Zeng Y, Ratti C, Trivedi P. Perspective on the development of synthetic microbial community (SynCom) biosensors. Trends Biotechnol 2023; 41:1227-1236. [PMID: 37183053 DOI: 10.1016/j.tibtech.2023.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Synthetic microbial community (SynCom) biosensors are a promising technology for detecting and responding to environmental cues and target molecules. SynCom biosensors use engineered microorganisms to create a more complex and diverse sensing system, enabling them to respond to stimuli with enhanced sensitivity and accuracy. Here, we give a definition of SynCom biosensors, outline their construction workflow, and discuss current biosensing technology. We also highlight the challenges and future for developing and optimizing SynCom biosensors and the potential applications in agriculture and food management, biotherapeutic development, home sensing, urban and environmental monitoring, and the One Health foundation. We believe SynCom biosensors could be used in a real-time and remote-controlled manner to sense the chaos of constantly dynamic environments.
Collapse
Affiliation(s)
- Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80524, USA; Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Ran Xue
- Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | - Carlo Ratti
- Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80524, USA
| |
Collapse
|
14
|
Abstract
Extracellular electron transfer (EET) is the physiological process that enables the reduction or oxidation of molecules and minerals beyond the surface of a microbial cell. The first bacteria characterized with this capability were Shewanella and Geobacter, both reported to couple their growth to the reduction of iron or manganese oxide minerals located extracellularly. A key difference between EET and nearly every other respiratory activity on Earth is the need to transfer electrons beyond the cell membrane. The past decade has resolved how well-conserved strategies conduct electrons from the inner membrane to the outer surface. However, recent data suggest a much wider and less well understood collection of mechanisms enabling electron transfer to distant acceptors. This review reflects the current state of knowledge from Shewanella and Geobacter, specifically focusing on transfer across the outer membrane and beyond-an activity that enables reduction of highly variable minerals, electrodes, and even other organisms.
Collapse
Affiliation(s)
- J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| | - D R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| |
Collapse
|
15
|
Guberman-Pfeffer MJ. Structural Determinants of Redox Conduction Favor Robustness over Tunability in Microbial Cytochrome Nanowires. J Phys Chem B 2023; 127:7148-7161. [PMID: 37552847 DOI: 10.1021/acs.jpcb.3c02912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Structural determinants of a 103-fold variation in electrical conductivity for helical homopolymers of tetra-, hexa-, and octa-heme cytochromes (named Omc- E, S, and Z, respectively) from Geobacter sulfurreducens are investigated with the Pathways model for electron tunneling, classical molecular dynamics, and hybrid quantum/classical molecular mechanics. Thermally averaged electronic couplings for through-space heme-to-heme electron transfer in the "nanowires" computed with density functional theory are ≤0.015 eV. Pathways analyses also indicate that couplings match within a factor of 5 for all "nanowires", but some alternative tunneling routes are found involving covalent protein backbone bonds (Omc- S and Z) or propionic acid-ligating His H-bonds on adjacent hemes (OmcZ). Reorganization energies computed from electrostatic vertical energy gaps or a version of the Marcus continuum expression parameterized on the total (donor + acceptor) solvent-accessible surface area typically agree within 20% and fall within the range 0.48-0.98 eV. Reaction free energies in all three "nanowires" are ≤|0.28| eV, even though Coulombic interactions primarily tune the site redox energies by 0.7-1.2 eV. Given the conserved energetic parameters, redox conductivity differs by < 103-fold among the cytochrome "nanowires". Redox currents do not exceed 3.0 × 10-3 pA at a physiologically relevant 0.1 V bias, with the slowest electron transfers being on a (μs) timescale much faster than typical (ms) enzymatic turnovers. Thus, the "nanowires" are proposed to be functionally robust to variations in structure that provide a habitat-customized protein interface. The 30 pA to 30 nA variation in conductivity previously reported from atomic force microscopy experiments is not intrinsic to the structures and/or does not result from the physiologically relevant redox conduction mechanism.
