1
|
Butterworth B. Commentary on "Is there an innate sense of number in the brain?" by Lorenzi, Kobylkov, and Vallortigara. Cereb Cortex 2025; 35:bhaf015. [PMID: 39932127 DOI: 10.1093/cercor/bhaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 05/08/2025] Open
Abstract
Is there an innate sense of number? Lorenzi et al. (2025) argue that the ability to extract numerical information from the environment is vital for a wide range of species, suggesting "a likely common origin". Studies in different species show that the neural mechanism for doing this-numerosity-selective neurons-can be found in animals with no opportunity to learn. This leaves open important questions: How do numerosity-selective neurons code for numerosities? Is the code the same in different species? How do the neurons participate in arithmetical operations?
Collapse
Affiliation(s)
- Brian Butterworth
- UCL Institute of Cognitive Neuroscience, 17-19 Queen Square, London WC1N 3AZ, United Kingdom
| |
Collapse
|
2
|
Morton NJ, Grice M, Kemp S, Grace RC. Non-symbolic estimation of big and small ratios with accurate and noisy feedback. Atten Percept Psychophys 2024; 86:2169-2186. [PMID: 38992321 PMCID: PMC11410853 DOI: 10.3758/s13414-024-02914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
The ratio of two magnitudes can take one of two values depending on the order they are operated on: a 'big' ratio of the larger to smaller magnitude, or a 'small' ratio of the smaller to larger. Although big and small ratio scales have different metric properties and carry divergent predictions for perceptual comparison tasks, no psychophysical studies have directly compared them. Two experiments are reported in which subjects implicitly learned to compare pairs of brightnesses and line lengths by non-symbolic feedback based on the scaled big ratio, small ratio or difference of the magnitudes presented. Results of Experiment 1 showed all three operations were learned quickly and estimated with a high degree of accuracy that did not significantly differ across groups or between intensive and extensive modalities, though regressions on individual data suggested an overall predisposition towards differences. Experiment 2 tested whether subjects learned to estimate the operation trained or to associate stimulus pairs with correct responses. For each operation, Gaussian noise was added to the feedback that was constant for repetitions of each pair. For all subjects, coefficients for the added noise component were negative when entered in a regression model alongside the trained differences or ratios, and were statistically significant in 80% of individual cases. Thus, subjects learned to estimate the comparative operations and effectively ignored or suppressed the added noise. These results suggest the perceptual system is highly flexible in its capacity for non-symbolic computation, which may reflect a deeper connection between perceptual structure and mathematics.
Collapse
Affiliation(s)
- Nicola J Morton
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| | - Matt Grice
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Simon Kemp
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Odic D, Knowlton T, Wellwood A, Pietroski P, Lidz J, Halberda J. Observers Efficiently Extract the Minimal and Maximal Element in Perceptual Magnitude Sets: Evidence for a Bipartite Format. Psychol Sci 2024; 35:162-174. [PMID: 38236714 DOI: 10.1177/09567976231223130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The mind represents abstract magnitude information, including time, space, and number, but in what format is this information stored? We show support for the bipartite format of perceptual magnitudes, in which the measured value on a dimension is scaled to the dynamic range of the input, leading to a privileged status for values at the lowest and highest end of the range. In six experiments with college undergraduates, we show that observers are faster and more accurate to find the endpoints (i.e., the minimum and maximum) than any of the inner values, even as the number of items increases beyond visual short-term memory limits. Our results show that length, size, and number are represented in a dynamic format that allows for comparison-free sorting, with endpoints represented with an immediately accessible status, consistent with the bipartite model of perceptual magnitudes. We discuss the implications for theories of visual search and ensemble perception.
Collapse
Affiliation(s)
- Darko Odic
- Department of Psychology, University of British Columbia
| | | | | | | | - Jeffrey Lidz
- Department of Linguistics, University of Maryland, College Park
| | | |
Collapse
|
4
|
Tee J, Vitetta GM. Editorial: Advances in Shannon-based communications and computations approaches to understanding information processing in the brain. Front Comput Neurosci 2024; 17:1352772. [PMID: 38239897 PMCID: PMC10794650 DOI: 10.3389/fncom.2023.1352772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Affiliation(s)
- James Tee
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Giorgio M. Vitetta
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
O'Sullivan FM, Ryan TJ. If Engrams Are the Answer, What Is the Question? ADVANCES IN NEUROBIOLOGY 2024; 38:273-302. [PMID: 39008021 DOI: 10.1007/978-3-031-62983-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Engram labelling and manipulation methodologies are now a staple of contemporary neuroscientific practice, giving the impression that the physical basis of engrams has been discovered. Despite enormous progress, engrams have not been clearly identified, and it is unclear what they should look like. There is an epistemic bias in engram neuroscience toward characterizing biological changes while neglecting the development of theory. However, the tools of engram biology are exciting precisely because they are not just an incremental step forward in understanding the mechanisms of plasticity and learning but because they can be leveraged to inform theory on one of the fundamental mysteries in neuroscience-how and in what format the brain stores information. We do not propose such a theory here, as we first require an appreciation for what is lacking. We outline a selection of issues in four sections from theoretical biology and philosophy that engram biology and systems neuroscience generally should engage with in order to construct useful future theoretical frameworks. Specifically, what is it that engrams are supposed to explain? How do the different building blocks of the brain-wide engram come together? What exactly are these component parts? And what information do they carry, if they carry anything at all? Asking these questions is not purely the privilege of philosophy but a key to informing scientific hypotheses that make the most of the experimental tools at our disposal. The risk for not engaging with these issues is high. Without a theory of what engrams are, what they do, and the wider computational processes they fit into, we may never know when they have been found.
