1
|
Xin J, Zhang H, Li Y, Dai Y, Chen X, Zou J, Wang R, Liu Z, Wang B. Effect of cold atmospheric plasma on common oral pathogenic microorganisms: a narrative review. Ann Med 2025; 57:2457518. [PMID: 39865862 PMCID: PMC11774187 DOI: 10.1080/07853890.2025.2457518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important. Cold atmospheric plasma (CAP), as the fourth state of matter, has gradually become a hot topic in the field of biomedicine due to its good antibacterial, anti-inflammatory, and anti-tumor capabilities. It is expected to become a major asset in the regulation of oral microbiota. METHODS We conducted a search in PubMed, Medline, and Wiley databases, focusing on studies related to CAP and oral pathogenic microorganisms. We explored the biological effects of CAP and summarized the antimicrobial mechanisms behind it. RESULTS Numerous articles have shown that CAP has a potent antimicrobial effect against common oral pathogens, including bacteria, fungi, and viruses, primarily due to the synergy of various factors, especially reactive oxygen and nitrogen species. CONCLUSIONS CAP is effective against various oral pathogenic microorganisms, and it is anticipated to offer a new approach to treating oral infectious diseases. The future objective is to precisely adjust the parameters of CAP to ensure safety and efficacy, and subsequently develop a comprehensive CAP treatment protocol. Achieving this objective is crucial for the clinical application of CAP, and further research is necessary.
Collapse
Affiliation(s)
- Jiajun Xin
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Hao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yushen Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yifei Dai
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Xiantao Chen
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiatong Zou
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Rui Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Bowei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Akizuki M, Murakami K, Sekine K, Murakami A, Kobayashi K, Matsuda M, Matsumoto H, Harata E, Hamada K, Enggardipta RA, Fujii H, Yumoto H. Hydrophobic 2-methacryloyloxyethyl phosphorylcholine polymer inhibits peri-implantitis-causing bacterial adhesion on titanium materials. J Appl Microbiol 2025; 136:lxaf033. [PMID: 39963719 DOI: 10.1093/jambio/lxaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
AIMS To prevent peri-implantitis, we investigated the adhesion of periodontopathogenic bacteria to titanium surfaces using a hydrophobic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer to inhibit adhesion. METHOD AND RESULTS We immersed titanium plates (TiPs) coated with a hydrophobic MPC polymer in a bacterial suspension for 30 min or 24 h and measured the number of adherent bacteria. Bacteria adhering to the TiPs were observed using scanning electron microscopy (SEM). Furthermore, mimicking an oral cavity, TiPs coated with MPC polymer and saliva, were immersed in bacterial suspensions of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans for 24 h, and adenosine triphosphate in the adherent bacteria was measured.Bacterial adhesion was significantly inhibited on MPC polymer-coated TiPs after 30 min and 24 h. SEM results showed a similar trend. Bacterial adhesion was significantly inhibited on MPC polymer-treated TiPs in the presence of saliva, both before and after MPC treatment. Furthermore, their effectiveness was maintained when the MPC polymer-treated TiPs were stored in saline for 1 week. CONCLUSIONS Hydrophobic MPC polymer coating on TiP surface inhibited bacterial adhesion, indicating that it may be effective in preventing peri-implantitis.
Collapse
Affiliation(s)
- Minato Akizuki
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Keiji Murakami
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Akikazu Murakami
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Koh Kobayashi
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Masaru Matsuda
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Haruka Matsumoto
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Eiji Harata
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Raras Ajeng Enggardipta
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Hideki Fujii
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
- Department of Biology, Keio University School of Medicine, Yokohama 223-8521, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| |
Collapse
|
3
|
Won D, Lee H, Park Y, Chae M, Kim Y, Lim B, Kang M, Ok M, Jung H, Park J. Dual-Layer Nanoengineered Urinary Catheters for Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. Adv Healthc Mater 2024; 13:e2401700. [PMID: 39036863 PMCID: PMC11650527 DOI: 10.1002/adhm.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection; however, current therapeutic strategies remain insufficient for standard clinical application. A novel urinary catheter featuring a dual-layer nanoengineering approach using zinc (Zn) and silver nanoparticles (AgNPs) is successfully fabricated. This design targets microbial resistance, minimizes cytotoxicity, and maintains long-term efficacy. The inner AgNPs layer provides immediate antibacterial effects against the UTI pathogens, while the outer porous Zn layer controls zero-order Ag release and generates reactive oxygen species, thus enhancing long-term bactericidal performance. Enhanced antibacterial properties of Zn/AgNPs-coated catheters are observed, resulting in 99.9% of E. coli and 99.7% of S. aureus reduction, respectively. The Zn/AgNPs-coated catheter significantly suppresses biofilm with sludge formation compared to AgNP-coated and uncoated catheters (all, p < 0.05). The Zn/AgNP-coated catheter in a rabbit model demonstrated a durable, effective barrier against bacterial colonization, maintaining antimicrobial properties during the catheter indwelling period with significantly reduced inflammation and epithelial disruption compared with AgNP and uncoated groups. This innovation has the potential to revolutionize the design of antimicrobial medical devices, particularly for applications requiring long-term implantation. Although further preclinical studies are required to verify its efficacy and safety, this strategy seems to be a promising approach to preventing CAUTI-related complications.