Collapse
Affiliation(s)
- Matthew J Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
16
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Lekbach Y, Ueki T, Liu X, Woodard T, Yao J, Lovley DR. Microbial nanowires with genetically modified peptide ligands to sustainably fabricate electronic sensing devices. Biosens Bioelectron 2023; 226:115147. [PMID: 36804664 DOI: 10.1016/j.bios.2023.115147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Nanowires have substantial potential as the sensor component in electronic sensing devices. However, surface functionalization of traditional nanowire and nanotube materials with short peptides that increase sensor selectivity and sensitivity requires complex chemistries with toxic reagents. In contrast, microorganisms can assemble pilin monomers into protein nanowires with intrinsic conductivity from renewable feedstocks, yielding an electronic material that is robust and stable in applications, but also biodegradable. Here we report that the sensitivity and selectivity of protein nanowire-based sensors can be modified with a simple plug and play genetic approach in which a short peptide sequence, designed to bind the analyte of interest, is incorporated into the pilin protein that is microbially assembled into nanowires. We employed a scalable Escherichia coli chassis to fabricate protein nanowires that displayed either a peptide previously demonstrated to effectively bind ammonia, or a peptide known to bind acetic acid. Sensors comprised of thin films of the nanowires amended with the ammonia-specific peptide had a ca. 100-fold greater response to ammonia than sensors made with unmodified protein nanowires. Protein nanowires with the peptide that binds acetic acid yielded a 4-fold higher response than nanowires without the peptide. The protein nanowire-based sensors had greater responses than previously reported sensors fabricated with other nanomaterials. The results demonstrate that protein nanowires with enhanced sensor response for analytes of interest can be fabricated with a flexible genetic strategy that sustainably eliminates the energy, environmental, and health concerns associated with other common nanomaterials.
Collapse
Affiliation(s)
- Yassir Lekbach
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaomeng Liu
- Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA, 01003, USA
| | - Trevor Woodard
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA, 01003, USA; Institute for Applied Life Sciences (IALS),University of Massachusetts, Amherst, MA, 01003, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA; Institute for Applied Life Sciences (IALS),University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
18
|
Fu T, Fu S, Yao J. Recent progress in bio-voltage memristors working with ultralow voltage of biological amplitude. NANOSCALE 2023; 15:4669-4681. [PMID: 36779566 DOI: 10.1039/d2nr06773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neuromorphic systems built from memristors that emulate bioelectrical information processing in the brain may overcome the limitations of traditional computing architectures. However, functional emulation alone may still not attain all the merits of bio-computation, which uses action potentials of 50-120 mV at least 10 times lower than signal amplitude in conventional electronics to achieve extraordinary power efficiency and effective functional integration. Reducing the functional voltage in memristors to this biological amplitude can thus advance neuromorphic engineering and bio-emulated integration. This review aims to provide a timely update on the effort and progress in this burgeoning research direction, covering the aspects of device material composition, performance, working mechanism, and potential application.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Shuai Fu
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Lovley DR. Response to Wang et al.: evidence contradicting the cytochrome-only model. Trends Microbiol 2023; 31:548-549. [PMID: 37005158 DOI: 10.1016/j.tim.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
|
21
|
Guberman-Pfeffer MJ. Structural Determinants of Redox Conduction Favor Robustness over Tunability in Microbial Cytochrome Nanowires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525004. [PMID: 36712098 PMCID: PMC9882360 DOI: 10.1101/2023.01.21.525004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helical homopolymers of multiheme cytochromes catalyze biogeochemically significant electron transfers with a reported 10 3 -fold variation in conductivity. Herein, classical molecular dynamics and hybrid quantum/classical molecular mechanics are used to elucidate the structural determinants of the redox potentials and conductivities of the tetra-, hexa-, and octaheme outer-membrane cytochromes E, S, and Z, respectively, from Geobacter sulfurreducens . Second-sphere electrostatic interactions acting on minimally polarized heme centers are found to regulate redox potentials over a computed 0.5-V range. However, the energetics of redox conduction are largely robust to the structural diversity: Single-step electronic couplings (⟨H mn ⟩), reaction free energies , and reorganization energies (λ mn ) are always respectively <|0.026|, <|0.26|, and between 0.5 - 1.0 eV. With these conserved parameter ranges, redox conductivity differed by less than a factor of 10 among the 'nanowires' and is sufficient to meet the demands of cellular respiration if 10 2 - 10 3 'nanowires' are expressed. The 'nanowires' are proposed to be differentiated by the protein packaging to interface with a great variety of environments, and not by conductivity, because the rate-limiting electron transfers are elsewhere in the respiratory process. Conducting-probe atomic force microscopy measurements that find conductivities 10 3 -10 6 -fold more than cellular demands are suggested to report on functionality that is either not used or not accessible under physiological conditions. The experimentally measured difference in conductivity between Omc- S and Z is suggested to not be an intrinsic feature of the CryoEM-resolved structures.