Collapse
Affiliation(s)
- Fionn M O'Sullivan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada.
| |
Collapse
|
6
|
van der Burght CL, Friederici AD, Maran M, Papitto G, Pyatigorskaya E, Schroën JAM, Trettenbrein PC, Zaccarella E. Cleaning up the Brickyard: How Theory and Methodology Shape Experiments in Cognitive Neuroscience of Language. J Cogn Neurosci 2023; 35:2067-2088. [PMID: 37713672 DOI: 10.1162/jocn_a_02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The capacity for language is a defining property of our species, yet despite decades of research, evidence on its neural basis is still mixed and a generalized consensus is difficult to achieve. We suggest that this is partly caused by researchers defining "language" in different ways, with focus on a wide range of phenomena, properties, and levels of investigation. Accordingly, there is very little agreement among cognitive neuroscientists of language on the operationalization of fundamental concepts to be investigated in neuroscientific experiments. Here, we review chains of derivation in the cognitive neuroscience of language, focusing on how the hypothesis under consideration is defined by a combination of theoretical and methodological assumptions. We first attempt to disentangle the complex relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on how conclusions that can be drawn from any experiment are inherently constrained by auxiliary assumptions, both theoretical and methodological, on which the validity of conclusions drawn rests. These issues are discussed in the context of classical experimental manipulations as well as study designs that employ novel approaches such as naturalistic stimuli and computational modeling. We conclude by proposing that a highly interdisciplinary field such as the cognitive neuroscience of language requires researchers to form explicit statements concerning the theoretical definitions, methodological choices, and other constraining factors involved in their work.
Collapse
Affiliation(s)
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matteo Maran
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Elena Pyatigorskaya
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Joëlle A M Schroën
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Patrick C Trettenbrein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
- University of Göttingen, Göttingen, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Fitch WT. Cellular computation and cognition. Front Comput Neurosci 2023; 17:1107876. [PMID: 38077750 PMCID: PMC10702520 DOI: 10.3389/fncom.2023.1107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 05/28/2024] Open
Abstract
Contemporary neural network models often overlook a central biological fact about neural processing: that single neurons are themselves complex, semi-autonomous computing systems. Both the information processing and information storage abilities of actual biological neurons vastly exceed the simple weighted sum of synaptic inputs computed by the "units" in standard neural network models. Neurons are eukaryotic cells that store information not only in synapses, but also in their dendritic structure and connectivity, as well as genetic "marking" in the epigenome of each individual cell. Each neuron computes a complex nonlinear function of its inputs, roughly equivalent in processing capacity to an entire 1990s-era neural network model. Furthermore, individual cells provide the biological interface between gene expression, ongoing neural processing, and stored long-term memory traces. Neurons in all organisms have these properties, which are thus relevant to all of neuroscience and cognitive biology. Single-cell computation may also play a particular role in explaining some unusual features of human cognition. The recognition of the centrality of cellular computation to "natural computation" in brains, and of the constraints it imposes upon brain evolution, thus has important implications for the evolution of cognition, and how we study it.
Collapse
Affiliation(s)
- W. Tecumseh Fitch
- Faculty of Life Sciences and Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Robins S. The 21st century engram. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1653. [PMID: 37177850 DOI: 10.1002/wcs.1653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The search for the engram-the neural mechanism of memory-has been a guiding research project for neuroscience since its emergence as a distinct scientific field. Recent developments in the tools and techniques available for investigating the mechanisms of memory have allowed researchers to proclaimed the search is over. While there is ongoing debate about the justification for that claim, renewed interest in the engram is clear. This attention highlights the impoverished status of the engram concept. As research accelerates, the simple characterization of the engram as an enduring physical change is stretched thin. Now that the engram commitment has been made more explicit, it must also be made more precise. If the project of 20th century neurobiology was finding the engram, the project of the 21st must be supplying a richer account of what's been found. This paper sketches a history of the engram, and a way forward. This article is categorized under: Philosophy > Foundations of Cognitive Science.
