1
|
Ren X, Coutanche MN, Fiez JA, Libertus ME. Integration of symbolic and non-symbolic numerical information in children: Task dependence and its link to math abilities. J Exp Child Psychol 2025; 256:106263. [PMID: 40252638 DOI: 10.1016/j.jecp.2025.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
From birth, children can access the approximate number system for noisy numerical estimates. With age, they acquire an exact number system for precise numerical information representation. The relations between these two systems and their correlations with math abilities in children remain unclear. In this study, 8- to 10-year-old children (N = 119) completed two tasks to test the integration of symbolic and non-symbolic numerical information (i.e., "symbolic integration") and how this integration relates to children's formal math abilities. For the number comparison task, involving dot arrays and Arabic numerals, children indicated which of two sequentially presented stimuli was larger. These stimuli were either in the same format (dot-dot or numeral-numeral) or in a mixed format (dot-numeral or numeral-dot). For the number-letter discrimination task, participants identified numerals or letter pairs co-occurring with dot arrays that either matched or mismatched the numeral's quantity. In the number comparison task, we found that children were significantly slower when comparing mixed-format stimuli versus same-format conditions, suggesting a lack of symbolic integration (i.e., "symbolic estrangement"). In contrast, in the number-letter discrimination task, children were significantly faster in tasks where the dot arrays and numerals matched, indicating symbolic integration. While we found correlations between number processing and math skills at the condition level for both tasks, neither of the derived measures of symbolic estrangement or symbolic integration correlated with children's performance on a standardized math assessment. Thus, we conclude that numerical integration or estrangement is task dependent and that symbolic integration has limited impact on 8- to 10-year-old children's math abilities.
Collapse
Affiliation(s)
- Xueying Ren
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA.
| | - Marc N Coutanche
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA; Brain Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julie A Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA
| | - Melissa E Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Masson N, Schiltz C, Geers L, Andres M. Spatial coding of arithmetic operations in early learning: an eye tracking study in first-grade elementary school children. PSYCHOLOGICAL RESEARCH 2025; 89:90. [PMID: 40244496 DOI: 10.1007/s00426-025-02119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
A growing body of evidence indicates that mental calculation in adults is accompanied by horizontal attention shifts along a mental continuum representing the range of plausible answers. The fast deployment of spatial attention suggests a predictive role in guiding the search for the answer. The link between arithmetic and spatial functions is theoretically justified by the need to alleviate the cognitive load of mental calculation, but the question of how this link establishes during development gives rise to opposing views emphasizing either biological or cultural factors. The role of education, in particular, remains debated in the absence of data covering the period when children learn arithmetic. In this study, we measured gaze movements, as a proxy for attentional shifts, while first-grade elementary school children solved single-digit additions and subtractions. The investigation was scheduled only a few weeks after the formal teaching of symbolic subtraction to assess the role of spatial attention in early learning. Gaze patterns revealed horizontal- but not vertical- attentional shifts, with addition shifting the gaze more rightward than subtraction. The shift was observed as soon as the first operand and the operator were presented, corroborating the view that attention is used to predictively identify the portion of the numerical continuum where the answer is likely to be located, as adult studies suggested. The finding of a similar gaze pattern in adults and six-year-old children who have just learned how to subtract single digits challenges the idea that arithmetic problem solving requires intensive practice to be linked to spatial attention.
Collapse
Affiliation(s)
- Nicolas Masson
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Institute of Cognitive Science and Assessment (COSA), Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), University of Luxembourg, Luxembourg, Luxembourg.
| | - Christine Schiltz
- Institute of Cognitive Science and Assessment (COSA), Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), University of Luxembourg, Luxembourg, Luxembourg
| | - Laurie Geers
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Andres
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Dehaene S, Sablé-Meyer M, Ciccione L. Origins of numbers: a shared language-of-thought for arithmetic and geometry? Trends Cogn Sci 2025:S1364-6613(25)00059-2. [PMID: 40234140 DOI: 10.1016/j.tics.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025]
Abstract
Concepts of exact number are often thought to originate from counting and the successor function, or from a refinement of the approximate number system (ANS). We argue here for a third origin: a shared language-of-thought (LoT) for geometry and arithmetic that involves primitives of repetition, concatenation, and recursive embedding. Applied to sets, those primitives engender concepts of exact integers through recursive applications of additions and multiplications. Links between geometry and arithmetic also explain the emergence of higher-level notions (squares, primes, etc.). Under our hypothesis, understanding a number means having one or several mental expressions for it, and their minimal description length (MDL) determines how easily they can be mentally manipulated. Several historical, developmental, linguistic, and brain imaging phenomena provide preliminary support for our proposal.
Collapse
Affiliation(s)
- Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Mathias Sablé-Meyer
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Lorenzo Ciccione
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
4
|
Skagenholt M, Skagerlund K, Träff U. Numerical cognition across the lifespan: A selective review of key developmental stages and neural, cognitive, and affective underpinnings. Cortex 2025; 184:263-286. [PMID: 39919570 DOI: 10.1016/j.cortex.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Numerical cognition constitutes a set of hierarchically related skills and abilities that develop-and may subsequently begin to decline-over developmental time. An innate "number sense" has long been argued to provide a foundation for the development of increasingly complex and applied numerical cognition, such as symbolic numerical reference, arithmetic, and financial literacy. However, evidence for a direct link between basic perceptual mechanisms that allow us to determine numerical magnitude (e.g., "how many" objects are in front of us and whether some of these are of a "greater" or "lesser" quantity), and later symbolic applications for counting and mathematics, has recently been challenged. Understanding how one develops an increasingly precise sense of number and which neurocognitive mechanisms support arithmetic development and achievement is crucial for developing successful mathematics curricula, supporting individual financial literacy and decision-making, and designing appropriate intervention and remediation programs for mathematical learning disabilities as well as mathematics anxiety. The purpose of this review is to provide a broad overview of the cognitive, neural, and affective underpinnings of numerical cognition-spanning the earliest hours of infancy to senior adulthood-and highlight gaps in our knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden.
| | - Kenny Skagerlund
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden; Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
van Kerkoerle T, Pape L, Ekramnia M, Feng X, Tasserie J, Dupont M, Li X, Jarraya B, Vanduffel W, Dehaene S, Dehaene-Lambertz G. Brain areas for reversible symbolic reference, a potential singularity of the human brain. eLife 2025; 12:RP87380. [PMID: 39937096 PMCID: PMC11820117 DOI: 10.7554/elife.87380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The emergence of symbolic thinking has been proposed as a dominant cognitive criterion to distinguish humans from other primates during hominisation. Although the proper definition of a symbol has been the subject of much debate, one of its simplest features is bidirectional attachment: the content is accessible from the symbol, and vice versa. Behavioural observations scattered over the past four decades suggest that this criterion might not be met in non-human primates, as they fail to generalise an association learned in one temporal order (A to B) to the reverse order (B to A). Here, we designed an implicit fMRI test to investigate the neural mechanisms of arbitrary audio-visual and visual-visual pairing in monkeys and humans and probe their spontaneous reversibility. After learning a unidirectional association, humans showed surprise signals when this learned association was violated. Crucially, this effect occurred spontaneously in both learned and reversed directions, within an extended network of high-level brain areas, including, but also going beyond, the language network. In monkeys, by contrast, violations of association effects occurred solely in the learned direction and were largely confined to sensory areas. We propose that a human-specific brain network may have evolved the capacity for reversible symbolic reference.
Collapse
Affiliation(s)
- Timo van Kerkoerle
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- Department of Neurophysics, Donders Centre for Neuroscience, Radboud University NijmegenNijmegenNetherlands
| | - Louise Pape
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Milad Ekramnia
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
| | - Xiaoxia Feng
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Morgan Dupont
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
| | - Xiaolian Li
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical SchoolLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Béchir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- Université Paris-Saclay (UVSQ), Hôpital FochSuresnesFrance
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical SchoolLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin centerGif sur YvetteFrance
- Collège de France, Université Paris-Sciences-Lettres (PSL)ParisFrance
| | | |
Collapse
|
6
|
Harvey B. Innate numerosity perception and its roots in early vision. Cereb Cortex 2025; 35:bhaf016. [PMID: 39932128 DOI: 10.1093/cercor/bhaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 05/08/2025] Open
Abstract
In the current issue of Cerebral Cortex, Lorenzi et al. (2025) discuss evidence for an innate sense of object number (numerosity) in the brains of many species, without the need for visual experience. This commentary discusses how numerosity processing can be understood as an innate property of vision, derived from the spatial frequency-based representation of images in the visual systems of many animals.