Collapse
Affiliation(s)
- Matthew J. Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT, 06510
- Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516
| |
Collapse
|
22
|
Fu T, Fu S, Sun L, Gao H, Yao J. An Effective Sneak-Path Solution Based on a Transient-Relaxation Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207133. [PMID: 36222395 DOI: 10.1002/adma.202207133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
An efficient strategy for addressing individual devices is required to unveil the full potential of memristors for high-density memory and computing applications. Existing strategies using two-terminal selectors that are preferable for compact integration have trade-offs in reduced generality or functional window. A strategy that applies to broad memristors and maintains their full-range functional window is proposed. This strategy uses a type of unipolar switch featuring a transient relaxation or retention as the selector. The unidirectional current flow in the switch suppresses the sneak-path current, whereas the transient-relaxation window is exploited for bidirectional programming. A unipolar volatile memristor with ultralow switching voltage (e.g., <100 mV), constructed from a protein nanowire dielectric harvested from Geobacter sulfurreducens, is specifically employed as the example switch to highlight the advantages and scalability in the strategy for array integration.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Shuai Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lu Sun
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hongyan Gao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
23
|
Guberman-Pfeffer MJ. Assessing Thermal Response of Redox Conduction for Anti-Arrhenius Kinetics in a Microbial Cytochrome Nanowire. J Phys Chem B 2022; 126:10083-10097. [PMID: 36417757 PMCID: PMC9743091 DOI: 10.1021/acs.jpcb.2c06822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A micrometers-long helical homopolymer of the outer-membrane cytochrome type S (OmcS) from Geobacter sulfurreducens is proposed to transport electrons to extracellular acceptors in an ancient respiratory strategy of biogeochemical and technological significance. OmcS surprisingly exhibits higher conductivity upon cooling (anti-Arrhenius kinetics), an effect previously attributed to H-bond restructuring and heme redox potential shifts. Herein, the temperature sensitivity of redox conductivity is more thoroughly examined with conventional and constant-redox and -pH molecular dynamics and quantum mechanics/molecular mechanics. A 30 K drop in temperature constituted a weak perturbation to electron transfer energetics, changing electronic couplings (⟨Hmn⟩), reaction free energies (ΔGmn), reorganization energies (λmn), and activation energies (Ea) by at most |0.002|, |0.050|, |0.120|, and |0.045| eV, respectively. Changes in ΔGmn reflected -0.07 ± 0.03 V shifts in redox potentials that were caused in roughly equal measure by altered electrostatic interactions with the solvent and protein. Changes in intraprotein H-bonding reproduced the earlier observations. Single-particle diffusion and multiparticle steady-state flux models, parametrized with Marcus theory rates, showed that biologically relevant incoherent hopping cannot qualitatively or quantitatively describe electrical conductivity measured by atomic force microscopy in filamentous OmcS. The discrepancy is attributed to differences between solution-phase simulations and solid-state measurements and the need to model intra- and intermolecular vibrations explicitly.
