1
|
Hill JD, Papoutsakis ET. Understanding and harnessing the complexity of interspecies interactions in acetogenic mixotrophic co-cultures. Curr Opin Biotechnol 2025; 93:103311. [PMID: 40347685 DOI: 10.1016/j.copbio.2025.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
The core advantage of acetogens lies in their superior carbon management, achieved by engaging the Wood-Ljungdahl pathway to sequester CO₂ in situ and utilize exogenous CO₂. This advantage can be further exploited by coupling acetogens with other organisms in co-culture, leading to the increasingly explored concept of acetogenic co-cultures. We review and dissect schemes involving the co-fermentation of carbohydrates and exogenous gases, which present unique challenges and opportunities due to the nonlinearity of co-culture metabolic networks and complex, often unanticipated, interspecies interactions. The latter suggests that most, if not all, such co-cultures are mutualistic rather than commensalistic, contrary to previous assumptions. We discuss both fundamental and applied concepts, including co-culture stability and methods for quantitatively capturing population dynamics and interspecies interactions.
Collapse
Affiliation(s)
- John D Hill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
2
|
Clausen AK, Junne S. Recent advances in yeast and bacteria co-cultivation for bioprocess applications. World J Microbiol Biotechnol 2025; 41:170. [PMID: 40341666 DOI: 10.1007/s11274-025-04385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Yeast and bacteria co-cultures can be found in nature and have multiple advantages that can be exploited, nowadays also in a controlled bioproduction environment. Various types of co-cultivation have been used for food applications such as production of flavor compounds in dairy products and alcoholic beverages. Co-cultures can broaden the substrate spectrum for microbial food and feed production, they can increase productivity and efficiency, and the nutritional value. Workflows have been developed from plate to bioreactor scale to increase reproducibility and optimize benefits of individual co-cultivation strategies. Nonetheless, certain limitations need to be overcome for industrial application. Many interactions of microbes, in particular in suspension cultures, are not sufficiently understood or even explored. While more possibilities arose from on-line monitoring of individual populations or even single cells, off-line measurement techniques are still typically applied in order to assess growth and product formation. Promising advances have been achieved, however, by methods for single-cell at-line and on-line analysis in co-cultures which are accounted for to emphasize the current opportunities and challenges in monitoring and controlling co-cultures. This review aims to summarize the recent advances with a particular focus on cultivation procedures and process analysis in bacteria, yeast and bacteria-yeast co-cultures. The implementation of suitable monitoring methods to enable (remote) control and contribute to quality assurance will accelerate the development and optimization of industrial co-culture bioprocesses. This will support transferability and process standardization across world regions adding to the advancement of bioproduction. The applicability of some relevant technology is, however, in its infancy.
Collapse
Affiliation(s)
- Anne Kathrine Clausen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark
| | - Stefan Junne
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark.
| |
Collapse
|
3
|
Stratigaki M. Autofluorescence for the Visualization of Microorganisms in Biodeteriorated Materials in the Context of Cultural Heritage. Chempluschem 2024; 89:e202400170. [PMID: 39222337 DOI: 10.1002/cplu.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms, including fungi, bacteria, cyanobacteria, and algae, frequently colonize the surfaces of cultural heritage materials. These biological agents can cause biodeterioration through various mechanisms, resulting in aesthetic alteration, physical disruption, or compromise of mechanical integrity. To assess the presence and diversity of microorganisms, a combination of microscopy techniques is commonly used in conjunction with results from both culture-dependent and culture-independent methods. However, microbial populations are often underestimated. To address this issue, microorganisms can be detected by their intrinsic fluorescence, which can be observed via fluorescence microscopy. This approach facilitates the mapping of the spatial arrangement of microorganisms and the understanding of colonization patterns, thereby complementing established imaging techniques and providing insight into the interactions of microbial communities with the substrate. Given the limited research in this area, we examine the potential of microorganism autofluorescence as a molecular tool for investigating biodeterioration in artistic and architectural heritage, with a particular focus on paper and stone materials. Identifying and understanding the diverse microbiota that may be present is crucial for developing tailored and effective preventive measures and conservation treatments, as some of the species discovered may pose significant risks to both artifacts and human health.