Collapse
Affiliation(s)
- Ben Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584, The Netherlands
| |
Collapse
|
7
|
Reilly J, Shain C, Borghesani V, Kuhnke P, Vigliocco G, Peelle JE, Mahon BZ, Buxbaum LJ, Majid A, Brysbaert M, Borghi AM, De Deyne S, Dove G, Papeo L, Pexman PM, Poeppel D, Lupyan G, Boggio P, Hickok G, Gwilliams L, Fernandino L, Mirman D, Chrysikou EG, Sandberg CW, Crutch SJ, Pylkkänen L, Yee E, Jackson RL, Rodd JM, Bedny M, Connell L, Kiefer M, Kemmerer D, de Zubicaray G, Jefferies E, Lynott D, Siew CSQ, Desai RH, McRae K, Diaz MT, Bolognesi M, Fedorenko E, Kiran S, Montefinese M, Binder JR, Yap MJ, Hartwigsen G, Cantlon J, Bi Y, Hoffman P, Garcea FE, Vinson D. What we mean when we say semantic: Toward a multidisciplinary semantic glossary. Psychon Bull Rev 2025; 32:243-280. [PMID: 39231896 PMCID: PMC11836185 DOI: 10.3758/s13423-024-02556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/06/2024]
Abstract
Tulving characterized semantic memory as a vast repository of meaning that underlies language and many other cognitive processes. This perspective on lexical and conceptual knowledge galvanized a new era of research undertaken by numerous fields, each with their own idiosyncratic methods and terminology. For example, "concept" has different meanings in philosophy, linguistics, and psychology. As such, many fundamental constructs used to delineate semantic theories remain underspecified and/or opaque. Weak construct specificity is among the leading causes of the replication crisis now facing psychology and related fields. Term ambiguity hinders cross-disciplinary communication, falsifiability, and incremental theory-building. Numerous cognitive subdisciplines (e.g., vision, affective neuroscience) have recently addressed these limitations via the development of consensus-based guidelines and definitions. The project to follow represents our effort to produce a multidisciplinary semantic glossary consisting of succinct definitions, background, principled dissenting views, ratings of agreement, and subjective confidence for 17 target constructs (e.g., abstractness, abstraction, concreteness, concept, embodied cognition, event semantics, lexical-semantic, modality, representation, semantic control, semantic feature, simulation, semantic distance, semantic dimension). We discuss potential benefits and pitfalls (e.g., implicit bias, prescriptiveness) of these efforts to specify a common nomenclature that other researchers might index in specifying their own theoretical perspectives (e.g., They said X, but I mean Y).
Collapse
Affiliation(s)
| | - Cory Shain
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Philipp Kuhnke
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | | | | | - Laurel J Buxbaum
- Thomas Jefferson University, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | | | | | | | - Guy Dove
- University of Louisville, Louisville, KY, USA
| | - Liuba Papeo
- Centre National de La Recherche Scientifique (CNRS), University Claude-Bernard Lyon, Lyon, France
| | | | | | | | - Paulo Boggio
- Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Eiling Yee
- University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ken McRae
- Western University, London, ON, Canada
| | | | | | | | | | | | | | - Melvin J Yap
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- National University of Singapore, Singapore, Singapore
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | - Yanchao Bi
- University of Edinburgh, Edinburgh, UK
- Beijing Normal University, Beijing, China
| | | | | | | |
Collapse
|
8
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Semenza C, Benavides-Varela S, Salillas E. Brain laterality of numbers and calculation: Complex networks and their development. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:461-480. [PMID: 40074415 DOI: 10.1016/b978-0-443-15646-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This chapter reviews notions about the lateralization of numbers and calculation in the brain, including its developmental pattern. Such notions have changed dramatically in recent decades. What was once considered a function almost exclusively located in the left hemisphere has been found to be sustained by complex brain networks encompassing both hemispheres. Depending on the specific task, however, each hemisphere has its own role. Much of this progress was determined by the convergency of investigations conducted with different methods. Contrary to traditional wisdom, the right hemisphere is not involved in arithmetic just as far as generic spatial aspects are concerned. Very specific arithmetic functions like remembering the spatial templates for complex operations, or processing of zero in complex numbers, are indeed sustained in specific right-sided areas. The system used in the typical adult appears to be the result of a complex pattern of development. The numerical brain clearly evolved from less mature to more advanced brain networks because of growth and education. Children seem to be equipped with the ability to represent the number nonverbally from a very early age. The bilateral processing of number-related tasks is however a late acquisition.
Collapse
Affiliation(s)
- Carlo Semenza
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Silvia Benavides-Varela
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Elena Salillas
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Li H, Di H, Duan B, Luo M, Wang Y, Wang Z. Executive Function and young children's Cardinality Principle: the mediating role of the Approximate Number System and the moderating role of age. Front Psychol 2024; 15:1495489. [PMID: 39606203 PMCID: PMC11600143 DOI: 10.3389/fpsyg.2024.1495489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Executive Function and the Approximate Number System are well-established as critical components in developing the Cardinality Principle in young children. However, most existing studies explore the relationship between these variables in isolation without examining whether Approximate Number System mediates the relationship between Executive Function and the Cardinality Principle and the role of age in this. This study aimed to address this gap by investigating the mediating role of the Approximate Number System in the relationship between Executive Function and the Cardinality Principle and the moderating role of age in young children. Methods This cross-sectional study was conducted in China from February to June 2024. A total of 203 young children (97 boys and 106 girls, Mean age = 68.93 ± 7.076 months) participated. Participants were assessed using a range of tests: the Day-Night Stroop Task, Digit Recall Task, Dimensional Change Card Sort Task, Panamath Test Software, How Many Task, and Give-N Task to measure Executive Function, Approximate Number System, and Cardinality Principle. Data were analyzed using SPSS 26.0 and PROCESS v4.1 (Model 4) to explore the relationships among Executive Function, the Approximate Number System, and the Cardinality Principle through Pearson correlations, multivariate regression, and mediation analysis with 5000 bootstrap samples. Results Correlation analysis revealed that the Cardinality Principle was significantly and positively correlated with Inhibitory Control, Working Memory, Cognitive Flexibility, Executive Function, and the Approximate Number System. Regression analyses indicated that Executive Function positively predicted young children's Cardinality Principle. Specifically, Working Memory and Cognitive Flexibility were positive predictors of the Cardinality Principle, while Inhibitory Control was not. Mediation analysis results demonstrated that the Approximate Number System mediated the relationships between Inhibitory Control and the Cardinality Principle, Working Memory and the Cardinality Principle, and Cognitive Flexibility and the Cardinality Principle, respectively. In addition, the study found that young children's age negatively moderated the relationship between the Approximate Number System and the Cardinality Principle. Conclusions The study emphasizes that in developing young children's Cardinality Principle, emphasis should be placed on improving their Executive Function and Approximate Number System while considering the age differences of young children and developing appropriate educational methods for different age groups.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Educational Science, Xinjiang Normal University, Urumqi, China
| | - Huijuan Di
- Department of Preschool Education, Hebei Normal University, Shijiazhuang, China
| | - Bingyu Duan
- College of Educational Science, Xinjiang Normal University, Urumqi, China
| | - Mengzhen Luo
- College of Educational Science, Xinjiang Normal University, Urumqi, China
| | - Yifang Wang
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
| | - Zhenglu Wang
- College of Educational Science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
11
|
Benedetto A, Chelli E, Petrizzo I, Arrighi R, Anobile G. The role of motor effort on the sensorimotor number system. PSYCHOLOGICAL RESEARCH 2024; 88:2432-2443. [PMID: 38980356 PMCID: PMC11522110 DOI: 10.1007/s00426-024-02002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The integration of numerical information with motor processes has emerged as a fascinating area of investigation in both animal and human cognition. The interest in a sensorimotor number system has recently generated neurophysiological and psychophysical evidence which combine to highlight the importance of motor functions in the encoding of numerical information. Nevertheless, several key questions remain, such as the influence of non-numerical motor parameters over numerical perception. Here we tested the role of physical effort, a parameter positively correlated with the number of actions, in modulating the link between hand-actions and visual numerosity perception. Effort was manipulated during sensorimotor adaptation as well as during a new actions-estimation paradigm. The results of Experiment 1 shows that physical effort in the absence of actions (passive effort) is not sufficient to activate the sensorimotor number system, indicating that self-produced actions are instead necessary. Further experiments demonstrated that effort is marginally integrated during motor adaptation (Experiment 2) but discarded when estimating the number of self-produced hand actions (Experiment 3). Overall, the results indicate that the sensorimotor number system is largely fed by the number of discrete actions rather than the amount of effort but also indicates that effort (under specific circumstances) might be integrated. These findings provide novel insights into the sensorimotor numerical integration, paving the way for future investigations, such as on its functional role.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Eleonora Chelli
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- School of Psychology, The University of Sydney, Sydney, Australia
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Center for Mind/Brain Science, University of Trento, Rovereto, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Libertus M, Miller P, Zippert EL, Bachman HJ, Votruba-Drzal E. Predicting individual differences in preschoolers' numeracy and geometry knowledge: The role of understanding abstract relations between objects and quantities. J Exp Child Psychol 2024; 247:106035. [PMID: 39128443 DOI: 10.1016/j.jecp.2024.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024]
Abstract
Preschoolers' mathematics knowledge develops early and varies substantially. The current study focused on two ontogenetically early emerging cognitive skills that may be important predictors of later math skills (i.e., geometry and numeracy): children's understanding of abstract relations between objects and quantities as evidenced by their patterning skills and the approximate number system (ANS). Children's patterning skills, the ANS, numeracy, geometry, nonverbal intelligence (IQ), and executive functioning (EF) skills were assessed at age 4 years, and their numeracy and geometry knowledge was assessed again a year later at age 5 (N = 113). Above and beyond children's initial knowledge in numeracy and geometry, as well as IQ and EF, patterning skills and the ANS at age 4 uniquely predicted children's geometry knowledge at age 5, but only age 4 patterning uniquely predicted age 5 numeracy. Thus, although patterning and the ANS are related, they differentially explain variation in later geometry and numeracy knowledge. Results are discussed in terms of implications for early mathematics theory and research.