Collapse
Affiliation(s)
- Matthew J. Guberman-Pfeffer
- Department
of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, Connecticut06510, United States,Microbial
Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut06516, United States,
| |
Collapse
|
24
|
Turco F, Garavaglia M, Van Houdt R, Hill P, Rawson FJ, Kovacs K. Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34. ACS Synth Biol 2022; 11:3617-3628. [PMID: 36278822 PMCID: PMC9680026 DOI: 10.1021/acssynbio.2c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications. In this study, inducible and constitutive promoter libraries were built and characterized, providing the first comprehensive list of biological parts that can be used to regulate protein expression and optimize the CRISPR-Cas9 genome editing tools for this host. A single-plasmid CRISPR-Cas9 system that can be delivered by both conjugation and electroporation was developed, and its efficiency was demonstrated by successfully targeting the pyrE locus. The CRISPR-Cas9 system was next used to target candidate genes encoding type IV pili, hypothesized by us to be involved in extracellular electron transfer (EET) in this organism. Single and double deletion strains (ΔpilA, ΔpilE, and ΔpilAE) were successfully generated. Additionally, the CRISPR-Cas9 tool was validated for constructing genomic insertions (ΔpilAE::gfp and ΔpilAE::λPrgfp). Finally, as type IV pili are believed to play an important role in extracellular electron transfer to solid surfaces, C. metallidurans CH34 ΔpilAE was further studied by means of cyclic voltammetry using disposable screen-printed carbon electrodes. Under these conditions, we demonstrated that C. metallidurans CH34 could generate extracellular currents; however, no difference in the intensity of the current peaks was found in the ΔpilAE double deletion strain when compared to the wild type. This finding suggests that the deleted type IV pili candidate genes are not involved in extracellular electron transfer under these conditions. Nevertheless, these experiments revealed the presence of different redox centers likely to be involved in both mediated electron transfer (MET) and direct electron transfer (DET), the first interpretation of extracellular electron transfer mechanisms in C. metallidurans CH34.
Collapse
Affiliation(s)
- Federico Turco
- School of Pharmacy,
Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research
Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Phil Hill
- School
of Biosciences, The University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Frankie J. Rawson
- Bioelectronics Laboratory, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katalin Kovacs
- Division of Molecular Therapeutics and Formulations,
School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom,
| |
Collapse
|
25
|
Kalathil S, Miller M, Reisner E. Microbial Fermentation of Polyethylene Terephthalate (PET) Plastic Waste for the Production of Chemicals or Electricity. Angew Chem Int Ed Engl 2022; 61:e202211057. [PMID: 36103351 PMCID: PMC9828132 DOI: 10.1002/anie.202211057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Ideonella sakaiensis (I. sakaiensis) can grow on polyethylene terephthalate (PET) as the major carbon and energy source. Previous work has shown that PET conversion in the presence of oxygen released carbon dioxide and water while yielding adenosine triphosphate (ATP) through oxidative phosphorylation. This study demonstrates that I. sakaiensis is a facultative anaerobe that ferments PET to the feedstock chemicals acetate and ethanol in the absence of oxygen. In addition to PET, the pure monomer ethylene glycol (EG), the intermediate product ethanol, and the carbohydrate fermentation test substance maltose can also serve as fermenting substrates. Co-culturing of I. sakaiensis with the electrogenic and acetate-consuming Geobacter sulfurreducens produced electricity from PET or EG. This newly identified plastic fermentation process by I. sakaiensis provides thus a novel biosynthetic route to produce high-value chemicals or electricity from plastic waste streams.
