1
|
Taherianrad F, Dehghan H, Abbasabadi N, Padash A, Tehrani HJ, Tat M, Dayani A, Salimi A. Melissa officinalis extract nanoemulsion, Caffeic acid and Quercetin as a novel inducer for investigating neural differentiation of human Wharton's jelly mesenchymal stem cells. Tissue Cell 2025; 95:102815. [PMID: 40073469 DOI: 10.1016/j.tice.2025.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Cell therapy utilizing mesenchymal stem cells, which have the ability to differentiate into different lineages, has garnered significant attention in recent years. Melissa officinalis is rich in biologically active compounds and exhibits antioxidant activity, antimicrobial properties, and sedative effects. Nanoemulsions can facilitate the effective transfer of substances and also protect drugs and biological materials from environmental factors. The aim of the present study is to investigate the role of Melissa officinalis extract nanoemulsion and the active ingredients of caffeic acid and quercetin as inducers in increasing the efficiency of differentiation of mesenchymal stem cells into neural cells in a laboratory environment. MATERIALS AND METHODS Human WJMSCs were cultured in the basic culture medium consisting of: Hight glucose DMEM, 10 % FBS and 1 % penicillin/streptomycin. The alcoholic extract of Melissa officinalis was extracted and its nanoemulsion was prepared along with two other effective substances. Next, zeta potential and size of nanoparticles were measured by Dynamic light scattering (DLS) technique. The optimal dose of all three material was calculated by MTT (3-4,5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide) assay and Acridine orange-ethidium bromide (AO/EB) staining. In the following, neural differentiation was investigated using Real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from MTT and AO/EB assays showed that the optimal dose of nanoemulsion M. officinalis, caffeic acid and quercetin is 150 μg/ml, 75 μg/ml and 25 μg/ml, respectively. The ideal particle size for nanoemulsion is below 100 nm. The zeta potential of the M. officinalis extract nanoemulsion was reported to be -9.45 and the average particle size was 17.76 nm. The results of this study indicated that the expression of neural marker genes (MAP-2, β-tubulin III and NSE) and proteins (MAP-2, β-tubulin III and Gamma-enolase) increased in differentiated cells treated with the synthesized nanoemulsion compared to the control group on days 7 and 14 (P ≤ 0.05). CONCLUSION In general, our results showed that M. officinalis extract nanoemulsion, caffeic acid and quercetin caused induction of neural differentiation mechanism in human WJ-MSCs.
Collapse
Affiliation(s)
- Fatemeh Taherianrad
- Department of Cellular and Molecular biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad university, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Nafiseh Abbasabadi
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hora Jalali Tehrani
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad university, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mojtahedi A, Ghaderi S, Ghiasi M, Halabian R, Dehghan H, Padash A, Eftekhari E, Salimi A. Investigating the enhancement of neural differentiation of adipose-derived mesenchymal stem cell with Foeniculum vulgare nanoemulsions: An in vitro research. Tissue Cell 2025; 94:102806. [PMID: 40022910 DOI: 10.1016/j.tice.2025.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Neurons, distributed throughout the body, regulate various bodily functions. The recovery of the nervous system is often slow and can be irreversible. Currently, the approach of using mesenchymal stem cells (MSCs) in conjunction with conventional treatments for nervous system injuries is being explored. Nanoemulsions are systems designed for the nanoscale delivery of drug cargoes. Foeniculum vulgare (F. vulgare), a medicinal plant long utilized in complementary medicine, is the focus of this study. The aim is to utilize nanoemulsions of fennel to induce the differentiation of MSCs into neural-like cells in vitro. MATERIALS AND METHODS Human adipose-derived mesenchymal stem cells (hADSCs) were commercially purchased. These cells were cultured in DMEM medium containing 10 % fetal bovine serum and 1 % penicillin-streptomycin antibiotic. Based on a sequential extraction method, n-hexane (Hex), ethyl acetate (EtAc), and ethanolic extracts were obtained from the seeds of F. vulgare. To prepare the F. vulgare extract nanoemulsion, the aqueous phase (distilled water), the oily part (F. vulgare extract), Span 80 and Tween 20 were used. The optimal dose of F. vulgare nanoemulsion was determined using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. Neural differentiation was induced using a specialized differentiation medium on the MSCs, with the prepared nanoemulsions acting as inducers. The neural differentiation of the human differentiated hADSCs was studied and evaluated through Real-time PCR and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from the MTT and AO/EB tests indicated that the optimal dose of F. vulgare nanoemulsions is 1 μg/ml. Analysis of neural differentiation index gene expression revealed a significant (P ≤ 0.05) upregulation of MAP-2, β-tubulin III, and NSE genes on days 7 and 14 following treatment with the nanoemulsions. It is noteworthy that the nanoemulsion prepared from the hexane extract of the plant showed a significant increase in the expression of marker genes in the process of neural differentiation. Protein expression analysis demonstrated an increase in MAP-2, β-tubulin III, and NSE (gamma enolase) proteins in response to the nanoemulsion inducers compared to the control group (TCPS). DISCUSSION Overall, our findings indicate that F. vulgare nanoemulsions have a positive effect on the expression of genes and proteins related to neural differentiation in hADSCs. The proposed protocol may serve as a potential therapeutic strategy in complementary medicine for patients seeking to improve injuries to the nervous system. However, further studies and performance measurements are necessary in future research to confirm these results.