Collapse
Affiliation(s)
- Melissa Libertus
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Portia Miller
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Erica L Zippert
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heather J Bachman
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Votruba-Drzal
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Schiltz C, Lachelin R, Hilger V, Marinova M. Thinking about numbers in different tongues: An overview of the influences of multilingualism on numerical and mathematical competencies. PSYCHOLOGICAL RESEARCH 2024; 88:2416-2431. [PMID: 39060519 DOI: 10.1007/s00426-024-01997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024]
Abstract
In an increasingly multilingual and multicultural world, understanding the interactions between language and mathematics is critical, especially when individuals must acquire and exercise their mathematical competencies in multiple languages. Indeed, research shows that, overall, L2 language learners are at an academic disadvantage compared to their L1 peers. The current article briefly overviews how multilingualism influences basic and advanced mathematical skills and interacts with mathematical learning difficulties. We first outline the traditional cognitive models of number learning and language processing. We then discuss the particularities of multilingualism and how it impacts numerical skills such as counting and building lexical-semantic associations, transcoding and arithmetic, mathematical word problems and mathematical performance tests, and dyscalculia diagnosis. We end this review by outlining challenges, recommendations, and solutions for multilingual educational settings. The article is intended as a guide for numerical cognition researchers who work with diverse populations and for mathematics educators and educational policy-makers facing the challenges of a multilingual classroom.
Collapse
Affiliation(s)
- Christine Schiltz
- Institute of Cognitive Science and Assessment, Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Belval Esch-sur-Alzette, Luxembourg.
| | - Rémy Lachelin
- Institute of Cognitive Science and Assessment, Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Belval Esch-sur-Alzette, Luxembourg
| | - Vera Hilger
- Institute of Cognitive Science and Assessment, Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Belval Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Educational Testing, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Belval Esch-sur-Alzette, Luxembourg
| | - Mila Marinova
- Institute of Cognitive Science and Assessment, Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Belval Esch-sur-Alzette, Luxembourg
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Faculty of Psychology and Educational Sciences, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
14
|
Chen CC, Berteletti I, Hyde DC. Neural evidence of core foundations and conceptual change in preschool numeracy. Dev Sci 2024; 27:e13556. [PMID: 39105368 DOI: 10.1111/desc.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Symbolic numeracy first emerges as children learn the meanings of number words and how to use them to precisely count sets of objects. This development starts before children enter school and forms a foundation for lifelong mathematics achievement. Despite its importance, exactly how children acquire this basic knowledge is unclear. Here we test competing theories of early number learning by measuring event-related brain potentials during a novel number word-quantity comparison task in 3-4-year-old preschool children (N = 128). We find several qualitative differences in neural processing of number by conceptual stage of development. Specifically, we find differences in early attention-related parietal electrophysiology (N1), suggesting that less conceptually advanced children process arrays as individual objects and more advanced children distribute attention over the entire set. Subsequently, we find that only more conceptually advanced children show later-going frontal (N2) sensitivity to the numerical-distance relationship between the number word and visual quantity. The nature of this response suggested that exact rather than approximate numerical meanings were being associated with number words over frontal sites. No evidence of numerical distance effects was observed over posterior scalp sites. Together these results suggest that children may engage parallel individuation of objects to learn the meanings of the first few number words, but, ultimately, create new exact cardinal value representations for number words that cannot be defined in terms of core, nonverbal number systems. More broadly, these results document an interaction between attentional and general cognitive mechanisms in cognitive development. RESEARCH HIGHLIGHTS: Conceptual development in numeracy is associated with a shift in attention from objects to sets. Children acquire meanings of the first few number words through associations with parallel attentional individuation of objects. Understanding of cardinality is associated with attentional processing of sets rather than individuals. Brain signatures suggest children attribute exact rather than approximate numerical meanings to the first few number words. Number-quantity relationship processing for the first few number words is evident in frontal but not parietal scalp electrophysiology of young children.
Collapse
Affiliation(s)
- Chi-Chuan Chen
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Ilaria Berteletti
- Educational Neuroscience Program, Gallaudet University, Washington, DC, USA
| | - Daniel C Hyde
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Luu P, Nadtochiy A, Zanon M, Moreno N, Messina A, Petrazzini MEM, Torres Perez JV, Keomanee-Dizon K, Jones M, Brennan CH, Vallortigara G, Fraser SE, Truong TV. Neural Basis of Number Sense in Larval Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610552. [PMID: 39290349 PMCID: PMC11406567 DOI: 10.1101/2024.08.30.610552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Number sense, the ability to discriminate the quantity of objects, is crucial for survival. To understand how neurons work together and develop to mediate number sense, we used two-photon fluorescence light sheet microscopy to capture the activity of individual neurons throughout the brain of larval Danio rerio, while displaying a visual number stimulus to the animal. We identified number-selective neurons as early as 3 days post-fertilization and found a proportional increase of neurons tuned to larger quantities after 3 days. We used machine learning to predict the stimulus from the neuronal activity and observed that the prediction accuracy improves with age. We further tested ethanol's effect on number sense and found a decrease in number-selective neurons in the forebrain, suggesting cognitive impairment. These findings are a significant step towards understanding neural circuits devoted to discrete magnitudes and our methodology to track single-neuron activity across the whole brain is broadly applicable to other fields in neuroscience.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Anna Nadtochiy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Mirko Zanon
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Noah Moreno
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Jose Vicente Torres Perez
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Matthew Jones
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Caroline H Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Thai V Truong
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Li Z, Fang H, Fan W, Wu J, Cui J, Li BM, Wang C. Brain markers of subtraction and multiplication skills in childhood: task-based functional connectivity and individualized structural similarity. Cereb Cortex 2024; 34:bhae374. [PMID: 39329357 DOI: 10.1093/cercor/bhae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Arithmetic, a high-order cognitive ability, show marked individual difference over development. Despite recent advancements in neuroimaging techniques have enabled the identification of brain markers for individual differences in high-order cognitive abilities, it remains largely unknown about the brain markers for arithmetic. This study used a data-driven connectome-based prediction model to identify brain markers of arithmetic skills from arithmetic-state functional connectivity and individualized structural similarity in 132 children aged 8 to 15 years. We found that both subtraction-state functional connectivity and individualized SS successfully predicted subtraction and multiplication skills but multiplication-state functional connectivity failed to predict either skill. Among the four successful prediction models, most predictive connections were located in frontal-parietal, default-mode, and secondary visual networks. Further computational lesion analyses revealed the essential structural role of frontal-parietal network in predicting subtraction and the essential functional roles of secondary visual, language, and ventral multimodal networks in predicting multiplication. Finally, a few shared nodes but largely nonoverlapping functional and structural connections were found to predict subtraction and multiplication skills. Altogether, our findings provide new insights into the brain markers of arithmetic skills in children and highlight the importance of studying different connectivity modalities and different arithmetic domains to advance our understanding of children's arithmetic skills.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Haifeng Fang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Weiguo Fan
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Jiaoyu Wu
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Jiaxin Cui
- College of Education, Hebei Normal University, South Second Ring Road 20, Shijiazhuang 050016, China
| | - Bao-Ming Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Chunjie Wang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| |
Collapse
|
17
|
Ren X, Libertus ME. (Dis)similarities between non-symbolic and symbolic number representations: Insights from vector space models. Acta Psychol (Amst) 2024; 248:104374. [PMID: 38908226 DOI: 10.1016/j.actpsy.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Empirical evidence in support of a shared system for non-symbolic and symbolic number processing has been inconclusive. The current study aims to address this question in a novel way, specifically by testing whether the efficient coding principle based on co-occurrence of number symbols in natural language holds for both non-symbolic and symbolic number processing. The efficient coding principle postulates that perception is optimized when stimuli frequently co-occur in a natural environment. We hypothesized that both numerical ratios and co-occurrence frequencies of symbolic numbers would significantly influence participants' performance on a non-symbolic and symbolic number comparison task. To test this hypothesis, we employed latent semantic analysis on a TASA corpus to quantify number co-occurrence in natural language and calculate language similarity estimates. We engaged 73 native English speakers (mean age = 19.36, standard deviation = 1.83) with normal or corrected vision and no learning disorders in a number comparison task involving non-symbolic (dot arrays) and symbolic stimuli (Arabic numerals and English number words). Results showed that numerical ratios significantly predicted participants' performances across all number formats (ps < 0.001). Language similarity estimates derived from everyday language also predicted performance on the non-symbolic task and the symbolic task involving number words (ps < 0.007). Our results highlight the complex nature of numerical processing, pointing to the co-occurrence of number symbols in natural language as an auxiliary factor in understanding the shared characteristics between non-symbolic and symbolic number representations. Given that our study focused on a limited number range (5 to 16) and a specific task type, future studies should explore a wider range of tasks and numbers to further test the role of the efficient coding principle in number processing.