Collapse
Affiliation(s)
- Sarah Robins
- Department of Philosophy, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Pham T, Hansel C. Intrinsic threshold plasticity: cholinergic activation and role in the neuronal recognition of incomplete input patterns. J Physiol 2023; 601:3221-3239. [PMID: 35879872 PMCID: PMC9873838 DOI: 10.1113/jp283473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Activity-dependent changes in membrane excitability are observed in neurons across brain areas and represent a cell-autonomous form of plasticity (intrinsic plasticity; IP) that in itself does not involve alterations in synaptic strength (synaptic plasticity; SP). Non-homeostatic IP may play an essential role in learning, e.g. by changing the action potential threshold near the soma. A computational problem, however, arises from the implication that such amplification does not discriminate between synaptic inputs and therefore may reduce the resolution of input representation. Here, we investigate consequences of IP for the performance of an artificial neural network in (a) the discrimination of unknown input patterns and (b) the recognition of known/learned patterns. While negative changes in threshold potentials in the output layer indeed reduce its ability to discriminate patterns, they benefit the recognition of known but incompletely presented patterns. An analysis of thresholds and IP-induced threshold changes in published sets of physiological data obtained from whole-cell patch-clamp recordings from L2/3 pyramidal neurons in (a) the primary visual cortex (V1) of awake macaques and (b) the primary somatosensory cortex (S1) of mice in vitro, respectively, reveals a difference between resting and threshold potentials of ∼15 mV for V1 and ∼25 mV for S1, and a total plasticity range of ∼10 mV (S1). The most efficient activity pattern to lower threshold is paired cholinergic and electric activation. Our findings show that threshold reduction promotes a shift in neural coding strategies from accurate faithful representation to interpretative assignment of input patterns to learned object categories. KEY POINTS: Intrinsic plasticity may change the action potential threshold near the soma of neurons (threshold plasticity), thus altering the input-output function for all synaptic inputs 'upstream' of the plasticity location. A potential problem arising from this shared amplification is that it may reduce the ability to discriminate between different input patterns. Here, we assess the performance of an artificial neural network in the discrimination of unknown input patterns as well as the recognition of known patterns subsequent to changes in the spike threshold. We observe that negative changes in threshold potentials do reduce discrimination performance, but at the same time improve performance in an object recognition task, in particular when patterns are incompletely presented. Analysis of whole-cell patch-clamp recordings from pyramidal neurons in the primary somatosensory cortex (S1) of mice reveals that negative threshold changes preferentially result from electric stimulation of neurons paired with the activation of muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Tuan Pham
- Committee on Computational Neuroscience, The University of Chicago
| | - Christian Hansel
- Committee on Computational Neuroscience, The University of Chicago
- Department of Neurobiology, The University of Chicago
| |
Collapse
|
10
|
Pinotsis DA, Fridman G, Miller EK. Cytoelectric Coupling: Electric fields sculpt neural activity and "tune" the brain's infrastructure. Prog Neurobiol 2023; 226:102465. [PMID: 37210066 DOI: 10.1016/j.pneurobio.2023.102465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London EC1V 0HB, United Kingdom; The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gene Fridman
- Departments of Otolaryngology, Biomedical Engineering, and Electrical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
The molecular memory code and synaptic plasticity: A synthesis. Biosystems 2023; 224:104825. [PMID: 36610586 DOI: 10.1016/j.biosystems.2022.104825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
The most widely accepted view of memory in the brain holds that synapses are the storage sites of memory, and that memories are formed through associative modification of synapses. This view has been challenged on conceptual and empirical grounds. As an alternative, it has been proposed that molecules within the cell body are the storage sites of memory, and that memories are formed through biochemical operations on these molecules. This paper proposes a synthesis of these two views, grounded in a computational model of memory. Synapses are conceived as storage sites for the parameters of an approximate posterior probability distribution over latent causes. Intracellular molecules are conceived as storage sites for the parameters of a generative model. The model stipulates how these two components work together as part of an integrated algorithm for learning and inference.