Collapse
Affiliation(s)
- Shafeer Kalathil
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Melanie Miller
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
26
|
Improvement of microbial extracellular electron transfer via outer membrane cytochromes expression of engineered bacteria. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Liu X, Ueki T, Gao H, Woodard TL, Nevin KP, Fu T, Fu S, Sun L, Lovley DR, Yao J. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat Commun 2022; 13:4369. [PMID: 35902587 PMCID: PMC9334603 DOI: 10.1038/s41467-022-32105-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Hongyan Gao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Shuai Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Lu Sun
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA. .,Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
28
|
Christopher Fry H, Divan R, Liu Y. Designing 1D multiheme peptide amphiphile assemblies reminiscent of natural systems. NANOSCALE 2022; 14:10082-10090. [PMID: 35792094 DOI: 10.1039/d2nr00473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein assemblies that bind and organize ordered arrays of cofactors yield function structures. Multiheme assemblies found in nature yield electronically conductivity 1D nanoscale fibers and are employed in anaerobic respiration. To understand the fundamental characteristics of these organized arrays, the design of peptide amphiphiles that assemble into 1D nanostructures and yield metalloporphyrin binding sites is presented. One challenge with this class of peptide amphiphiles is identifying the correct sequence composition for high affinity binding with high heme density. Here, the peptide c16-AH(Kx)n-CO2H is explored to identify the impact of sequence length (n) and amino acid identity (x = L, I, or F) on binding affinity and midpoint potential. When n = 2, the peptide assembly yields the greatest affinity. The resulting nanoscale assemblies yield ordered arrays of the redox active molecule heme and have potential utility in the development of supramolecular bioelectronic materials useful in sensing as well as the development of enzymatic materials.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
29
|
Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat Microbiol 2022; 7:1291-1300. [PMID: 35798889 PMCID: PMC9357133 DOI: 10.1038/s41564-022-01159-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Electrically conductive appendages from the anaerobic bacterium Geobacter sulfurreducens were first observed two decades ago, with genetic and biochemical data suggesting that conductive fibres were type IV pili. Recently, an extracellular conductive filament of G. sulfurreducens was found to contain polymerized c-type cytochrome OmcS subunits, not pilin subunits. Here we report that G. sulfurreducens also produces a second, thinner appendage comprised of cytochrome OmcE subunits and solve its structure using cryo-electron microscopy at ~4.3 Å resolution. Although OmcE and OmcS subunits have no overall sequence or structural similarities, upon polymerization both form filaments that share a conserved haem packing arrangement in which haems are coordinated by histidines in adjacent subunits. Unlike OmcS filaments, OmcE filaments are highly glycosylated. In extracellular fractions from G. sulfurreducens, we detected type IV pili comprising PilA-N and -C chains, along with abundant B-DNA. OmcE is the second cytochrome filament to be characterized using structural and biophysical methods. We propose that there is a broad class of conductive bacterial appendages with conserved haem packing (rather than sequence homology) that enable long-distance electron transport to chemicals or other microbial cells.
Collapse
|
30
|
Bonné R, Wouters K, Lustermans JJM, Manca JV. Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Front Microbiol 2022; 13:906363. [PMID: 35794922 PMCID: PMC9252516 DOI: 10.3389/fmicb.2022.906363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
The global production of unrecycled electronic waste is extensively growing each year, urging the search for alternatives in biodegradable electronic materials. Electroactive bacteria and their nanowires have emerged as a new route toward electronic biological materials (e-biologics). Recent studies on electron transport in cable bacteria—filamentous, multicellular electroactive bacteria—showed centimeter long electron transport in an organized conductive fiber structure with high conductivities and remarkable intrinsic electrical properties. In this work we give a brief overview of the recent advances in biodegradable electronics with a focus on the use of biomaterials and electroactive bacteria, and with special attention for cable bacteria. We investigate the potential of cable bacteria in this field, as we compare the intrinsic electrical properties of cable bacteria to organic and inorganic electronic materials. Based on their intrinsic electrical properties, we show cable bacteria filaments to have great potential as for instance interconnects and transistor channels in a new generation of bioelectronics. Together with other biomaterials and electroactive bacteria they open electrifying routes toward a new generation of biodegradable electronics.