Collapse
Affiliation(s)
- Xueying Ren
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA.
| | - Melissa E Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA
| |
Collapse
|
18
|
Bertamini M, Bobbio A. Silvia De Marchi (1929) on numerical estimation: A translation and commentary. Perception 2024; 53:356-396. [PMID: 38620014 DOI: 10.1177/03010066241234612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Vittorio Benussi (1878-1927) is known for numerous studies on optical illusions, visual and haptic perception, spatial and time perception. In Padova, he had a brilliant student who carefully worked on the topic of how people estimate numerosity, Silvia De Marchi (1897-1936). Her writings have never been translated into English before. Here we comment on her work and life, characterized also by the challenges faced by women in academia. The studies on perception of numerosity from her thesis were published as an article in 1929. We provide a translation from Italian, a redrawing of its 23 illustrations and of the graphs. It shows an original experimental approach and an anticipation of what later became known as magnitude estimation.
Collapse
|
19
|
Ashburn SM, Matejko AA, Eden GF. Activation and functional connectivity of cerebellum during reading and during arithmetic in children with combined reading and math disabilities. Front Neurosci 2024; 18:1135166. [PMID: 38741787 PMCID: PMC11090247 DOI: 10.3389/fnins.2024.1135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2024] [Indexed: 05/16/2024] Open
Abstract
Background Reading and math constitute important academic skills, and as such, reading disability (RD or developmental dyslexia) and math disability (MD or developmental dyscalculia) can have negative consequences for children's educational progress. Although RD and MD are different learning disabilities, they frequently co-occur. Separate theories have implicated the cerebellum and its cortical connections in RD and in MD, suggesting that children with combined reading and math disability (RD + MD) may have altered cerebellar function and disrupted functional connectivity between the cerebellum and cortex during reading and during arithmetic processing. Methods Here we compared Control and RD + MD groups during a reading task as well as during an arithmetic task on (i) activation of the cerebellum, (ii) background functional connectivity, and (iii) task-dependent functional connectivity between the cerebellum and the cortex. Results The two groups (Control, RD + MD) did not differ for either task (reading, arithmetic) on any of the three measures (activation, background functional connectivity, task-dependent functional connectivity). Conclusion These results do not support theories that children's deficits in reading and math originate in the cerebellum.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
20
|
Park Y, Zhang Y, Schwartz F, Iuculano T, Chang H, Menon V. Integrated number sense tutoring remediates aberrant neural representations in children with mathematical disabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.587577. [PMID: 38645139 PMCID: PMC11030345 DOI: 10.1101/2024.04.09.587577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, 'inverted U-shaped' neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions.
Collapse
Affiliation(s)
- Yunji Park
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Flora Schwartz
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Teresa Iuculano
- Centre National de la Recherche Scientifique & Université Paris Sorbonne, Paris 75016, France
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305
- Stanford Neuroscience Institute, Stanford University, Stanford, California, CA, 94305
- Symbolic Systems Program, Stanford University, Stanford, California, CA, 94305
| |
Collapse
|
21
|
Anobile G, Petrizzo I, Paiardini D, Burr D, Cicchini GM. Sensorimotor mechanisms selective to numerosity derived from individual differences. eLife 2024; 12:RP92169. [PMID: 38564239 PMCID: PMC10987086 DOI: 10.7554/elife.92169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
We have previously shown that after few seconds of adaptation by finger-tapping, the perceived numerosity of spatial arrays and temporal sequences of visual objects displayed near the tapping region is increased or decreased, implying the existence of a sensorimotor numerosity system (Anobile et al., 2016). To date, this mechanism has been evidenced only by adaptation. Here, we extend our finding by leveraging on a well-established covariance technique, used to unveil and characterize 'channels' for basic visual features such as colour, motion, contrast, and spatial frequency. Participants were required to press rapidly a key a specific number of times, without counting. We then correlated the precision of reproduction for various target number presses between participants. The results showed high positive correlations for nearby target numbers, scaling down with numerical distance, implying tuning selectivity. Factor analysis identified two factors, one for low and the other for higher numbers. Principal component analysis revealed two bell-shaped covariance channels, peaking at different numerical values. Two control experiments ruled out the role of non-numerical strategies based on tapping frequency and response duration. These results reinforce our previous reports based on adaptation, and further suggest the existence of at least two sensorimotor number channels responsible for translating symbolic numbers into action sequences.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - Daisy Paiardini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
- School of Psychology, University of Sydney, Camperdown NSWSydneyAustralia
| | | |
Collapse
|
22
|
Zang Z, Chi X, Luan M, Hu S, Zhou K, Liu J. Inter-individual, hemispheric and sex variability of brain activations during numerosity processing. Brain Struct Funct 2024; 229:459-475. [PMID: 38197958 PMCID: PMC10917853 DOI: 10.1007/s00429-023-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Numerosity perception is a fundamental and innate cognitive function shared by both humans and many animal species. Previous research has primarily focused on exploring the spatial and functional consistency of neural activations that were associated with the processing of numerosity information. However, the inter-individual variability of brain activations of numerosity perception remains unclear. In the present study, with a large-sample functional magnetic resonance imaging (fMRI) dataset (n = 460), we aimed to localize the functional regions related to numerosity perceptions and explore the inter-individual, hemispheric, and sex differences within these brain regions. Fifteen subject-specific activated regions, including the anterior intraparietal sulcus (aIPS), posterior intraparietal sulcus (pIPS), insula, inferior frontal gyrus (IFG), inferior temporal gyrus (ITG), premotor area (PM), middle occipital gyrus (MOG) and anterior cingulate cortex (ACC), were delineated in each individual and then used to create a functional probabilistic atlas to quantify individual variability in brain activations of numerosity processing. Though the activation percentages of most regions were higher than 60%, the intersections of most regions across individuals were considerably lower, falling below 50%, indicating substantial variations in brain activations related to numerosity processing among individuals. Furthermore, significant hemispheric and sex differences in activation location, extent, and magnitude were also found in these regions. Most activated regions in the right hemisphere had larger activation volumes and activation magnitudes, and were located more lateral and anterior than their counterparts in the left hemisphere. In addition, in most of these regions, males displayed stronger activations than females. Our findings demonstrate large inter-individual, hemispheric, and sex differences in brain activations related to numerosity processing, and our probabilistic atlas can serve as a robust functional and spatial reference for mapping the numerosity-related neural networks.
Collapse
Affiliation(s)
- Zhongyao Zang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyue Chi
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Mengkai Luan
- Department of Psychology, Shanghai University of Sport, 650 Qing Yuan Huan Road, Shanghai, 200438, People's Republic of China
| | - Siyuan Hu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Jia Liu
- Tsinghua Laboratory of Brain and Intelligence, Department of Psychology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Pedemonte B, Pereira CW, Borghesani V, Ebbert M, Allen IE, Pinheiro-Chagas P, De Leon J, Miller Z, Tee BL, Gorno-Tempini ML. Profiles of mathematical deficits in children with dyslexia. NPJ SCIENCE OF LEARNING 2024; 9:7. [PMID: 38360731 PMCID: PMC10869821 DOI: 10.1038/s41539-024-00217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Despite a high rate of concurrent mathematical difficulties among children with dyslexia, we still have limited information regarding the prevalence and severity of mathematical deficits in this population. To address this gap, we developed a comprehensive battery of cognitive tests, known as the UCSF Mathematical Cognition Battery (MCB), with the aim of identifying deficits in four distinct mathematical domains: number processing, arithmetical procedures, arithmetic facts retrieval, and geometrical abilities. The mathematical abilities of a cohort of 75 children referred to the UCSF Dyslexia Center with a diagnosis of dyslexia, along with 18 typically developing controls aged 7 to 16, were initially evaluated using a behavioral neurology approach. A team of professional clinicians classified the 75 children with dyslexia into five groups, based on parents' and teachers' reported symptoms and clinical history. These groups included children with no mathematical deficits and children with mathematical deficits in number processing, arithmetical procedures, arithmetic facts retrieval, or geometrical abilities. Subsequently, the children underwent evaluation using the MCB to determine concordance with the clinicians' impressions. Additionally, neuropsychological and cognitive standardized tests were administered. Our study reveals that within a cohort of children with dyslexia, 66% exhibit mathematical deficits, and among those with mathematical deficits, there is heterogeneity in the nature of these deficits. If these findings are confirmed in larger samples, they can potentially pave the way for new diagnostic approaches, consistent subtype classification, and, ultimately personalized interventions.