Collapse
|
12
|
Suomala J, Kauttonen J. Computational meaningfulness as the source of beneficial cognitive biases. Front Psychol 2023; 14:1189704. [PMID: 37205079 PMCID: PMC10187636 DOI: 10.3389/fpsyg.2023.1189704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
The human brain has evolved to solve the problems it encounters in multiple environments. In solving these challenges, it forms mental simulations about multidimensional information about the world. These processes produce context-dependent behaviors. The brain as overparameterized modeling organ is an evolutionary solution for producing behavior in a complex world. One of the most essential characteristics of living creatures is that they compute the values of information they receive from external and internal contexts. As a result of this computation, the creature can behave in optimal ways in each environment. Whereas most other living creatures compute almost exclusively biological values (e.g., how to get food), the human as a cultural creature computes meaningfulness from the perspective of one's activity. The computational meaningfulness means the process of the human brain, with the help of which an individual tries to make the respective situation comprehensible to herself to know how to behave optimally. This paper challenges the bias-centric approach of behavioral economics by exploring different possibilities opened up by computational meaningfulness with insight into wider perspectives. We concentrate on confirmation bias and framing effect as behavioral economics examples of cognitive biases. We conclude that from the computational meaningfulness perspective of the brain, the use of these biases are indispensable property of an optimally designed computational system of what the human brain is like. From this perspective, cognitive biases can be rational under some conditions. Whereas the bias-centric approach relies on small-scale interpretable models which include only a few explanatory variables, the computational meaningfulness perspective emphasizes the behavioral models, which allow multiple variables in these models. People are used to working in multidimensional and varying environments. The human brain is at its best in such an environment and scientific study should increasingly take place in such situations simulating the real environment. By using naturalistic stimuli (e.g., videos and VR) we can create more realistic, life-like contexts for research purposes and analyze resulting data using machine learning algorithms. In this manner, we can better explain, understand and predict human behavior and choice in different contexts.
Collapse
Affiliation(s)
- Jyrki Suomala
- Department of NeuroLab, Laurea University of Applied Sciences, Vantaa, Finland
- *Correspondence: Jyrki Suomala,
| | - Janne Kauttonen
- Competences, RDI and Digitalization, Haaga-Helia University of Applied Sciences, Helsinki, Finland
| |
Collapse
|
13
|
Gallistel CR, Johansson F, Jirenhed DA, Rasmussen A, Ricci M, Hesslow G. Quantitative properties of the creation and activation of a cell-intrinsic duration-encoding engram. Front Comput Neurosci 2022; 16:1019812. [PMID: 36405788 PMCID: PMC9669310 DOI: 10.3389/fncom.2022.1019812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
The engram encoding the interval between the conditional stimulus (CS) and the unconditional stimulus (US) in eyeblink conditioning resides within a small population of cerebellar Purkinje cells. CSs activate this engram to produce a pause in the spontaneous firing rate of the cell, which times the CS-conditional blink. We developed a Bayesian algorithm that finds pause onsets and offsets in the records from individual CS-alone trials. We find that the pause consists of a single unusually long interspike interval. Its onset and offset latencies and their trial-to-trial variability are proportional to the CS-US interval. The coefficient of variation (CoV = σ/μ) are comparable to the CoVs for the conditional eye blink. The average trial-to-trial correlation between the onset latencies and the offset latencies is close to 0, implying that the onsets and offsets are mediated by two stochastically independent readings of the engram. The onset of the pause is step-like; there is no decline in firing rate between the onset of the CS and the onset of the pause. A single presynaptic spike volley suffices to trigger the reading of the engram; and the pause parameters are unaffected by subsequent volleys. The Fano factors for trial-to-trial variations in the distribution of interspike intervals within the intertrial intervals indicate pronounced non-stationarity in the endogenous spontaneous spiking rate, on which the CS-triggered firing pause supervenes. These properties of the spontaneous firing and of the engram read out may prove useful in finding the cell-intrinsic, molecular-level structure that encodes the CS-US interval.
Collapse
Affiliation(s)
| | - Fredrik Johansson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Dan-Anders Jirenhed
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Matthew Ricci
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
|
15
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Mishra P, Narayanan R. Conjunctive changes in multiple ion channels mediate activity-dependent intrinsic plasticity in hippocampal granule cells. iScience 2022; 25:103922. [PMID: 35252816 PMCID: PMC8894279 DOI: 10.1016/j.isci.2022.103922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Plasticity in the brain is ubiquitous. How do neurons and networks encode new information and simultaneously maintain homeostasis in the face of such ubiquitous plasticity? Here, we unveil a form of neuronal plasticity in rat hippocampal granule cells, which is mediated by conjunctive changes in HCN, inward-rectifier potassium, and persistent sodium channels induced by theta-modulated burst firing, a behaviorally relevant activity pattern. Cooperation and competition among these simultaneous changes resulted in a unique physiological signature: sub-threshold excitability and temporal summation were reduced without significant changes in action potential firing, together indicating a concurrent enhancement of supra-threshold excitability. This form of intrinsic plasticity was dependent on calcium influx through L-type calcium channels and inositol trisphosphate receptors. These observations demonstrate that although brain plasticity is ubiquitous, strong systemic constraints govern simultaneous plasticity in multiple components-referred here as plasticity manifolds-thereby providing a cellular substrate for concomitant encoding and homeostasis in engram cells.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Akhlaghpour H. An RNA-Based Theory of Natural Universal Computation. J Theor Biol 2021; 537:110984. [PMID: 34979104 DOI: 10.1016/j.jtbi.2021.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Life is confronted with computation problems in a variety of domains including animal behavior, single-cell behavior, and embryonic development. Yet we currently do not know of a naturally existing biological system that is capable of universal computation, i.e., Turing-equivalent in scope. Generic finite-dimensional dynamical systems (which encompass most models of neural networks, intracellular signaling cascades, and gene regulatory networks) fall short of universal computation, but are assumed to be capable of explaining cognition and development. I present a class of models that bridge two concepts from distant fields: combinatory logic (or, equivalently, lambda calculus) and RNA molecular biology. A set of basic RNA editing rules can make it possible to compute any computable function with identical algorithmic complexity to that of Turing machines. The models do not assume extraordinarily complex molecular machinery or any processes that radically differ from what we already know to occur in cells. Distinct independent enzymes can mediate each of the rules and RNA molecules solve the problem of parenthesis matching through their secondary structure. In the most plausible of these models all of the editing rules can be implemented with merely cleavage and ligation operations at fixed positions relative to predefined motifs. This demonstrates that universal computation is well within the reach of molecular biology. It is therefore reasonable to assume that life has evolved - or possibly began with - a universal computer that yet remains to be discovered. The variety of seemingly unrelated computational problems across many scales can potentially be solved using the same RNA-based computation system. Experimental validation of this theory may immensely impact our understanding of memory, cognition, development, disease, evolution, and the early stages of life.