Collapse
Affiliation(s)
- Arya Mojtahedi
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Shima Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Luo J, Cui Y, Xu L, Zhang J, Chen J, Li X, Zeng B, Deng Z, Shao L. Layered double hydroxides for regenerative nanomedicine and tissue engineering: recent advances and future perspectives. J Nanobiotechnology 2025; 23:370. [PMID: 40405242 PMCID: PMC12096525 DOI: 10.1186/s12951-025-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
With the rapid development of nanotechnology, layered double hydroxides (LDHs) have attracted considerable attention in the biomedical field due to their highly tunable composition and structure, superior biocompatibility, multifunctional bioactivity, and exceptional drug delivery performance. However, a focused and comprehensive review addressing the role of LDHs specifically in tissue regeneration has been lacking. This review aims to fill that gap by providing a systematic and in-depth overview of recent advances in the application of LDHs across various regenerative domains, including bone repair, cartilage reconstruction, angiogenesis, wound healing, and nerve regeneration. Beyond presenting emerging applications, the review places particular emphasis on elucidating the underlying mechanisms through which LDHs exert their therapeutic effects. Although LDHs demonstrate considerable promise in regenerative medicine, their clinical translation remains in its infancy. To address this, we not only provided our insights into the personalized problems that arise in the application of various tissues, but also focused on discussing and prospecting the common challenges in the clinical translation of LDHs. These challenges include optimizing synthesis techniques, enhancing biosafety and stability, improving drug-loading efficiency, designing multifunctional composite materials, and establishing pathways that facilitate the transition from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Junsi Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Yiteng Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Junyi Zhang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Jinhong Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Xumin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- School of Stomatology, Changsha Medical University, Changsha, 410219, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Abad-Contreras DE, Martínez-Ortiz AK, Martínez-López V, Laparra-Escareño H, Martínez-García FD, Pérez-Calixto D, Vazquez-Victorio G, Sepúlveda-Robles O, Rosas-Vargas H, Piña-Barba C, Rodríguez-López LA, Giraldo-Gomez DM, Hinojosa CA. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Tissue Cell 2025; 93:102686. [PMID: 39724840 DOI: 10.1016/j.tice.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health. This study explores the potential of decellularized human iliac arteries as scaffolds for vascular grafts, focusing on preserving extracellular matrix (ECM) ultrastructure while minimizing immunogenic response. A perfusion-based protocol with enzymatic and detergent agents effectively removed cellular material, resulting in scaffolds with preserved ECM architecture, including organized collagen and elastin fibers. To assess scaffold bioactivity, hASCs were seeded onto the decellularized ECM, demonstrating high viability. Structural assessments, including histological staining and mechanical testing, confirmed that decellularized arteries retained their hierarchical structure and exhibited increased stiffness, suggesting an adaptive realignment of ECM fibers. Thermal and ultrastructural analyses further showed that decellularized scaffolds maintained stability and integrity comparable to native tissue, underscoring their durability for clinical applications. The human iliac artery shows potential as a vascular scaffold due to its accessibility and the ability to support the viability of hASC. Future research will emphasize in vivo validation and strategies for functional recellularization to evaluate the clinical viability of these engineered vascular grafts.
Collapse
Affiliation(s)
- David E Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico.