Collapse
Affiliation(s)
- Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Robin Bonné,
| | | | - Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
31
|
Lovley DR. On the Existence of Pilin-Based Microbial Nanowires. Front Microbiol 2022; 13:872610. [PMID: 35733974 PMCID: PMC9207759 DOI: 10.3389/fmicb.2022.872610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
|
32
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
33
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
34
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
35
|
Gagkayeva ZV, Gorshunov BP, Kachesov AY, Motovilov KA. Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Phys Rev E 2022; 105:044409. [PMID: 35590571 DOI: 10.1103/physreve.105.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.
Collapse
Affiliation(s)
- Z V Gagkayeva
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - B P Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - A Ye Kachesov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| |
Collapse
|
36
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Kang SY, Pokhrel A, Bratsch S, Benson JJ, Seo SO, Quin MB, Aksan A, Schmidt-Dannert C. Engineering Bacillus subtilis for the formation of a durable living biocomposite material. Nat Commun 2021; 12:7133. [PMID: 34880257 PMCID: PMC8654922 DOI: 10.1038/s41467-021-27467-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Engineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-linking of cells. B. subtilis is engineered to display SpyTags on polar flagella for cell attachment to SpyCatcher modified secreted scaffolds. We engineer endospore limited B. subtilis cells to become a structural component of the material with spores for long-term storage of genetic programming. Silica biomineralization peptides are screened and scaffolds designed for silica polymerization to fabricate biocomposite materials with enhanced mechanical properties. We show that the resulting ELM can be regenerated from a piece of cell containing silica material and that new functions can be incorporated by co-cultivation of engineered B. subtilis strains. We believe that this work will serve as a framework for the future design of resilient ELMs.
Collapse
Affiliation(s)
- Sun-Young Kang
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Anaya Pokhrel
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Sara Bratsch
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Joey J. Benson
- grid.17635.360000000419368657Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Seung-Oh Seo
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Maureen B. Quin
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Alptekin Aksan
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA ,grid.17635.360000000419368657Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN, 55455, USA. .,BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
38
|
Lozano H, Millan-Solsona R, Blanco-Cabra N, Fabregas R, Torrents E, Gomila G. Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1. NANOSCALE 2021; 13:18754-18762. [PMID: 34747424 DOI: 10.1039/d1nr04689f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shewanella oneidensis MR-1 is a metal-reducing bacterium that is able to exchange electrons with solid-phase minerals outside the cell. These bacterial cells can produce outer membrane extensions (OMEs) that are tens of nanometers wide and several microns long. The capability of these OMEs to transport electrons is currently under investigation. Tubular chemically fixed OMEs from S. oneidensis have shown good dc conducting properties when measured in an air environment. However, no direct demonstration of the conductivity of the more common bubble-like OMEs has been provided yet, due to the inherent difficulties in measuring it. In the present work, we measured the electrical properties of bubble-like OMEs in a dry air environment by Scanning Dielectric Microscopy (SDM) in force detection mode. We found that at the frequency of the measurements (∼2 kHz), OMEs show an insulating behavior, with an equivalent homogeneous dielectric constant εOME = 3.7 ± 0.7 and no dephasing between the applied ac voltage and the measured ac electric force. The dielectric constant measured for the OMEs is comparable to that obtained for insulating supramolecular protein structures (εprotein = 3-4), pointing towards a rich protein composition of the OMEs, probably coming from the periplasm. Based on the detection sensitivity of the measuring instrument, the upper limit for the ac longitudinal conductivity of bubble-like OMEs in a dry air environment has been set to σOME,ac < 10-5 S m-1, a value several orders of magnitude smaller than the dc conductivity measured in tubular chemically fixed OMEs. The lack of conductivity of bubble-like OMEs can be attributed to the relatively large separation between cytochromes in these larger OMEs and to the suppression of cytochrome mobility due to the dry environmental conditions.