Collapse
|
4
|
Takahashi M, Yamada R, Matsumoto T, Ogino H. Co-culture systems of microalgae and heterotrophic microorganisms: applications in bioproduction and wastewater treatment and elucidation of mutualistic interactions. World J Microbiol Biotechnol 2024; 40:368. [PMID: 39460898 DOI: 10.1007/s11274-024-04173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
In recent years, reducing the concentration of carbon dioxide in the atmosphere has become an important issue. Microalgae have a higher photosynthetic efficiency and growth rate than higher plants; thus, biological carbon dioxide fixation using microalgae is attracting particular attention as an efficient carbon dioxide fixation method. However, under dilute atmospheric conditions, microalgae exhibit lower growth rates and reduced carbon dioxide fixation efficiency. In recent years, technology that can efficiently fix carbon dioxide, even in the atmosphere, using a microalgae co-culture system that co-cultivates microalgae and heterotrophic microorganisms has attracted attention. In such a co-culture system, it is believed that a mutualistic relationship is established between microorganisms through the exchange of various compounds. This review focuses on the application of a co-culture system of microalgae and heterotrophic microorganisms for bioproduction and wastewater treatment. In addition, research to elucidate the mutualistic relationships in microalgal co-culture systems using analytical methods that have been widely used in recent years, such as next-generation sequencing technology, is also discussed. In the future, it is expected that the use of microalgae co-culture systems will expand on an industrial scale through the development of key technologies, such as efficient genetic modification techniques for microalgae and their heterotrophic microorganism partners, large-scale cultivation facilities that can efficiently cultivate microalgae, and stable control techniques for co-culture systems using advanced technology.
Collapse
Affiliation(s)
- Miiku Takahashi
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
5
|
Volnin A, Parshikov A, Tsybulko N, Mizina P, Sidelnikov N. Ergot alkaloid control in biotechnological processes and pharmaceuticals (a mini review). FRONTIERS IN TOXICOLOGY 2024; 6:1463758. [PMID: 39439532 PMCID: PMC11493748 DOI: 10.3389/ftox.2024.1463758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The control of ergot alkaloids in biotechnological processes is important in the context of obtaining new strain producers and studying the mechanisms of the biosynthesis, accumulation and secretion of alkaloids and the manufacturing of alkaloids. In pharmaceuticals, it is important to analyze the purity of raw materials, especially those capable of racemization, quality control of dosage forms and bulk drugs, stability during storage, etc. This review describes the methods used for qualitative and quantitative chemical analysis of ergot alkaloids in tablets and pharmaceutic forms, liquid cultural media and mycelia from submerged cultures of ergot and other organisms producing ergoalkaloid, sclerotias of industrial Claviceps spp. parasitic strains. We reviewed analytical approaches for the determination of ergopeptines (including their dihydro- and bromine derivatives) and semisynthetic ergot-derived medicines such as cabergoline, necergoline and pergolide, including precursors for their synthesis. Over the last few decades, strategies and approaches for the analysis of ergoalkaloids for medical use have changed, but the general principles and objectives have remained the same as before. These changes are related to the development of new genetically improved strains producing ergoalkaloids and the development of technologies for the online control of biotechnological processes and pharmaceutical manufacturing ("process analytical technologies," PAT). Overall, the industry is moving toward "smart manufacturing." The development of approaches to production cost estimation and product quality management, manufacturing management, increasing profitability and reducing the negative impact on personnel and the environment are integral components of sustainable development. Analytical approaches for the analysis of ergot alkaloids in pharmaceutical raw materials should have high enough specificity for the separation of dihydro derivatives, enantiomers and R-S epimers of alkaloids, but low values of the quantitative detection limit are less frequently needed. In terms of methodology, detection methods based on mass spectrometry have become more developed and widespread, but NMR analysis remains in demand because of its high accuracy and specificity. Both rapid methods and liquid chromatography remain in demand in routine practice, with rapid analysis evolving toward higher accuracy owing to improved analytical performance and new equipment. New composite electrochemical sensors (including disposable sensors) have demonstrated potential for real-time process control.