Collapse
Affiliation(s)
- Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
18
|
Fitch WT. Information and the single cell. Curr Opin Neurobiol 2021; 71:150-157. [PMID: 34844102 DOI: 10.1016/j.conb.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Understanding the evolution of cognition requires an understanding of the costs and benefits of neural computation. This requires analysis of neuronal circuitry in terms of information-processing efficiency, ultimately cashed out in terms of ATP expenditures relative to adaptive problem-solving abilities. Despite a preoccupation in neuroscience with the synapse as the source of stored neural information, it is clear that, along with synaptic weights and electrochemical dynamics, neurons have multiple mechanisms which store and process information, including 'wetware' (protein phosphorylation, gene transcription, and so on) and cell morphology (dendritic form). Insights into non-synaptic information-processing can be gained by examining the surprisingly complex abilities of single-celled organisms ('cellular cognition') because neurons share many of the same abilities. Cells provide the fundamental level at which information processing interfaces with gene expression, and cell-internal information-processing mechanisms are both powerful and energetically efficient. Understanding cellular computation should be a central goal of research on cognitive evolution.
Collapse
|
19
|
Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts. Nat Commun 2021; 12:6164. [PMID: 34697305 PMCID: PMC8545952 DOI: 10.1038/s41467-021-26327-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Concept neurons in the medial temporal lobe respond to semantic features of presented stimuli. Analyzing 61 concept neurons recorded from twelve patients who underwent surgery to treat epilepsy, we show that firing patterns of concept neurons encode relations between concepts during a picture comparison task. Thirty-three of these responded to non-preferred stimuli with a delayed but well-defined onset whenever the task required a comparison to a response-eliciting concept, but not otherwise. Supporting recent theories of working memory, concept neurons increased firing whenever attention was directed towards this concept and could be reactivated after complete activity silence. Population cross-correlations of pairs of concept neurons exhibited order-dependent asymmetric peaks specifically when their response-eliciting concepts were to be compared. Our data are consistent with synaptic mechanisms that support reinstatement of concepts and their relations after activity silence, flexibly induced through task-specific sequential activation. This way arbitrary contents of experience could become interconnected in both working and long-term memory. It is unclear how distinct concepts are processed in the brain. Here, the authors recorded from concept cells in human subjects with epilepsy and found that a subset of concept cells responded to non-preferred concepts if those non-preferred concepts required comparison to a preferred concept.
Collapse
|
20
|
Gallistel C. The physical basis of memory. Cognition 2021; 213:104533. [DOI: 10.1016/j.cognition.2020.104533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022]
|
21
|
Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Dolores Boyano M, Berdieva M, Goodkov A, López JI, Knafo S, De la Fuente IM. Associative Conditioning Is a Robust Systemic Behavior in Unicellular Organisms: An Interspecies Comparison. Front Microbiol 2021; 12:707086. [PMID: 34349748 PMCID: PMC8327096 DOI: 10.3389/fmicb.2021.707086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
The capacity to learn new efficient systemic behavior is a fundamental issue of contemporary biology. We have recently observed, in a preliminary analysis, the emergence of conditioned behavior in some individual amoebae cells. In these experiments, cells were able to acquire new migratory patterns and remember them for long periods of their cellular cycle, forgetting them later on. Here, following a similar conceptual framework of Pavlov's experiments, we have exhaustively studied the migration trajectories of more than 2000 individual cells belonging to three different species: Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis. Fundamentally, we have analyzed several relevant properties of conditioned cells, such as the intensity of the responses, the directionality persistence, the total distance traveled, the directionality ratio, the average speed, and the persistence times. We have observed that cells belonging to these three species can modify the systemic response to a specific stimulus by associative conditioning. Our main analysis shows that such new behavior is very robust and presents a similar structure of migration patterns in the three species, which was characterized by the presence of conditioning for long periods, remarkable straightness in their trajectories and strong directional persistence. Our experimental and quantitative results, compared with other studies on complex cellular responses in bacteria, protozoa, fungus-like organisms and metazoans that we discus here, allow us to conclude that cellular associative conditioning might be a widespread characteristic of unicellular organisms. This new systemic behavior could be essential to understand some key principles involved in increasing the cellular adaptive fitness to microenvironments.