| | - Ana K Martínez-Ortiz
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Valentín Martínez-López
- Unit of Tissue Engineering, Cell Therapy and Regenerative Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Coapa, Arenal Tepepan, Calzada México-Xochimilco 289, Tlalpan, Ciudad de México, Mexico
| | - Hugo Laparra-Escareño
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel Pérez-Calixto
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico; Subdirectorate of Population Genomics. National Institute of Genomic Medicine, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, CDMX CP 1461, Mexico
| | - Genaro Vazquez-Victorio
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico
| | - Omar Sepúlveda-Robles
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Leonardo A Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - David M Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" 3°piso, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" planta baja, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Carlos A Hinojosa
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
5
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
6
|
Mousavi Z, Bagheri M, Rostaminasab G, Mikaeili A, Djalilian AR, Rezakhani L. Tissue engineering strategies for ocular regeneration; from bench to the bedside. Heliyon 2024; 10:e39398. [PMID: 39497964 PMCID: PMC11532841 DOI: 10.1016/j.heliyon.2024.e39398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millions globally suffer from visual impairment, complicating the management of eye diseases due to various ocular barriers. The eye's complex structure and the limitations of existing treatments have spurred interest in tissue engineering (TE) as a solution. This approach offers new functionalities and improves therapeutic outcomes over traditional drug delivery methods, creating opportunities for treating various eye disorders, from corneal injuries to retinal degeneration. In our review of recent articles concerning the use of scaffolds for eye repair, we categorized scaffolds employed in eye TE from recent studies into four types based on tissue characteristics: natural, synthetic, biohybrid, and decellularized tissue. Additionally, we gathered data on the cell types and animal models associated with each scaffold. This allowed us to gather valuable insights into the benefits and drawbacks of each material. Our research elucidates that, in comparison to conventional treatment modalities, scaffolds in TE emulate the extracellular matrix (ECM) of the eye and facilitate cell proliferation and tissue regeneration. These scaffolds can be precisely tailored to incorporate growth factors that augment the healing process while also providing considerable advantages such as bacterial inhibition, biocompatibility, and enhanced durability. However, they also have drawbacks, such as potential immune responses, poor tissue integration, complex and costly manufacturing, and inconsistent degradation rates that can affect their effectiveness. In this review, we provide an overview of the present condition of eye regenerative treatments, assess notable preclinical and clinical research endeavors, contemplate the obstacles encountered, and speculate on potential advancements in the upcoming decade.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masood Bagheri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Hazrati R, Alizadeh E, Soltani S, Keyhanvar P, Davaran S. Development of a Composite Hydrogel Containing Statistically Optimized PDGF-Loaded Polymeric Nanospheres for Skin Regeneration: In Vitro Evaluation and Stem Cell Differentiation Studies. ACS OMEGA 2024; 9:15114-15133. [PMID: 38585049 PMCID: PMC10993260 DOI: 10.1021/acsomega.3c09391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a polypeptide growth factor generated by platelet granules faced to cytokines. It plays a role in forming and remodeling various tissue types, including epithelial tissue, through interaction with cell-surface receptors on most mesenchymal origin cells. However, it breaks down quickly in biological fluids, emphasizing the importance of preserving them from biodegradation. To address this challenge, we formulated and evaluated PDGF-encapsulated nanospheres (PD@PCEC) using polycaprolactone-polyethylene glycol-polycaprolactone. PD@PCECs were fabricated through the triple emulsion methodology and optimized by using the Box-Behnken design. The encapsulation efficiency (EE) of nanoencapsulated PDGF-BB was investigated concerning four variables: stirring rate (X1), stirring duration (X2), poly(vinyl alcohol) concentration (X3), and PDGF-BB concentration (X4). The selected optimized nanospheres were integrated into a gelatin-collagen scaffold (PD@PCEC@GC) and assessed for morphology, biocompatibility, in vitro release, and differentiation-inducing activity in human adipose-derived stem cells (hADSCs). The optimized PD@PCEC nanospheres exhibited a particle size of 177.9 ± 91 nm, a zeta potential of 5.2 mV, and an EE of 87.7 ± 0.44%. The release profile demonstrated approximately 85% of loaded PDGF-BB released during the first 360 h, with a sustained release over the entire 504 h period, maintaining bioactivity of 87.3%. The study also included an evaluation of the physicochemical properties of the scaffolds and an assessment of hADSC adhesion to the scaffold's surface. Additionally, hADSCs cultivated within the scaffold effectively differentiated into keratinocyte-like cells (KLCs) over 21 days, evidenced by morphological changes and upregulation of keratinocyte-specific genes, including cytokeratin 18, cytokeratin 19, and involucrin, at both transcriptional and protein levels.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Effat Alizadeh
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Somaieh Soltani
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Peyman Keyhanvar
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Soodabeh Davaran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| |
Collapse
|
8
|
Fallah Tafti M, Aghamollaei H, Moosazadeh Moghaddam M, Jadidi K, Faghihi S. An inspired microenvironment of cell replicas to induce stem cells into keratocyte-like dendritic cells for corneal regeneration. Sci Rep 2023; 13:15012. [PMID: 37696883 PMCID: PMC10495344 DOI: 10.1038/s41598-023-42359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Corneal stromal disorders due to the loss of keratocytes can affect visual impairment and blindness. Corneal cell therapy is a promising therapeutic strategy for healing corneal tissue or even enhancing corneal function upon advanced disorders, however, the sources of corneal keratocytes are limited for clinical applications. Here, the capacity of cell-imprinted substrates fabricated by molding human keratocyte templates to induce differentiation of human adipose-derived stem cells (hADSCs) into keratocytes, is presented. Keratocytes are isolated from human corneal stroma and grown to transmit their ECM architecture and cell-like topographies to a PDMS substrate. The hADSCs are then seeded on cell-imprinted substrates and their differentiation to keratocytes in DMEM/F12 (with and without chemical factors) are evaluated by real-time PCR and immunocytochemistry. The mesenchymal stem cells grown on patterned substrates present gene and protein expression profiles similar to corneal keratocytes. In contrast, a negligible expression of myofibroblast marker in the hADSCs cultivated on the imprinted substrates, is observed. Microscopic analysis reveals dendritic morphology and ellipsoid nuclei similar to primary keratocytes. Overall, it is demonstrated that biomimetic imprinted substrates would be a sufficient driver to solely direct the stem cell fate toward target cells which is a significant achievement toward corneal regeneration.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, 1435916471, Iran.
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran.
| |
Collapse
|