Collapse
Affiliation(s)
- A. Volnin
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - A. Parshikov
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - N. Tsybulko
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - P. Mizina
- Center of Chemistry and Pharmaceutical Technology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - N. Sidelnikov
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| |
Collapse
|
6
|
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol 2024; 42:1035-1047. [PMID: 38431514 PMCID: PMC11310912 DOI: 10.1016/j.tibtech.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
7
|
Boruta T, Englart G, Foryś M, Pawlikowska W. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus. Biotechnol Lett 2024; 46:601-614. [PMID: 38844646 PMCID: PMC11217084 DOI: 10.1007/s10529-024-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus. RESULTS The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the "A. terreus vs. S. rimosus" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite. CONCLUSIONS The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland.
| | - Grzegorz Englart
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Martyna Foryś
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Weronika Pawlikowska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| |
Collapse
|
8
|
Chen YC, Destouches L, Cook A, Fedorec AJH. Synthetic microbial ecology: engineering habitats for modular consortia. J Appl Microbiol 2024; 135:lxae158. [PMID: 38936824 DOI: 10.1093/jambio/lxae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Microbiomes, the complex networks of micro-organisms and the molecules through which they interact, play a crucial role in health and ecology. Over at least the past two decades, engineering biology has made significant progress, impacting the bio-based industry, health, and environmental sectors; but has only recently begun to explore the engineering of microbial ecosystems. The creation of synthetic microbial communities presents opportunities to help us understand the dynamics of wild ecosystems, learn how to manipulate and interact with existing microbiomes for therapeutic and other purposes, and to create entirely new microbial communities capable of undertaking tasks for industrial biology. Here, we describe how synthetic ecosystems can be constructed and controlled, focusing on how the available methods and interaction mechanisms facilitate the regulation of community composition and output. While experimental decisions are dictated by intended applications, the vast number of tools available suggests great opportunity for researchers to develop a diverse array of novel microbial ecosystems.
Collapse
Affiliation(s)
- Yue Casey Chen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Louie Destouches
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alice Cook
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Shi M, Evans CA, McQuillan JL, Noirel J, Pandhal J. LFQRatio: A Normalization Method to Decipher Quantitative Proteome Changes in Microbial Coculture Systems. J Proteome Res 2024; 23:999-1013. [PMID: 38354288 PMCID: PMC10913063 DOI: 10.1021/acs.jproteome.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The value of synthetic microbial communities in biotechnology is gaining traction due to their ability to undertake more complex metabolic tasks than monocultures. However, a thorough understanding of strain interactions, productivity, and stability is often required to optimize growth and scale up cultivation. Quantitative proteomics can provide valuable insights into how microbial strains adapt to changing conditions in biomanufacturing. However, current workflows and methodologies are not suitable for simple artificial coculture systems where strain ratios are dynamic. Here, we established a workflow for coculture proteomics using an exemplar system containing two members, Azotobacter vinelandii and Synechococcus elongatus. Factors affecting the quantitative accuracy of coculture proteomics were investigated, including peptide physicochemical characteristics such as molecular weight, isoelectric point, hydrophobicity, and dynamic range as well as factors relating to protein identification such as varying proteome size and shared peptides between species. Different quantification methods based on spectral counts and intensity were evaluated at the protein and cell level. We propose a new normalization method, named "LFQRatio", to reflect the relative contributions of two distinct cell types emerging from cell ratio changes during cocultivation. LFQRatio can be applied to real coculture proteomics experiments, providing accurate insights into quantitative proteome changes in each strain.