Collapse
Affiliation(s)
- Jose Carrasco-Pujante
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, CSIC, Institute of Parasitology and Biomedicine “López-Neyra”, Granada, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Basque Center of Applied Mathematics, Bilbao, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mariia Berdieva
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - Andrew Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU) and Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Ildefonso M. De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, Spain
| |
Collapse
|
22
|
Gold AR, Glanzman DL. The central importance of nuclear mechanisms in the storage of memory. Biochem Biophys Res Commun 2021; 564:103-113. [PMID: 34020774 DOI: 10.1016/j.bbrc.2021.04.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
The neurobiological nature of the memory trace (engram) remains controversial. The most widely accepted hypothesis at present is that long-term memory is stored as stable, learning-induced changes in synaptic connections. This hypothesis, the synaptic plasticity hypothesis of memory, is supported by extensive experimental data gathered from over 50 years of research. Nonetheless, there are important mnemonic phenomena that the synaptic plasticity hypothesis cannot, or cannot readily, account for. Furthermore, recent work indicates that epigenetic and genomic mechanisms play heretofore underappreciated roles in memory. Here, we critically assess the evidence that supports the synaptic plasticity hypothesis and discuss alternative non-synaptic, nuclear mechanisms of memory storage, including DNA methylation and retrotransposition. We argue that long-term encoding of memory is mediated by nuclear processes; synaptic plasticity, by contrast, represents a means of relatively temporary memory storage. In addition, we propose that memories are evaluated for their mnemonic significance during an initial period of synaptic storage; if assessed as sufficiently important, the memories then undergo nuclear encoding.
Collapse
Affiliation(s)
- Adam R Gold
- Behavioral Neuroscience Program, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David L Glanzman
- Department of Integrative Biology & Physiology, UCLA College, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Mandwal A, Orlandi JG, Simon C, Davidsen J. A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells. PLoS One 2021; 16:e0251172. [PMID: 33961660 PMCID: PMC8104431 DOI: 10.1371/journal.pone.0251172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Within the classical eye-blink conditioning, Purkinje cells within the cerebellum are known to suppress their tonic firing rates for a well defined time period in response to the conditional stimulus after training. The temporal profile of the drop in tonic firing rate, i.e., the onset and the duration, depend upon the time interval between the onsets of the conditional and unconditional training stimuli. Direct stimulation of parallel fibers and climbing fiber by electrodes was found to be sufficient to reproduce the same characteristic drop in the firing rate of the Purkinje cell. In addition, the specific metabotropic glutamate-based receptor type 7 (mGluR7) was found responsible for the initiation of the response, suggesting an intrinsic mechanism within the Purkinje cell for the temporal learning. In an attempt to look for a mechanism for time-encoding memory formation within individual Purkinje cells, we propose a biochemical mechanism based on recent experimental findings. The proposed mechanism tries to answer key aspects of the “Coding problem” of Neuroscience by focusing on the Purkinje cell’s ability to encode time intervals through training. According to the proposed mechanism, the time memory is encoded within the dynamics of a set of proteins—mGluR7, G-protein, G-protein coupled Inward Rectifier Potassium ion channel, Protein Kinase A, Protein Phosphatase 1 and other associated biomolecules—which self-organize themselves into a protein complex. The intrinsic dynamics of these protein complexes can differ and thus can encode different time durations. Based on their amount and their collective dynamics within individual synapses, the Purkinje cell is able to suppress its own tonic firing rate for a specific time interval. The time memory is encoded within the effective dynamics of the biochemical reactions and altering these dynamics means storing a different time memory. The proposed mechanism is verified by both a minimal and a more comprehensive mathematical model of the conditional response behavior of the Purkinje cell and corresponding dynamical simulations of the involved biomolecules, yielding testable experimental predictions.