Collapse
Affiliation(s)
- Dong‐Sung Won
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Hyun Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheonGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Minjung Chae
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringSeoul National University (SNU)Seoul08826Republic of Korea
| | - Yu‐Chan Kim
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology KIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Bumjin Lim
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Min‐Ho Kang
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheonGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Myoung‐Ryul Ok
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology KIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Hyun‐Do Jung
- Division of Materials Science and EngineeringHanyang UniversitySeongdong‐guSeoul04763Republic of Korea
| | - Jung‐Hoon Park
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| |
Collapse
|
4
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Gerchman D, Acunha Ferrari PH, Baranov O, Levchenko I, Takimi AS, Bazaka K. One-step rapid formation of wrinkled fractal antibiofouling coatings from environmentally friendly, waste-derived terpenes. J Colloid Interface Sci 2024; 668:319-334. [PMID: 38678887 DOI: 10.1016/j.jcis.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Wrinkled coatings are a potential drug-free method for mitigating bacterial attachment and biofilm formation on materials such as medical and food grade steel. However, their fabrication typically requires multiple steps and often the use of a stimulus to induce wrinkle formation. Here, we report a facile plasma-based method for rapid fabrication of thin (<250 nm) polymer coatings from a single environmentally friendly precursor, where wrinkle formation and fractal pattern development are controlled solely by varying the deposition time from 3 s to 60 s. We propose a mechanism behind the observed in situ development of wrinkles in plasma, as well as demonstrate how introducing specific topographical features on the surface of the substrata can result int the formation of even more complex, ordered wrinkle patterns arising from the non-uniformity of plasma when in contact with structured surfaces. Thus-fabricated wrinkled surfaces show good adhesion to substrate and an antifouling activity that is not observed in the equivalent smooth coatings and hence is attributed to the specific pattern of wrinkles.
Collapse
Affiliation(s)
- Daniel Gerchman
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine; Department of Gaseous Electronics, Jožef Stefan Institute, Ljubljana 1000, Slovenia, EU
| | - Igor Levchenko
- Plasma Sources and Application Center, NIE, Nanyang Technological University, Singapore 639798, Singapore.
| | | | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Shi Y, Tao X, Du P, Pasic P, Esser L, Chen HY, Thissen H, Wang PY. A surface-independent bioglue using photo-crosslinkable benzophenone moiety. RSC Adv 2024; 14:12966-12976. [PMID: 38655476 PMCID: PMC11036370 DOI: 10.1039/d4ra01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Surface coating technology is broadly demanded across various fields, including marine and biomedical materials; therefore, a facile and versatile approach is desired. This study proposed an attractive surface coating strategy using photo-crosslinkable benzophenone (BP) moiety for biomaterials application. BP-containing "bioglue" polymer can effectively crosslink with all kinds of surfaces and biomolecules. Upon exposure to ultraviolet (UV) light, free radical reaction from the BP glue facilitates the immobilization of diverse molecules onto different substrates in a straightforward and user-friendly manner. Through either one-step, mixing the bioglue with targeted biomolecules, or two-step methods, pre-coating the bioglue and then adding targeted biomolecules, polyacrylic acid (PAA), cyclic RGD-containing peptides, and proteins (gelatin, collagen, and fibronectin) were successfully immobilized on substrates. After drying the bioglue, targeted biomolecules can still be immobilized on the surfaces preserving their bioactivity. Cell culture on biomolecule-immobilized surfaces using NIH 3T3 fibroblasts and human bone marrow stem cells (hBMSCs) showed significant improvement of cell adhesion and activity compared to the unmodified control in serum-free media after 24 hours. Furthermore, hBMSCs on the fibronectin-immobilized surface showed an increased calcium deposition after 21 days of osteogenic differentiation, suggesting that the immobilized fibronectin is highly bioactive. Given the straightforward protocol and substrate-independent bioglue, the proposed coating strategy is promising in broad-range fields.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Paul Pasic
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Lars Esser
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan
| | - Helmut Thissen
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| |
Collapse
|
8
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Cheng CH, Zeng XZ, Chiu WY, Lin JC. A Facile Surface Modification Scheme for Medical-Grade Titanium and Polypropylene Using a Novel Mussel-Inspired Biomimetic Polymer with Cationic Quaternary Ammonium Functionalities for Antibacterial Application. Polymers (Basel) 2024; 16:503. [PMID: 38399881 PMCID: PMC10893476 DOI: 10.3390/polym16040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Medical device-associated infection remains a critical problem in the healthcare setting. Different clinical- or device-related methods have been attempted to reduce the infection rate. Among these approaches, creating a surface with bactericidal cationic functionality has been proposed. To do so, a sophisticated multi-step chemical procedure would be needed. Instead, a simple immersion approach was utilized in this investigation to render the titanium and polypropylene surface with the quaternary ammonium functionality by using a mussel-inspired novel lab-synthesized biomimetic catechol-terminated polymer, PQA-C8. The chemical oxidants, CuSO4/H2O2, as well as dopamine, were added into the novel PQA-C8 polymer immersion solution for one-step surface modification. Additionally, a two-step immersion scheme, in which the polypropylene substrate was first immersed in the dopamine solution and then in the PQA-C8 solution, was also attempted. Surface analysis results indicated the surface characteristics of the modified substrates were affected by the immersion solution formulation as well as the procedure utilized. The antibacterial assay has shown the titanium substrates modified by the one-step dopamine + PQA-C8 mixtures with the oxidants added and the polypropylene modified by the two-step scheme exhibited bacterial reduction percentages greater than 90% against both Gram-positive S. aureus and Gram-negative E. coli and these antibacterial substrates were non-cytotoxic.
Collapse
Affiliation(s)
- Chi-Hui Cheng
- Department of Pediatrics, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Xiang-Zhen Zeng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (X.-Z.Z.); (W.-Y.C.)
| | - Wen-Yuan Chiu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (X.-Z.Z.); (W.-Y.C.)
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (X.-Z.Z.); (W.-Y.C.)
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Peng J, Li K, Du Y, Yi F, Wu L, Liu G. A robust mixed-charge zwitterionic polyurethane coating integrated with antibacterial and anticoagulant functions for interventional blood-contacting devices. J Mater Chem B 2023; 11:8020-8032. [PMID: 37530181 DOI: 10.1039/d3tb01443f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Antifouling coatings based on zwitterionic polymers have been widely applied for surface modification of interventional blood-contacting devices to combat thrombosis and infection. However, the weak adhesion stability of the zwitterionic coating to the device surface is still the key challenge. In this work, biocompatible mixed-charge zwitterionic polyurethane (MPU) polymers, that bear equal amounts of cationic quaternary amine groups and anionic carboxyl groups, were developed and further uniformly dip-coated onto a thermoplastic polyurethane (TPU) substrate with a commercial aliphatic isocyanate cross-linker (AIC). During the curing process, AIC not only crosslinks MPU chains into a polymer network but also reacts with hydroxyl groups of TPU to interlink the polymer network to the substrate, resulting in a cross-linking reinforced MPU coating (CMPU) with excellent mechanical robustness and adhesion strength. Taking advantage of the mixed-charge feature, the final zwitterionic CMPU coating exhibits both excellent antifouling and antibacterial activities against protein adsorption and bacterial growth, respectively, which is beneficial for effectively inhibiting the occurrence of in vivo infection. Moreover, anticoagulation studies show that CMPU-coated TPU catheters can also prevent the formation of blood clots in ex vivo rabbit blood circuits without anticoagulants. Hence, the designed CMPU coating has immense potential to address thrombosis and infection for interventional blood-contacting devices.
Collapse
Affiliation(s)
- Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Yi
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Lei Wu
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|