Collapse
Affiliation(s)
- Mengxun Shi
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Caroline A. Evans
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Josie L. McQuillan
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Josselin Noirel
- GBCM
Laboratory (EA7528), Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris 75003, France
| | - Jagroop Pandhal
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| |
Collapse
|
10
|
Mohanakrishna G, Pengadeth D. Mixed culture biotechnology and its versatility in dark fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2024; 394:130286. [PMID: 38176598 DOI: 10.1016/j.biortech.2023.130286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Over the years, extensive research has gone into fermentative hydrogen production using pure and mixed cultures from waste biomass with promising results. However, for up-scaling of hydrogen production mixed cultures are more appropriate to overcome the operational difficulties such as a metabolic shift in response to environmental stress, and the need for a sterile environment. Mixed culture biotechnology (MCB) is a robust and stable alternative with efficient waste and wastewater treatment capacity along with co-generation of biohydrogen and platform chemicals. Mixed culture being a diverse group of bacteria with complex metabolic functions would offer a better response to the environmental variations encountered during biohydrogen production. The development of defined mixed cultures with desired functions would help to understand the microbial community dynamics and the keystone species for improved hydrogen production. This review aims to offer an overview of the application of MCB for biohydrogen production.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India.
| | - Devu Pengadeth
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| |
Collapse
|
11
|
Feliu-Paradeda L, Puig S, Bañeras L. Design and validation of a multiplex PCR method for the simultaneous quantification of Clostridium acetobutylicum, Clostridium carboxidivorans and Clostridium cellulovorans. Sci Rep 2023; 13:20073. [PMID: 37973932 PMCID: PMC10654501 DOI: 10.1038/s41598-023-47007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Co-cultures of clostridia with distinct physiological properties have emerged as an alternative to increase the production of butanol and other added-value compounds from biomass. The optimal performance of mixed tandem cultures may depend on the stability and fitness of each species in the consortium, making the development of specific quantification methods to separate their members crucial. In this study, we developed and tested a multiplex qPCR method targeting the 16S rRNA gene for the simultaneous quantification of Clostridium acetobutylicum, Clostridium carboxidivorans and Clostridium cellulovorans in co-cultures. Designed primer pairs and probes could specifically quantify the three Clostridium species with no cross-reactions thus allowing significant changes in their growth kinetics in the consortia to be detected and correlated with productivity. The method was used to test a suitable medium composition for simultaneous growth of the three species. We show that higher alcohol productions were obtained when combining C. carboxidivorans and C. acetobutylicum compared to individual cultures, and further improved (> 90%) in the triplet consortium. Altogether, the methodology could be applied to fermentation processes targeting butanol productions from lignocellulosic feedstocks with a higher substrate conversion efficiency.
Collapse
Affiliation(s)
- Laura Feliu-Paradeda
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Carrer Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Carrer Maria Aurèlia Capmany 40, 17003, Girona, Spain.