Collapse
Affiliation(s)
- Ayush Mandwal
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (AM); (JD)
| | - Javier G. Orlandi
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (AM); (JD)
| |
Collapse
|
24
|
Ryan TJ, Ortega-de San Luis C, Pezzoli M, Sen S. Engram cell connectivity: an evolving substrate for information storage. Curr Opin Neurobiol 2021; 67:215-225. [PMID: 33812274 DOI: 10.1016/j.conb.2021.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/02/2023]
Abstract
Understanding memory requires an explanation for how information can be stored in the brain in a stable state. The change in the brain that accounts for a given memory is referred to as an engram. In recent years, the term engram has been operationalized as the cells that are activated by a learning experience, undergoes plasticity, and are sufficient and necessary for memory recall. Using this framework, and a growing toolbox of related experimental techniques, engram manipulation has become a central topic in behavioral, systems, and molecular neuroscience. Recent research on the topic has provided novel insights into the mechanisms of long-term memory storage, and its overlap with instinct. We propose that memory and instinct may be embodied as isomorphic topological structures within the brain's microanatomical circuitry.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada.
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Siddhartha Sen
- Centre for Research on Adaptive Nanostructures and Nanodevices and School of Physics, Trinity College Dublin, D02 PN40, Ireland
| |
Collapse
|
25
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
26
|
Mishra P, Narayanan R. Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100007. [PMID: 33997798 PMCID: PMC7610774 DOI: 10.1016/j.crneur.2021.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heterogeneities in biological neural circuits manifest in afferent connectivity as well as in local-circuit components such as neuronal excitability, neural structure and local synaptic strengths. The expression of adult neurogenesis in the dentate gyrus (DG) amplifies local-circuit heterogeneities and guides heterogeneities in afferent connectivity. How do neurons and their networks endowed with these distinct forms of heterogeneities respond to perturbations to individual ion channels, which are known to change under several physiological and pathophysiological conditions? We sequentially traversed the ion channels-neurons-network scales and assessed the impact of eliminating individual ion channels on conductance-based neuronal and network models endowed with disparate local-circuit and afferent heterogeneities. We found that many ion channels differentially contributed to specific neuronal or network measurements, and the elimination of any given ion channel altered several functional measurements. We then quantified the impact of ion-channel elimination on response decorrelation, a well-established metric to assess the ability of neurons in a network to convey complementary information, in DG networks endowed with different forms of heterogeneities. Notably, we found that networks constructed with structurally immature neurons exhibited functional robustness, manifesting as minimal changes in response decorrelation in the face of ion-channel elimination. Importantly, the average change in output correlation was dependent on the eliminated ion channel but invariant to input correlation. Our analyses suggest that neurogenesis-driven structural heterogeneities could assist the DG network in providing functional resilience to molecular perturbations. Perturbations at one scale result in a cascading impact on physiology across scales. Heterogeneous multi-scale models used to assess the impact of ion-channel deletion. Mapping of structural components to functional outcomes is many-to-many. Differential & variable impact of ion channel deletion on response decorrelation. Neurogenesis-induced structural heterogeneity confers resilience to perturbations.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Gershman SJ, Balbi PE, Gallistel CR, Gunawardena J. Reconsidering the evidence for learning in single cells. eLife 2021; 10:61907. [PMID: 33395388 PMCID: PMC7781593 DOI: 10.7554/elife.61907] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
The question of whether single cells can learn led to much debate in the early 20th century. The view prevailed that they were capable of non-associative learning but not of associative learning, such as Pavlovian conditioning. Experiments indicating the contrary were considered either non-reproducible or subject to more acceptable interpretations. Recent developments suggest that the time is right to reconsider this consensus. We exhume the experiments of Beatrice Gelber on Pavlovian conditioning in the ciliate Paramecium aurelia, and suggest that criticisms of her findings can now be reinterpreted. Gelber was a remarkable scientist whose absence from the historical record testifies to the prevailing orthodoxy that single cells cannot learn. Her work, and more recent studies, suggest that such learning may be evolutionarily more widespread and fundamental to life than previously thought and we discuss the implications for different aspects of biology.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, United States.,Center for Brains, Mind and Machines, MIT, Cambridge, United States
| | - Petra Em Balbi
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - C Randy Gallistel
- Rutgers Center for Cognitive Science, Rutgers University at New Brunswick, New Brunswick, United States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
28
|
Cross FR, Carvell GE, Jackson RR, Grace RC. Arthropod Intelligence? The Case for Portia. Front Psychol 2020; 11:568049. [PMID: 33154726 PMCID: PMC7591756 DOI: 10.3389/fpsyg.2020.568049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Macphail’s “null hypothesis,” that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity (“intelligence”), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for “intelligence” and a continuum pertaining to reliance on internal representation for “cognition.” When envisaging a continuum pertaining to intelligence, Daniel Dennett’s notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Georgina E Carvell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
29
|
Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem 2020; 170:107023. [DOI: 10.1016/j.nlm.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
|
30
|
Locating the engram: Should we look for plastic synapses or information-storing molecules? Neurobiol Learn Mem 2020; 169:107164. [PMID: 31945459 DOI: 10.1016/j.nlm.2020.107164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Karl Lashley began the search for the engram nearly seventy years ago. In the time since, much has been learned but divisions remain. In the contemporary neurobiology of learning and memory, two profoundly different conceptions contend: the associative/connectionist (A/C) conception and the computational/representational (C/R) conception. Both theories ground themselves in the belief that the mind is emergent from the properties and processes of a material brain. Where these theories differ is in their description of what the neurobiological substrate of memory is and where it resides in the brain. The A/C theory of memory emphasizes the need to distinguish memory cognition from the memory engram and postulates that memory cognition is an emergent property of patterned neural activity routed through engram circuits. In this model, learning re-organizes synapse association strengths to guide future neural activity. Importantly, the version of the A/C theory advocated for here contends that synaptic change is not symbolic and, despite normally being necessary, is not sufficient for memory cognition. Instead, synaptic change provides the capacity and a blueprint for reinstating symbolic patterns of neural activity. Unlike the A/C theory, which posits that memory emerges at the circuit level, the C/R conception suggests that memory manifests at the level of intracellular molecular structures. In C/R theory, these intracellular structures are information-conveying and have properties compatible with the view that brain computation utilizes a read/write memory, functionally similar to that in a computer. New research has energized both sides and highlighted the need for new discussion. Both theories, the key questions each theory has yet to resolve and several potential paths forward are presented here.