Collapse
Affiliation(s)
- Helena Lozano
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
| | - Ruben Millan-Solsona
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Nuria Blanco-Cabra
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
| | - Rene Fabregas
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Gabriel Gomila
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| |
Collapse
|
39
|
Lu S, Jayaraman A. Effect of Nanorod Physical Roughness on the Aggregation and Percolation of Nanorods in Polymer Nanocomposites. ACS Macro Lett 2021; 10:1416-1422. [PMID: 35549008 DOI: 10.1021/acsmacrolett.1c00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular dynamics simulations, we elucidate the effect of nanorod roughness on nanorod aggregation, dispersion, and percolation in polymer nanocomposites (PNCs). By choosing coarse-grained models that enable systematic variation of the nanorod roughness and by selecting purely repulsive pairwise interactions for nanorods and polymer chains, we show how nanorod roughness affects the entropic driving forces for various PNC morphologies. At this entropically driven limit, we find that increasing nanorod roughness hinders nanorod aggregation and promotes nanorod percolation in the polymer melt. As nanorod roughness increases, the nanorod volume fraction needed to induce nanorod aggregation also increases. Increasing nanorod roughness increases the configurational entropy of the polymer chains and lowers the entropically induced depletion attraction between nanorods.
Collapse
Affiliation(s)
- Shizhao Lu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
40
|
Solemanifar A, Guo X, Donose BC, Bertling K, Laycock B, Rakić AD. Probing peptide nanowire conductivity by THz nanoscopy. NANOTECHNOLOGY 2021; 33:065503. [PMID: 34715680 DOI: 10.1088/1361-6528/ac34a6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have recently been invested in assessing the physical and chemical properties of microbial nanowires for their promising role in developing alternative renewable sources of electricity, bioelectronic materials and implantable sensors. One of their outstanding properties, the ever-desirable conductivity has been the focus of numerous studies. However, the lack of a straightforward and reliable method for measuring it seems to be responsible for the broad variability of the reported data. Routinely employed methods tend to underestimate or overestimate conductivity by several orders of magnitude. In this work, synthetic peptide nanowires conductivity is interrogated employing a non-destructive measurement technique developed on a terahertz scanning near-field microscope to test if peptide aromaticity leads to higher electrical conductivity. Our novel peptide conductivity measurement technique, based on triple standards calibration method, shows that in the case of two biopolymer mimicking peptides, the sample incorporating aromatic residues (W6) is about six times more conductive than the negative control (L6). To the best of our knowledge, this is the first report of a quantitative nano-scale terahertz s-SNOM investigation of peptides. These results prove the suitability of the terahertz radiation-based non-destructive approach in tandem with the designer peptides choice as model test subjects. This approach requires only simple sample preparation, avoids many of the pitfalls of typical contact-based conductivity measurement techniques and could help understanding fundamental aspects of nature's design of electron transfer in biopolymers.
Collapse
Affiliation(s)
- Armin Solemanifar
- School of Chemical Engineering, The University of Queensland, QLD 4072, Australia
| | - Xiao Guo
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia
| | - Bogdan C Donose
- School of Chemical Engineering, The University of Queensland, QLD 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia
| | - Karl Bertling
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, QLD 4072, Australia
| | - Aleksandar D Rakić
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia
| |
Collapse
|
41
|
Liu X, Walker DJF, Nonnenmann SS, Sun D, Lovley DR. Direct Observation of Electrically Conductive Pili Emanating from Geobacter sulfurreducens. mBio 2021; 12:e0220921. [PMID: 34465020 PMCID: PMC8406130 DOI: 10.1128/mbio.02209-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Geobacter sulfurreducens is a model microbe for elucidating the mechanisms for extracellular electron transfer in several biogeochemical cycles, bioelectrochemical applications, and microbial metal corrosion. Multiple lines of evidence previously suggested that electrically conductive pili (e-pili) are an essential conduit for long-range extracellular electron transport in G. sulfurreducens. However, it has recently been reported that G. sulfurreducens does not express e-pili and that filaments comprised of multi-heme c-type cytochromes are responsible for long-range electron transport. This possibility was directly investigated by examining cells, rather than filament preparations, with atomic force