| |
Collapse
|
12
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
13
|
Boruta T, Ścigaczewska A, Ruda A, Bizukojć M. Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of Penicillium rubens and Streptomyces rimosus. Molecules 2023; 28:6044. [PMID: 37630296 PMCID: PMC10458595 DOI: 10.3390/molecules28166044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Bioreactor cocultures involving Penicillium rubens and Streptomyces rimosus were investigated with regard to secondary metabolite production, morphological development, dissolved oxygen levels, and carbon substrate utilization. The production profiles of 22 secondary metabolites were analyzed, including penicillin G and oxytetracycline. Three inoculation approaches were tested, i.e., the simultaneous inoculation of P. rubens with S. rimosus and the inoculation of S. rimosus delayed by 24 or 48 h relative to P. rubens. The delayed inoculation of S. rimosus into the P. rubens culture did not prevent the actinomycete from proliferating and displaying its biosynthetic repertoire. Although a period of prolonged adaptation was needed, S. rimosus exhibited growth and the production of secondary metabolites regardless of the chosen delay period (24 or 48 h). This promising method of coculture initiation resulted in increased levels of metabolites tentatively identified as rimocidin B, 2-methylthio-cis-zeatin, chrysogine, benzylpenicilloic acid, and preaustinoid D relative to the values recorded for the monocultures. This study demonstrates the usefulness of the delayed inoculation approach in uncovering the metabolic landscape of filamentous microorganisms and altering the levels of secondary metabolites.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005 Lodz, Poland
| | | | | | | |
Collapse
|
14
|
Gwon DA, Seo E, Lee JW. Construction of Synthetic Microbial Consortium for Violacein Production. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Application of the Fluorescence-Activating and Absorption-Shifting Tag (FAST) for Flow Cytometry in Methanogenic Archaea. Appl Environ Microbiol 2023; 89:e0178622. [PMID: 36920214 PMCID: PMC10132111 DOI: 10.1128/aem.01786-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Methane-producing archaea play a crucial role in the global carbon cycle and are used for biotechnological fuel production. Methanogenic model organisms such as Methanococcus maripaludis and Methanosarcina acetivorans have been biochemically characterized and can be genetically engineered by using a variety of existing molecular tools. The anaerobic lifestyle and autofluorescence of methanogens, however, restrict the use of common fluorescent reporter proteins (e.g., GFP and derivatives), which require oxygen for chromophore maturation. Recently, the use of a novel oxygen-independent fluorescent activation and absorption-shifting tag (FAST) was demonstrated with M. maripaludis. Similarly, we now describe the use of the tandem activation and absorption-shifting tag protein 2 (tdFAST2), which fluoresces when the cell-permeable fluorescent ligand (fluorogen) 4-hydroxy-3,5-dimethoxybenzylidene rhodanine (HBR-3,5DOM) is present. Expression of tdFAST2 in M. acetivorans and M. maripaludis is noncytotoxic and tdFAST2:HBR-3,5DOM fluorescence is clearly distinguishable from the autofluorescence. In flow cytometry experiments, mixed methanogen cultures can be distinguished, thereby allowing for the possibility of high-throughput investigations of the characteristic dynamics within single and mixed cultures. IMPORTANCE Methane-producing archaea play an essential role in the global carbon cycle and demonstrate great potential for various biotechnological applications, e.g., biofuel production, carbon dioxide capture, and electrochemical systems. Oxygen sensitivity and high autofluorescence hinder the use of common fluorescent proteins for studying methanogens. By using tdFAST2:HBR-3,5DOM fluorescence, which functions under anaerobic conditions and is distinguishable from the autofluorescence, real-time reporter studies and high-throughput investigation of the mixed culture dynamics of methanogens via flow cytometry were made possible. This will further help accelerate the sustainable exploitation of methanogens.
Collapse
|
16
|
Portius M, Danneberg C, Pompe T. Biomaterial approaches for engineering and analyzing structure and metabolic states of microbial consortia within biofilms. Curr Opin Biotechnol 2023; 81:102916. [PMID: 36870250 DOI: 10.1016/j.copbio.2023.102916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023]
Abstract
Microbial consortia within biofilms are frequently found in structured organization in nature and are thought to bear great potential for productive biotechnological applications, such as the degradation of complex substrates, biosensing, or the production of chemical compounds. However, in-depth understanding of their organizational principles, as well as comprehensive design criteria of structured microbial consortia for industrial applications are still limited. It is hypothesized that biomaterial engineering of such consortia within scaffolds can advance the field by providing defined in vitro mimics of naturally occurring and industrially applicable biofilms. Such systems will allow for adjustment of important microenvironmental parameters and in-depth analysis with high temporal and spatial resolution. In this review, we provide the background of biomaterial engineering of structured biofilm consortia, show approaches for their design, and demonstrate tools to analyze their metabolic state.