Collapse
Affiliation(s)
- B Pedemonte
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
- Dyslexia Center, University of California, San Francisco, CA, USA.
| | - C W Pereira
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - V Borghesani
- Faculty of Psychology and Educational Sciences, Université de Genève, Genève, CH, Switzerland
| | - M Ebbert
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - I E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - P Pinheiro-Chagas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - J De Leon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - Z Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - B L Tee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| | - M L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Dyslexia Center, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Castaldi E, Bonaudo C, Maduli G, Anobile G, Pedone A, Capelli F, Arrighi R, Della Puppa A. Neurocognitive Assessment of Mathematics-Related Capacities in Neurosurgical Patients. Brain Sci 2024; 14:69. [PMID: 38248284 PMCID: PMC10813954 DOI: 10.3390/brainsci14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
A precise neuropsychological assessment is of the utmost importance for neurosurgical patients undergoing the surgical excision of cerebral lesions. The assessment of mathematical abilities is usually limited to arithmetical operations while other fundamental visuo-spatial aspects closely linked to mathematics proficiency, such as the perception of numerical quantities and geometrical reasoning, are completely neglected. We evaluated these abilities with two objective and reproducible psychophysical tests, measuring numerosity perception and non-symbolic geometry, respectively. We tested sixteen neuro-oncological patients before the operation and six after the operation with classical neuropsychological tests and with two psychophysical tests. The scores of the classical neuropsychological tests were very heterogeneous, possibly due to the distinct location and histology of the tumors that might have spared (or not) brain areas subserving these abilities or allowed for plastic reorganization. Performance in the two non-symbolic tests reflected, on average, the presumed functional role of the lesioned areas, with participants with parietal and frontal lesions performing worse on these tests than patients with occipital and temporal lesions. Single-case analyses not only revealed some interesting exceptions to the group-level results (e.g., patients with parietal lesions performing well in the numerosity test), but also indicated that performance in the two tests was independent of non-verbal reasoning and visuo-spatial working memory. Our results highlight the importance of assessing non-symbolic numerical and geometrical abilities to complement typical neuropsychological batteries. However, they also suggest an avoidance of reliance on an excessively rigid localizationist approach when evaluating the neuropsychological profile of oncological patients.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Camilla Bonaudo
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Agnese Pedone
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Federico Capelli
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Alessandro Della Puppa
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| |
Collapse
|
25
|
Aisenberg-Shafran D, Henik A, Gronau N. Observing ageism implicitly using the numerical parity judgment task. Sci Rep 2023; 13:21195. [PMID: 38040733 PMCID: PMC10692192 DOI: 10.1038/s41598-023-40876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/17/2023] [Indexed: 12/03/2023] Open
Abstract
Objective magnitude representations may be prone to subjective percepts when judging human beings. An elderly man is clearly "large" in terms of age. But, is he truly perceived as "big" in our minds? We investigated whether "objective" representation of age interacts with subjective stereotypical percepts of aging, using a numeral classification task preceded by prime images containing human figures. First, prime images of children and young adults demonstrated a positive correlation between perceived age and numerical size. Second, negatively and positively valenced prime images were associated with small and big numerical values, respectively. Third, joint effects of age and valence on numerical value perception revealed a linkage between old adults and small numerical values. It seems that magnitude perception is vulnerable to implicit subjective biases and stereotypical judgments dominate objective magnitude representation.
Collapse
Affiliation(s)
- D Aisenberg-Shafran
- Department of Clinical Psychology of Adulthood and Aging, Ruppin Academic Center, 4025000, Emek Hefer, Israel.
| | - A Henik
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - N Gronau
- Department of Psychology, The Open University, Raanana, Israel
| |
Collapse
|
26
|
Estévez-Pérez N, Sanabria-Díaz G, Castro-Cañizares D, Reigosa-Crespo V, Melie-García L. Anatomical connectivity in children with developmental dyscalculia: A graph theory study. PROGRESS IN BRAIN RESEARCH 2023; 282:17-47. [PMID: 38035908 DOI: 10.1016/bs.pbr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Current theories postulate that numerical processing depends upon a brain circuit formed by regions and their connections; specialized in the representation and manipulation of the numerical properties of stimuli. It has been suggested that the damage of these network may cause Developmental Dyscalculia (DD): a persistent neurodevelopmental disorder that significantly interferes with academic performance and daily life activities that require mastery of mathematical notions and operations. However, most of the studies on the brain foundations of DD have focused on regions of interest associated with numerical processing, and have not addressed numerical cognition as a complex network phenomenon. The present study explored DD using a Graph Theory network approach. We studied the association between topological measures of integration and segregation of information processing in the brain proposed by Graph Theory; and individual variability in numerical performance in a group of 11 school-aged children with DD (5 of which presented with comorbidity with Developmental Dyslexia, the specific learning disorder for reading) and 17 typically developing peers. A statistically significant correlation was found between the Weber fraction (a measure of numerical representations' precision) and the Clustering Index (a measure of segregation of information processing) in the whole sample. The DD group showed significantly lower Characteristic Path Length (average shortest path length among all pairs of regions in the brain network) compared to controls. Also, differences in critical regions for the brain network performance (hubs) were found between groups. The presence of limbic hubs characterized the DD brain network while right Temporal and Frontal hubs found in controls were absent in the DD group. Our results suggest that the DD may be associated with alterations in anatomical brain connectivity that hinder the capacity to integrate and segregate numerical information.
Collapse
Affiliation(s)
- Nancy Estévez-Pérez
- Neurodevelopment Department, Brain Mapping Division, Cuban Neurosciences Center, Playa, Cuba.
| | - Gretel Sanabria-Díaz
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilka Castro-Cañizares
- Center for Advanced Research in Education, Institute of Education. Universidad de Chile, Santiago, Chile; School of Psychology, Universidad Mayor, Santiago, Chile
| | - Vivian Reigosa-Crespo
- Catholic University of Uruguay, Montevideo, Uruguay; Stella Maris College, Montevideo, Uruguay
| | - Lester Melie-García
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Kirschhock ME, Nieder A. Association neurons in the crow telencephalon link visual signs to numerical values. Proc Natl Acad Sci U S A 2023; 120:e2313923120. [PMID: 37903264 PMCID: PMC10636302 DOI: 10.1073/pnas.2313923120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Many animals can associate signs with numerical values and use these signs in a goal-directed way during task performance. However, the neuronal basis of this semantic association has only rarely been investigated, and so far only in primates. How mechanisms of number associations are implemented in the distinctly evolved brains of other animal taxa such as birds is currently unknown. Here, we explored this semantic number-sign mapping by recording single-neuron activity in the crows' nidopallium caudolaterale (NCL), a brain structure critically involved in avian numerical cognition. Crows were trained to associate visual shapes with varying numbers of items in a number production task. The responses of many NCL neurons during stimulus presentation reflected the numerical values associated with visual shapes in a behaviorally relevant way. Consistent with the crow's better behavioral performance with signs, neuronal representations of numerical values extracted from shapes were more selective compared to those from dot arrays. The existence of number association neurons in crows points to a phylogenetic preadaptation of the brains of cognitively advanced vertebrates to link visual shapes with numerical meaning.
Collapse
Affiliation(s)
- Maximilian E. Kirschhock
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
28
|
Reigosa-Crespo V, Estévez-Pérez N. Conceptual foundations of early numeracy: Evidence from infant brain data. PROGRESS IN BRAIN RESEARCH 2023; 282:1-15. [PMID: 38035906 DOI: 10.1016/bs.pbr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Understanding the conceptual resources that children bring to mathematics learning is crucial for developing effective instruction and interventions. Despite the considerable number of studies examining the neural underpinnings of number representations in adults and the growing number of reports in children, very few studies have examined the neural correlates of the link between foundational resources related to numerical information and symbolic number representations in infants. There is currently an active debate about which foundational resources are critical for symbolic mathematics. Is early numerical discrimination best explained by a holistic and generalized sense of magnitude rather than a number sense? Does early number sense provide the conceptual basis for mapping numerical symbols to their meaning? Are foundational number systems marginal while children learn to count and perform symbolic arithmetic, and only later children map non symbolic representations of numerical magnitudes onto symbols? After describing the mainstream theories of numerical cognition and the sources of controversy, we review recent studies of the neural bases of human infants' numerical performance with the aim of clarifying the link between early conceptual resources and symbolic number systems as children's mathematical minds develop.