microscopy. Approximately 90% of the filaments emanating from wild-type cells had a diameter (3 nm) and conductance consistent with previous reports of e-pili harvested from G. sulfurreducens or heterologously expressed in Escherichia coli from the G. sulfurreducens pilin gene. The remaining 10% of filaments had a morphology consistent with filaments comprised of the c-type cytochrome OmcS. A strain expressing a modified pilin gene designed to yield poorly conductive pili expressed 90% filaments with a 3-nm diameter, but greatly reduced conductance, further indicating that the 3-nm diameter conductive filaments in the wild-type strain were e-pili. A strain in which genes for five of the most abundant outer-surface c-type cytochromes, including OmcS, were deleted yielded only 3-nm-diameter filaments with the same conductance as in the wild type. These results demonstrate that e-pili are the most abundant conductive filaments expressed by G. sulfurreducens, consistent with previous functional studies demonstrating the need for e-pili for long-range extracellular electron transfer. IMPORTANCE Electroactive microbes have significant environmental impacts, as well as applications in bioenergy and bioremediation. The composition, function, and even existence of electrically conductive pili (e-pili) has been one of the most contentious areas of investigation in electromicrobiology, in part because e-pili offer a mechanism for long-range electron transport that does not involve the metal cofactors common in much of biological electron transport. This study demonstrates that e-pili are abundant filaments emanating from Geobacter sulfurreducens, which serves as a model for long-range extracellular electron transfer in direct interspecies electron transfer, dissimilatory metal reduction, microbe-electrode exchange, and corrosion caused by direct electron uptake from Fe(0). The methods described in this study provide a simple strategy for evaluating the distribution of conductive filaments throughout the microbial world with an approach that avoids artifactual production and/or enrichment of filaments that may not be physiologically relevant.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Microbiology, University of Massachusetts—Amherst, Amherst, Massachusetts, USA
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - David J. F. Walker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Stephen S. Nonnenmann
- Institute for Applied Life Sciences, university of Massachusetts—Amherst, Amherst, Massachusetts, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts—Amherst, Amherst, Massachusetts, USA
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts—Amherst, Amherst, Massachusetts, USA
- Institute for Applied Life Sciences, university of Massachusetts—Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
42
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
43
|
Abstract
Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration. For bio-inspired neuromorphic interfaces to emulate biological signal processing and self-sustainability, the mismatch between sensing and computing signals must be addressed. Here, the authors report sensor-driven, integrated neuromorphic systems with signal matching at the biological level.
Collapse
|
44
|
Abstract
Extracellular electron transfer (EET) is an important biological process in microbial physiology as found in dissimilatory metal oxidation/reduction and interspecies electron transfer in syntrophy in natural environments. EET also plays a critical role in microorganisms relevant to environmental biotechnology in metal-contaminated areas, metal corrosion, bioelectrochemical systems, and anaerobic digesters. Geobacter species exist in a diversity of natural and artificial environments. One of the outstanding features of Geobacter species is the capability of direct EET with solid electron donors and acceptors, including metals, electrodes, and other cells. Therefore, Geobacter species are pivotal in environmental biogeochemical cycles and biotechnology applications. Geobacter sulfurreducens, a representative Geobacter species, has been studied for direct EET as a model microorganism. G. sulfurreducens employs electrically conductive pili (e-pili) and c-type cytochromes for the direct EET. The biological function and electronics applications of the e-pili have been reviewed recently, and this review focuses on the cytochromes. Geobacter species have an unusually large number of cytochromes encoded in their genomes. Unlike most other microorganisms, Geobacter species localize multiple cytochromes in each subcellular fraction, outer membrane, periplasm, and inner membrane, as well as in the extracellular space, and differentially utilize these cytochromes for EET with various electron donors and acceptors. Some of the cytochromes are functionally redundant. Thus, the EET in Geobacter is complicated. Geobacter coordinates the cytochromes with other cellular components in the elaborate EET system to flourish in the environment.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|