Collapse
Affiliation(s)
- Matthias Portius
- Institute of Biochemistry, Leipzig University, Germany; Research and Transfer Center for Bioactive Matter, bioACTmatter, Leipzig University, Germany
| | | | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Germany; Research and Transfer Center for Bioactive Matter, bioACTmatter, Leipzig University, Germany.
| |
Collapse
|
17
|
Gao R, Zhang H, Xiong L, Li H, Chen X, Wang M, Chen X. Fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate: Impacts of the mixed strains fermentation. J Biotechnol 2023; 366:10-18. [PMID: 36868409 DOI: 10.1016/j.jbiotec.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
This present study mainly focused on the investigation and optimization of the fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate (EUOH), which contains abundant and diverse sugars. More importantly, the impacts of the mixed strains fermentation compared with the single strain fermentation were analyzed and evaluated, through systematic investigations of substrate metabolism, cell growth, polysaccharide and lipid production, COD and ammonia-nitrogen removals. It was found that the mixed strains fermentation could effectively promote a more comprehensive and thorough utilization of the various sugars in EUOH, greatly improve COD removal effect, biomass and yeast polysaccharide production, but could not significantly improve the overall lipid content and ammonia nitrogen removal effect. In this study, when the two strains with the highest lipid content (i.e. L. starkeyi and R. toruloides) were mixed-cultured, the maximum lipid yield of 3.82 g/L was achieved, and the yeast polysaccharide yield, COD and ammonia-nitrogen removal rates of the fermentation (LS+RT) were 1.64 g/L, 67.4% and 74.9% respectively. When the strain with the highest polysaccharide content (i.e. R. toruloides) was mixed-cultured with the strains with strong growth activity (i.e. T. cutaneum and T. dermatis), a large amount of yeast polysaccharides could be obtained, which were 2.33 g/L (RT+TC) and 2.38 g/L (RT+TD) respectively. And the lipid yield, COD and ammonia-nitrogen removal rates of the fermentation (RT+TC), (RT+TD) were 3.09 g/L, 77.7%, 81.4% and 2.54 g/L, 74.9%, 80.4%, respectively.
Collapse
Affiliation(s)
- Ruiling Gao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Mengkun Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
18
|
Mittermeier F, Bäumler M, Arulrajah P, García Lima JDJ, Hauke S, Stock A, Weuster‐Botz D. Artificial microbial consortia for bioproduction processes. Eng Life Sci 2023; 23:e2100152. [PMID: 36619879 PMCID: PMC9815086 DOI: 10.1002/elsc.202100152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Miriam Bäumler
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Prasika Arulrajah
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | | | - Sebastian Hauke
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna Stock
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
19
|
Palacio‐Barrera AM, Schlembach I, Finger M, Büchs J, Rosenbaum MA. Reliable online measurement of population dynamics for filamentous co-cultures. Microb Biotechnol 2022; 15:2773-2785. [PMID: 35972427 PMCID: PMC9618322 DOI: 10.1111/1751-7915.14129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding population dynamics is a key factor for optimizing co-culture processes to produce valuable compounds. However, the measurement of independent population dynamics is difficult, especially for filamentous organisms and in presence of insoluble substrates like cellulose. We propose a workflow for fluorescence-based online monitoring of individual population dynamics of two filamentous microorganisms. The fluorescent tagged target co-culture is composed of the cellulolytic fungus Trichoderma reesei RUT-C30-mCherry and the pigment-producing bacterium Streptomyces coelicolor A3(2)-mNeonGreen (mNG) growing on insoluble cellulose as a substrate. To validate the system, the fluorescence-to-biomass and fluorescence-to-scattered-light correlation of the two strains was characterized in depth under various conditions. Thereby, especially for complex filamentous microorganisms, microbial morphologies have to be considered. Another bias can arise from autofluorescence or pigments that can spectrally interfere with the fluorescence measurement. Green autofluorescence of both strains was uncoupled from different green fluorescent protein signals through a spectral unmixing approach, resulting in a specific signal only linked to the abundance of S. coelicolor A3(2)-mNG. As proof of principle, the population dynamics of the target co-culture were measured at varying inoculation ratios in presence of insoluble cellulose particles. Thereby, the respective fluorescence signals reliably described the abundance of each partner, according to the variations in the inocula. With this method, conditions can be fine-tuned for optimal growth of both partners along with natural product formation by the bacterium.