Collapse
Affiliation(s)
- Vivian Reigosa-Crespo
- Catholic University of Uruguay, Montevideo, Uruguay; Stella Maris College, Montevideo, Uruguay.
| | - Nancy Estévez-Pérez
- Neurodevelopment Department, Brain Mapping Division, Cuban Neurosciences Center, Playa, Cuba
| |
Collapse
|
29
|
Decarli G, Zingaro D, Surian L, Piazza M. Number sense at 12 months predicts 4-year-olds' maths skills. Dev Sci 2023; 26:e13386. [PMID: 36869432 DOI: 10.1111/desc.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023]
Abstract
Preverbal infants spontaneously represent the number of objects in collections. Is this 'sense of number' (also referred to as Approximate Number System, ANS) part of the cognitive foundations of mathematical skills? Multiple studies reported a correlation between the ANS and mathematical achievement in children. However, some have suggested that such correlation might be mediated by general-purpose inhibitory skills. We addressed the question using a longitudinal approach: we tested the ANS of 60 12 months old infants and, when they were 4 years old (final N = 40), their symbolic math achievement as well as general intelligence and inhibitory skills. Results showed that the ANS at 12 months is a specific predictor of later maths skills independent from general intelligence or inhibitory skills. The correlation between ANS and maths persists when both abilities are measured at four years. These results confirm that the ANS has an early, specific and longstanding relation with mathematical abilities in childhood. RESEARCH HIGHLIGHTS: In the literature there is a lively debate about the correlation between the ANS and maths skills. We longitudinally tested a sample of 60 preverbal infants at 12 months and rested them at 4 years (final sample of 40 infants). The ANS tested at 12 months predicted later symbolic mathematical skills at 4 years, even when controlling for inhibition, general intelligence and perceptual skills. The ANS tested at 4 years remained linked with symbolic maths skills, confirming this early and longstanding relation in childhood.
Collapse
Affiliation(s)
- Gisella Decarli
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | | | - Luca Surian
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Italy
| |
Collapse
|
30
|
Salillas E, Benavides-Varela S, Semenza C. The brain lateralization and development of math functions: progress since Sperry, 1974. Front Hum Neurosci 2023; 17:1288154. [PMID: 37964804 PMCID: PMC10641455 DOI: 10.3389/fnhum.2023.1288154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
In 1974, Roger Sperry, based on his seminal studies on the split-brain condition, concluded that math was almost exclusively sustained by the language dominant left hemisphere. The right hemisphere could perform additions up to sums less than 20, the only exception to a complete left hemisphere dominance. Studies on lateralized focal lesions came to a similar conclusion, except for written complex calculation, where spatial abilities are needed to display digits in the right location according to the specific requirements of calculation procedures. Fifty years later, the contribution of new theoretical and instrumental tools lead to a much more complex picture, whereby, while left hemisphere dominance for math in the right-handed is confirmed for most functions, several math related tasks seem to be carried out in the right hemisphere. The developmental trajectory in the lateralization of math functions has also been clarified. This corpus of knowledge is reviewed here. The right hemisphere does not simply offer its support when calculation requires generic space processing, but its role can be very specific. For example, the right parietal lobe seems to store the operation-specific spatial layout required for complex arithmetical procedures and areas like the right insula are necessary in parsing complex numbers containing zero. Evidence is found for a complex orchestration between the two hemispheres even for simple tasks: each hemisphere has its specific role, concurring to the correct result. As for development, data point to right dominance for basic numerical processes. The picture that emerges at school age is a bilateral pattern with a significantly greater involvement of the right-hemisphere, particularly in non-symbolic tasks. The intraparietal sulcus shows a left hemisphere preponderance in response to symbolic stimuli at this age.
Collapse
Affiliation(s)
- Elena Salillas
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
| | - Carlo Semenza
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
31
|
Georges C, Cornu V, Schiltz C. The importance of spatial language for early numerical development in preschool: Going beyond verbal number skills. PLoS One 2023; 18:e0292291. [PMID: 37773948 PMCID: PMC10540965 DOI: 10.1371/journal.pone.0292291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023] Open
Abstract
Recent evidence suggests that spatial language in preschool positively affects the development of verbal number skills, as indexed by aggregated performances on counting and number naming tasks. We firstly aimed to specify whether spatial language (the knowledge of locative prepositions) significantly relates to both of these measures. In addition, we assessed whether the predictive value of spatial language extends beyond verbal number skills to numerical subdomains without explicit verbal component, such as number writing, symbolic magnitude classifications, ordinal judgments and numerosity comparisons. To determine the unique contributions of spatial language to these numerical skills, we controlled in our regression analyses for intrinsic and extrinsic spatial abilities, phonological awareness as well as age, socioeconomic status and home language. With respect to verbal number skills, it appeared that spatial language uniquely predicted forward and backward counting but not number naming, which was significantly affected only by phonological awareness. Regarding numerical tasks that do not contain explicit verbal components, spatial language did not relate to number writing or numerosity comparisons. Conversely, it explained unique variance in symbolic magnitude classifications and was the only predictor of ordinal judgments. These findings thus highlight the importance of spatial language for early numerical development beyond verbal number skills and suggest that the knowledge of spatial terms is especially relevant for processing cardinal and ordinal relations between symbolic numbers. Promoting spatial language in preschool might thus be an interesting avenue for fostering the acquisition of these symbolic numerical skills prior to formal schooling.
Collapse
Affiliation(s)
- Carrie Georges
- Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-Belval, Luxembourg
| | - Véronique Cornu
- Centre pour le Développement des Apprentissages Grande-Duchesse Maria Teresa, Ministère de l’Éducation Nationale, de l’Enfance et de la Jeunesse, Strassen, Luxembourg
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-Belval, Luxembourg
| |
Collapse
|
32
|
Chen CC, Jang S, Piazza M, Hyde DC. Characterizing exact arithmetic abilities before formal schooling. Cognition 2023; 238:105481. [PMID: 37182405 DOI: 10.1016/j.cognition.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Children appear to have some arithmetic abilities before formal instruction in school, but the extent of these abilities as well as the mechanisms underlying them are poorly understood. Over two studies, an initial exploratory study of preschool children in the U.S. (N = 207; Age = 2.89-4.30 years) and a pre-registered replication of preschool children in Italy (N = 130; Age = 3-6.33 years), we documented some basic behavioral signatures of exact arithmetic using a non-symbolic subtraction task. Furthermore, we investigated the underlying mechanisms by analyzing the relationship between individual differences in exact subtraction and assessments of other numerical and non-numerical abilities. Across both studies, children performed above chance on the exact non-symbolic arithmetic task, generally showing better performance on problems involving smaller quantities compared to those involving larger quantities. Furthermore, individual differences in non-verbal approximate numerical abilities and exact cardinal number knowledge were related to different aspects of subtraction performance. Specifically, non-verbal approximate numerical abilities were related to subtraction performance in older but not younger children. Across both studies we found evidence that cardinal number knowledge was related to performance on subtraction problems where the answer was zero (i.e., subtractive negation problems). Moreover, subtractive negation problems were only solved above chance by children who had a basic understanding of cardinality. Together these finding suggest that core non-verbal numerical abilities, as well as emerging knowledge of symbolic numbers provide a basis for some, albeit limited, exact arithmetic abilities before formal schooling.
Collapse
Affiliation(s)
- Chi-Chuan Chen
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Selim Jang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Manuela Piazza
- Center for Mind/Brain Sciences (CiMEC), University of Trento, Italy
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
33
|
Short DS, McLean JF. The relationship between numerical mapping abilities, maths achievement and socioeconomic status in 4- and 5-year-old children. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2023; 93:641-657. [PMID: 36645028 DOI: 10.1111/bjep.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/24/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Early numeracy skills are associated with academic and life-long outcomes. Children from low-income backgrounds typically have poorer maths outcomes, and their learning can already be disadvantaged before they begin formal schooling. Understanding the relationship between the skills that support the acquisition of early maths skills could scaffold maths learning and improve life chances. AIMS The present study aimed to examine how the ability of children from different SES backgrounds to map between symbolic (Arabic numerals) and non-symbolic (dot arrays) at two difficulty ratios related to their math performance. SAMPLE Participants were 398 children in their first year of formal schooling (Mean age = 60 months), and 75% were from low SES backgrounds. METHOD The children completed symbolic to non-symbolic and non-symbolic to symbolic mapping tasks at two difficulty ratios (1:2; 2:3) plus standardized maths tasks. RESULTS The results showed that all the children performed better for symbolic to non-symbolic mapping and when the ratio was 1:2. Mapping task performance was significantly related to maths task achievement, but low-SES children showed significantly lower performance on all tasks. CONCLUSION The results suggest that mapping tasks could be a useful way to identify children at risk of low maths attainment.