Collapse
Affiliation(s)
- Ana M. Palacio‐Barrera
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| | - Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| | - Maurice Finger
- RWTH Aachen UniversityAVT—Biochemical EngineeringAachenGermany
| | - Jochen Büchs
- RWTH Aachen UniversityAVT—Biochemical EngineeringAachenGermany
| | - Miriam A. Rosenbaum
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
20
|
Finger M, Palacio‐Barrera AM, Richter P, Schlembach I, Büchs J, Rosenbaum MA. Tunable population dynamics in a synthetic filamentous coculture. Microbiologyopen 2022; 11:e1324. [PMID: 36314761 PMCID: PMC9531331 DOI: 10.1002/mbo3.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial cocultures are used as a tool to stimulate natural product biosynthesis. However, studies often empirically combine different organisms without a deeper understanding of the population dynamics. As filamentous organisms offer a vast metabolic diversity, we developed a model filamentous coculture of the cellulolytic fungus Trichoderma reesei RUT-C30 and the noncellulolytic bacterium Streptomyces coelicolor A3(2). The coculture was set up to use α-cellulose as a carbon source. This established a dependency of S. coelicolor on hydrolysate sugars released by T. reesei cellulases. To provide detailed insight into coculture dynamics, we applied high-throughput online monitoring of the respiration rate and fluorescence of the tagged strains. The respiration rate allowed us to distinguish the conditions of successful cellulase formation. Furthermore, to dissect the individual strain contributions, T. reesei and S. coelicolor were tagged with mCherry and mNeonGreen (mNG) fluorescence proteins, respectively. When evaluating varying inoculation ratios, it was observed that both partners outcompete the other when given a high inoculation advantage. Nonetheless, adequate proportions for simultaneous growth of both partners, cellulase, and pigment production could be determined. Finally, population dynamics were also tuned by modulating abiotic factors. Increased osmolality provided a growth advantage to S. coelicolor. In contrast, an increase in shaking frequency had a negative effect on S. coelicolor biomass formation, promoting T. reesei. This comprehensive analysis fills important knowledge gaps in the control of complex cocultures and accelerates the setup of other tailor-made coculture bioprocesses.
Collapse
Affiliation(s)
- Maurice Finger
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Ana M. Palacio‐Barrera
- Faculty of Biological SciencesFriedrich‐Schiller‐UniversityJenaGermany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans‐Knöll‐InstituteJenaGermany
| | - Paul Richter
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Ivan Schlembach
- Faculty of Biological SciencesFriedrich‐Schiller‐UniversityJenaGermany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans‐Knöll‐InstituteJenaGermany
| | - Jochen Büchs
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Miriam A. Rosenbaum
- Faculty of Biological SciencesFriedrich‐Schiller‐UniversityJenaGermany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans‐Knöll‐InstituteJenaGermany
| |
Collapse
|
21
|
Boruta T, Ścigaczewska A, Bizukojć M. Production of secondary metabolites in stirred tank bioreactor co-cultures of Streptomyces noursei and Aspergillus terreus. Front Bioeng Biotechnol 2022; 10:1011220. [PMID: 36246390 PMCID: PMC9557299 DOI: 10.3389/fbioe.2022.1011220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The focus of the study was to characterize the bioprocess kinetics and secondary metabolites production in the novel microbial co-cultivation system involving Streptomyces noursei ATCC 11455 (the producer of an antifungal substance known as nystatin) and Aspergillus terreus ATCC 20542 (the source of lovastatin, a cholesterol-lowering drug). The investigated “A. terreus vs. S. noursei” stirred tank bioreactor co-cultures allowed for the concurrent development and observable biosynthetic activity of both species. In total, the production profiles of 50 secondary metabolites were monitored over the course of the study. The co-cultures were found to be effective in terms of enhancing the biosynthesis of several metabolic products, including mevinolinic acid, an acidic form of lovastatin. This work provided a methodological example of assessing the activity of a given strain in the co-culture by using the substrates which can be metabolized exclusively by this strain. Since S. noursei was shown to be incapable of lactose utilization, the observed changes in lactose levels were attributed to A. terreus and thus confirmed its viability. The study was complemented with the comparative microscopic observations of filamentous morphologies exhibited in the co-cultures and corresponding monocultures.
Collapse
|
22
|
Kufs JE, Reimer C, Stallforth P, Hillmann F, Regestein L. The potential of amoeba-based processes for natural product syntheses. Curr Opin Biotechnol 2022; 77:102766. [PMID: 35944344 DOI: 10.1016/j.copbio.2022.102766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Stallforth
- Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
23
|
Heins A, Hoang MD, Weuster‐Botz D. Advances in automated real-time flow cytometry for monitoring of bioreactor processes. Eng Life Sci 2022; 22:260-278. [PMID: 35382548 PMCID: PMC8961054 DOI: 10.1002/elsc.202100082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Flow cytometry and its technological possibilities have greatly advanced in the past decade as analysis tool for single cell properties and population distributions of different cell types in bioreactors. Along the way, some solutions for automated real-time flow cytometry (ART-FCM) were developed for monitoring of bioreactor processes without operator interference over extended periods with variable sampling frequency. However, there is still great potential for ART-FCM to evolve and possibly become a standard application in bioprocess monitoring and process control. This review first addresses different components of an ART-FCM, including the sampling device, the sample-processing unit, the unit for sample delivery to the flow cytometer and the settings for measurement of pre-processed samples. Also, available algorithms are presented for automated data analysis of multi-parameter fluorescence datasets derived from ART-FCM experiments. Furthermore, challenges are discussed for integration of fluorescence-activated cell sorting into an ART-FCM setup for isolation and separation of interesting subpopulations that can be further characterized by for instance omics-methods. As the application of ART-FCM is especially of interest for bioreactor process monitoring, including investigation of population heterogeneity and automated process control, a summary of already existing setups for these purposes is given. Additionally, the general future potential of ART-FCM is addressed.
Collapse
Affiliation(s)
- Anna‐Lena Heins
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Manh Dat Hoang
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
24
|
Rathore AS, Mishra S, Nikita S, Priyanka P. Bioprocess Control: Current Progress and Future Perspectives. Life (Basel) 2021; 11:life11060557. [PMID: 34199245 PMCID: PMC8231968 DOI: 10.3390/life11060557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Typical bioprocess comprises of different unit operations wherein a near optimal environment is required for cells to grow, divide, and synthesize the desired product. However, bioprocess control caters to unique challenges that arise due to non-linearity, variability, and complexity of biotech processes. This article presents a review of modern control strategies employed in bioprocessing. Conventional control strategies (open loop, closed loop) along with modern control schemes such as fuzzy logic, model predictive control, adaptive control and neural network-based control are illustrated, and their effectiveness is highlighted. Furthermore, it is elucidated that bioprocess control is more than just automation, and includes aspects such as system architecture, software applications, hardware, and interfaces, all of which are optimized and compiled as per demand. This needs to be accomplished while keeping process requirement, production cost, market value of product, regulatory constraints, and data acquisition requirements in our purview. This article aims to offer an overview of the current best practices in bioprocess control, monitoring, and automation.
Collapse
|