Collapse
Affiliation(s)
- Dawn S Short
- Division of Psychology, Abertay University, Dundee, UK
| | | |
Collapse
|
34
|
Wencheng W, Ge Y, Zuo Z, Chen L, Qin X, Zuxiang L. Visual number sense for real-world scenes shared by deep neural networks and humans. Heliyon 2023; 9:e18517. [PMID: 37560656 PMCID: PMC10407052 DOI: 10.1016/j.heliyon.2023.e18517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Recently, visual number sense has been identified from deep neural networks (DNNs). However, whether DNNs have the same capacity for real-world scenes, rather than the simple geometric figures that are often tested, is unclear. In this study, we explore the number perception of scenes using AlexNet and find that numerosity can be represented by the pattern of group activation of the category layer units. The global activation of these units increases with the number of objects in the scene, and the variations in their activation decrease accordingly. By decoding the numerosity from this pattern, we reveal that the embedding coefficient of a scene determines the likelihood of potential objects to contribute to numerical perception. This was demonstrated by the more optimized performance for pictures with relatively high embedding coefficients in both DNNs and humans. This study for the first time shows that a distinct feature in visual environments, revealed by DNNs, can modulate human perception, supported by a group-coding mechanism.
Collapse
Affiliation(s)
- Wu Wencheng
- AHU-IAI AI Joint Laboratory, Anhui University, Hefei, 230601, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
| | - Yingxi Ge
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Zhentao Zuo
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Lin Chen
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xu Qin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Hefei, 230601, China
- Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei, 230601, China
- School of Computer Science and Technology, Anhui University, Hefei 230601, China
| | - Liu Zuxiang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
35
|
Yuan X, Ni L, Li H, Zhang D, Zhou K. The neural correlates of individual differences in numerosity perception: A voxel-based morphometry study. iScience 2023; 26:107392. [PMID: 37554464 PMCID: PMC10405316 DOI: 10.1016/j.isci.2023.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Numerosity perception is a fundamental cognitive function in humans and animals. Using an individual difference approach with a comprehensive dataset (N = 249), we performed a voxel-based morphometry analysis to unravel the neuroanatomical substrates associated with individual differences in numerosity perception sensitivity, measured by a classical non-symbolic numerical judgment task. Results showed that greater gray matter volume (GMV) in the left cerebellum, right temporal pole, and right parahippocampal was positively correlated to higher perceptual sensitivity to numerosity. In contrast, the GMV in the left intraparietal sulcus, and bilateral precentral/postcentral gyrus was negatively correlated to the sensitivity of numerosity perception. These findings indicate that a wide range of brain structures, rather than a specific anatomical structure or circuit, forms the neuroanatomical basis of numerosity perception, lending support to the emerging network view of the neural representation of numerosity. This work contributes to a more comprehensive understanding of how the brain processes numerical information. •Unveils neuroanatomical basis of numerosity perception •Discovers positive and negative greater GMV correlations •Links GMV in a wide range of brain regions to numerical sensitivity •Supports the network view of the neural representation of numerosity perception
Collapse
Affiliation(s)
- Xinyi Yuan
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Liangping Ni
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Huan Li
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Dai Zhang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Sury D, Rubinsten O. Implicit Processing of Numerical Order: Evidence from a Continuous Interocular Flash Suppression Study. J Intell 2023; 11:jintelligence11050096. [PMID: 37233345 DOI: 10.3390/jintelligence11050096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Processing the ordered relationships between sequential items is a key element in many cognitive abilities that are important for survival. Specifically, order may play a crucial role in numerical processing. Here, we assessed the existence of a cognitive system designed to implicitly evaluate numerical order, by combining continuous flash suppression with a priming method in a numerical enumeration task. In two experiments and diverse statistical analysis, targets that required numerical enumeration were preceded by an invisibly ordered or non-ordered numerical prime sequence. The results of both experiments showed that enumeration for targets that appeared after an ordered prime was significantly faster, while the ratio of the prime sequences produced no significant effect. The findings suggest that numerical order is processed implicitly and affects a basic cognitive ability: enumeration of quantities.
Collapse
Affiliation(s)
- Dana Sury
- Department of Learning Disabilities, Faculty of Education, Beit Berl College, Kfar Saba 4490500, Israel
| | - Orly Rubinsten
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
37
|
Gennari G, Dehaene S, Valera C, Dehaene-Lambertz G. Spontaneous supra-modal encoding of number in the infant brain. Curr Biol 2023; 33:1906-1915.e6. [PMID: 37071994 DOI: 10.1016/j.cub.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
The core knowledge hypothesis postulates that infants automatically analyze their environment along abstract dimensions, including numbers. According to this view, approximate numbers should be encoded quickly, pre-attentively, and in a supra-modal manner by the infant brain. Here, we directly tested this idea by submitting the neural responses of sleeping 3-month-old infants, measured with high-density electroencephalography (EEG), to decoders designed to disentangle numerical and non-numerical information. The results show the emergence, in approximately 400 ms, of a decodable number representation, independent of physical parameters, that separates auditory sequences of 4 vs. 12 tones and generalizes to visual arrays of 4 vs. 12 objects. Thus, the infant brain contains a number code that transcends sensory modality, sequential or simultaneous presentation, and arousal state.
Collapse
Affiliation(s)
- Giulia Gennari
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 75005 Paris, France
| | - Chanel Valera
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Lv J, Mao H, Zeng L, Wang X, Zhou X, Mou Y. The developmental relationship between nonsymbolic and symbolic fraction abilities. J Exp Child Psychol 2023; 232:105666. [PMID: 37043876 DOI: 10.1016/j.jecp.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 04/14/2023]
Abstract
A fundamental research question in quantitative cognition concerns the developmental relationship between nonsymbolic and symbolic quantitative abilities. This study examined this developmental relationship in abilities to process nonsymbolic and symbolic fractions. There were 99 6th graders (Mage = 11.86 years), 101 10th graders (Mage = 15.71 years), and 102 undergraduate and graduate students (Mage = 21.97 years) participating in this study, and their nonsymbolic and symbolic fraction abilities were measured with nonsymbolic and symbolic fraction comparison tasks, respectively. Nonsymbolic and symbolic fraction abilities were significantly correlated in all age groups even after controlling for the ability to process nonsymbolic absolute quantity and general cognitive abilities, including working memory and inhibitory control. Moreover, the strength of nonsymbolic-symbolic correlations was higher in 6th graders than in 10th graders and adults. These findings suggest a weakened association between nonsymbolic and symbolic fraction abilities during development, and this developmental pattern may be related with participants' increasing proficiency in symbolic fractions.
Collapse
Affiliation(s)
- Jianxiang Lv
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huomin Mao
- Affiliated Primary School of Sun Yat-sen University, Zhuhai Campus, Zhuhai 519000, China
| | - Liping Zeng
- Yangchun No. 1 Middle School, Guangdong 529600, China
| | - Xuqing Wang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Sixtus E, Krause F, Lindemann O, Fischer MH. A sensorimotor perspective on numerical cognition. Trends Cogn Sci 2023; 27:367-378. [PMID: 36764902 DOI: 10.1016/j.tics.2023.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Numbers are present in every part of modern society and the human capacity to use numbers is unparalleled in other species. Understanding the mental and neural representations supporting this capacity is of central interest to cognitive psychology, neuroscience, and education. Embodied numerical cognition theory suggests that beyond the seemingly abstract symbols used to refer to numbers, their underlying meaning is deeply grounded in sensorimotor experiences, and that our specific understanding of numerical information is shaped by actions related to our fingers, egocentric space, and experiences with magnitudes in everyday life. We propose a sensorimotor perspective on numerical cognition in which number comprehension and numerical proficiency emerge from grounding three distinct numerical core concepts: magnitude, ordinality, and cardinality.
Collapse
Affiliation(s)
- Elena Sixtus
- Empirical Childhood Research, University of Potsdam, Potsdam, Germany.
| | - Florian Krause
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Oliver Lindemann
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, The Netherlands
| | - Martin H Fischer
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
40
|
Klein E, Knops A. The two-network framework of number processing: a step towards a better understanding of the neural origins of developmental dyscalculia. J Neural Transm (Vienna) 2023; 130:253-268. [PMID: 36662281 PMCID: PMC10033479 DOI: 10.1007/s00702-022-02580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
Developmental dyscalculia is a specific learning disorder that persists over lifetime and can have an enormous impact on personal, health-related, and professional aspects of life. Despite its central importance, the origin both at the cognitive and neural level is not yet well understood. Several classification schemas of dyscalculia have been proposed, sometimes together with an associated deficit at the neural level. However, these explanations are (a) not providing an exhaustive framework that is at levels with the observed complexity of developmental dyscalculia at the behavioral level and (b) are largely mono-causal approaches focusing on gray matter deficits. We suggest that number processing is instead the result of context-dependent interaction of two anatomically largely separate, distributed but overlapping networks that function/cooperate in a closely integrated fashion. The proposed two-network framework (TNF) is the result of a series of studies in adults on the neural correlates underlying magnitude processing and arithmetic fact retrieval, which comprised neurofunctional imaging of various numerical tasks, the application of probabilistic fiber tracking to obtain well-defined connections, and the validation and modification of these results using disconnectome mapping in acute stroke patients. Emerged from data in adults, it represents the endpoint of the acquisition and use of mathematical competencies in adults. Yet, we argue that its main characteristics should already emerge earlier during development. Based on this TNF, we develop a classification schema of phenomenological subtypes and their underlying neural origin that we evaluate against existing propositions and the available empirical data.
Collapse
Affiliation(s)
- Elise Klein
- LaPsyDÉ, UMR CNRS 8240, Université Paris Cité, La Sorbonne, 46 Rue Saint-Jacques, 75005, Paris, France.
- Leibniz-Institut Fuer Wissensmedien Tuebingen, Tuebingen, Germany.
| | - André Knops
- LaPsyDÉ, UMR CNRS 8240, Université Paris Cité, La Sorbonne, 46 Rue Saint-Jacques, 75005, Paris, France
| |
Collapse
|
41
|
Mou Y, Zhang B, Hyde DC. Directionality in the interrelations between approximate number, verbal number, and mathematics in preschool-aged children. Child Dev 2023; 94:e67-e84. [PMID: 36528845 DOI: 10.1111/cdev.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fundamental question in numerical development concerns the directional relation between an early-emerging non-verbal approximate number system (ANS) and culturally acquired verbal number and mathematics knowledge. Using path models on longitudinal data collected in preschool children (Mage = 3.86 years; N = 216; 99 males; 80.8% White; 10.8% Multiracial, 3.8% Latino; 1.9% Black; collected 2013-2017) over 1 year, this study showed that earlier verbal number knowledge was associated with later ANS precision (average β = .32), even after controlling for baseline differences in numerical, general cognitive, and language abilities. In contrast, earlier ANS precision was not associated with later verbal number knowledge (β = -.07) or mathematics abilities (average β = .10). These results suggest that learning about verbal numbers is associated with a sharpening of pre-existing non-verbal numerical abilities.
Collapse
Affiliation(s)
- Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bo Zhang
- School of Labor and Employment Relations, University of Illinois Urbana-Champaign, Champaign, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
42
|
Krajcsi A, Kojouharova P. Stimulus frequency alone can account for the size effect in number comparison. Acta Psychol (Amst) 2023; 232:103817. [PMID: 36571893 DOI: 10.1016/j.actpsy.2022.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
In a number comparison task, the size effect (i.e, smaller values are easier to compare than larger values) is usually attributed to a psychophysics-based representation. However, alternative models assume that the size effect is a frequency effect: Smaller numbers are easier to process because they are observed more frequently. Previous studies have demonstrated that the frequency of the digits fundamentally influences the comparison size effect: In new number symbols, the frequency entirely determines the size effect. In contrast, in Arabic notation, the size effect aggregates the frequency in the actual session and the previous regular size effect. Here, we investigate whether the previously acquired regular size effect can depend on the frequency of the stimuli as well or on a psychophysics-based representation that is not yet active in new symbols. Participants in the study compared numbers that were denoted with new symbols, with the frequency of the symbols being changed throughout the session. We found that the frequency of the stimuli in both halves of the session was aggregated in the size effect. In addition, no psychophysics-based size effect was found throughout the session. These results confirm that the size effect can be created and shaped purely by the frequency of the symbols, while a psychophysics-based representation is not necessary to account for these size effect-related phenomena.
Collapse
Affiliation(s)
- Attila Krajcsi
- Cognitive Psychology Department, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Petia Kojouharova
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
| |
Collapse
|
43
|
Starling-Alves I, Gomides M, Santos FH. Preface. PROGRESS IN BRAIN RESEARCH 2023; 282:ix-xiii. [PMID: 38035912 DOI: 10.1016/s0079-6123(23)00124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
44
|
The approximate number system cannot be the leading factor in the acquisition of the first symbolic numbers. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
A refined description of initial symbolic number acquisition. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Anobile G, Bartoli M, Masi G, Tacchi A, Tinelli F. Math difficulties in attention deficit hyperactivity disorder do not originate from the visual number sense. Front Hum Neurosci 2022; 16:949391. [PMID: 36393991 PMCID: PMC9649814 DOI: 10.3389/fnhum.2022.949391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/12/2022] [Indexed: 07/28/2024] Open
Abstract
There is ample evidence from literature and clinical practice indicating mathematical difficulties in individuals with ADHD, even when there is no concomitant diagnosis of developmental dyscalculia. What factors underlie these difficulties is still an open question. Research on dyscalculia and neurotypical development suggests visual perception of numerosity (the number sense) as a building block for math learning. Participants with lower numerosity estimation thresholds (higher precision) are often those with higher math capabilities. Strangely, the role of numerosity perception in math skills in ADHD has been neglected, leaving open the question whether math difficulties in ADHD also originate from a deficitary visual number sense. In the current study we psychophysically measured numerosity thresholds and accuracy in a sample of children/adolescents with ADHD, but not concomitant dyscalculia (N = 20, 8-16 years). Math abilities were also measured by tasks indexing different mathematical competences. Numerosity performance and math scores were then compared to those obtained from an age-matched control group (N = 20). Bayesian statistics indicated no difference between ADHD and controls on numerosity perception, despite many of the symbolic math tasks being impaired in participants with ADHD. Moreover, the math deficits showed by the group with ADHD remained substantial even when numerosity thresholds were statistically regressed out. Overall, these results indicate that math difficulties in ADHD are unlikely to originate from an impaired visual number sense.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Mariaelisa Bartoli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gabriele Masi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Annalisa Tacchi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
47
|
Izard V, Pica P, Spelke ES. Visual foundations of Euclidean geometry. Cogn Psychol 2022; 136:101494. [PMID: 35751917 DOI: 10.1016/j.cogpsych.2022.101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 01/29/2023]
Abstract
Geometry defines entities that can be physically realized in space, and our knowledge of abstract geometry may therefore stem from our representations of the physical world. Here, we focus on Euclidean geometry, the geometry historically regarded as "natural". We examine whether humans possess representations describing visual forms in the same way as Euclidean geometry - i.e., in terms of their shape and size. One hundred and twelve participants from the U.S. (age 3-34 years), and 25 participants from the Amazon (age 5-67 years) were asked to locate geometric deviants in panels of 6 forms of variable orientation. Participants of all ages and from both cultures detected deviant forms defined in terms of shape or size, while only U.S. adults drew distinctions between mirror images (i.e. forms differing in "sense"). Moreover, irrelevant variations of sense did not disrupt the detection of a shape or size deviant, while irrelevant variations of shape or size did. At all ages and in both cultures, participants thus retained the same properties as Euclidean geometry in their analysis of visual forms, even in the absence of formal instruction in geometry. These findings show that representations of planar visual forms provide core intuitions on which humans' knowledge in Euclidean geometry could possibly be grounded.
Collapse
Affiliation(s)
- Véronique Izard
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France; Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, USA.
| | - Pierre Pica
- Instituto do Cérebro, Universidade Federal do Rio grande do Norte, R. do Horto, Lagoa Nova, Natal, RN 59076-550, Brazil; UMR 7023, Structures Formelles du Langage, Université Paris 8, 2 rue de la Liberté, 93200 Saint-Denis, France
| | - Elizabeth S Spelke
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, USA; NSF-STC Center for Brains, Minds and Machines, 43 Vassar St, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
49
|
Numerical estrangement and integration between symbolic and non-symbolic numerical information: Task-dependence and its link to math abilities in adults. Cognition 2022; 224:105067. [DOI: 10.1016/j.cognition.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
|
50
|
Symbolic number comparison and number priming do not rely on the same mechanism. Psychon Bull Rev 2022; 29:1969-1977. [PMID: 35503169 PMCID: PMC9568444 DOI: 10.3758/s13423-022-02108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
In elementary symbolic number processing, the comparison distance effect (in a comparison task, the task is more difficult with smaller numerical distance between the values) and the priming distance effect (in a number processing task, actual number is easier to process with a numerically close previous number) are two essential phenomena. While a dominant model, the approximate number system model, assumes that the two effects rely on the same mechanism, some other models, such as the discrete semantic system model, assume that the two effects are rooted in different generators. In a correlational study, here we investigate the relation of the two effects. Critically, the reliability of the effects is considered; therefore, a possible null result cannot be attributed to the attenuation of low reliability. The results showed no strong correlation between the two effects, even though appropriate reliabilities were provided. These results confirm the models of elementary number processing that assume distinct mechanisms behind number comparison and number priming.
Collapse
|