Collapse
|
31
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Gallistel CR, Papachristos EB. Number and time in acquisition, extinction and recovery. J Exp Anal Behav 2019; 113:15-36. [PMID: 31856323 DOI: 10.1002/jeab.571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023]
Abstract
We measured rate of acquisition, trials to extinction, cumulative responses in extinction, and the spontaneous recovery of anticipatory hopper poking in a Pavlovian protocol with mouse subjects. We varied by factors of 4 number of sessions, trials per session, intersession interval, and span of training (number of days over which training extended). We find that different variables affect each measure: Rate of acquisition [1/(trials to acquisition)] is faster when there are fewer trials per session. Terminal rate of responding is faster when there are more total training trials. Trials to extinction and amount of responding during extinction are unaffected by these variables. The number of training trials has no effect on recovery in a 4-trial probe session 21 days after extinction. However, recovery is greater when the span of training is greater, regardless of how many sessions there are within that span. Our results and those of others suggest that the numbers and durations and spacings of longer-duration "episodes" in a conditioning protocol (sessions and the spans in days of training and extinction) are important variables and that different variables affect different aspects of subjects' behavior. We discuss the theoretical and clinical implications of these and related findings and conclusions-for theories of conditioning and for neuroscience.
Collapse
|
33
|
Our understanding of neural codes rests on Shannon's foundations. Behav Brain Sci 2019; 42:e226. [PMID: 31775927 DOI: 10.1017/s0140525x19001249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Shannon's theory lays the foundation for understanding the flow of information from world into brain: There must be a set of possible messages. Brain structure determines what they are. Many messages convey quantitative facts (distances, directions, durations, etc.). It is impossible to consider how neural tissue processes these numbers without first considering how it encodes them.
Collapse
|
34
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
35
|
De Corte BJ, Della Valle RR, Matell MS. Recalibrating timing behavior via expected covariance between temporal cues. eLife 2018; 7:e38790. [PMID: 30387710 PMCID: PMC6235573 DOI: 10.7554/elife.38790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Individuals must predict future events to proactively guide their behavior. Predicting when events will occur is a critical component of these expectations. Temporal expectations are often generated based on individual cue-duration relationships. However, the durations associated with different environmental cues will often co-vary due to a common cause. We show that timing behavior may be calibrated based on this expected covariance, which we refer to as the 'common cause hypothesis'. In five experiments using rats, we found that when the duration associated with one temporal cue changes, timed-responding to other cues shift in the same direction. Furthermore, training subjects that expecting covariance is not appropriate in a given situation blocks this effect. Finally, we confirmed that this transfer is context-dependent. These results reveal a novel principle that modulates timing behavior, which we predict will apply across a variety of magnitude-expectations.
Collapse
Affiliation(s)
| | - Rebecca R Della Valle
- Department of Psychological and Brain SciencesThe University of DelawareNewarkUnited states
| | - Matthew S Matell
- Department of Psychological and Brain SciencesVillanova UniversityVillanovaUnited states
| |
Collapse
|
36
|
Boele HJ, Peter S, Ten Brinke MM, Verdonschot L, IJpelaar ACH, Rizopoulos D, Gao Z, Koekkoek SKE, De Zeeuw CI. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. SCIENCE ADVANCES 2018; 4:eaas9426. [PMID: 30306129 PMCID: PMC6170036 DOI: 10.1126/sciadv.aas9426] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Pavlovian eyeblink conditioning has been used extensively to study the neural mechanisms underlying associative and motor learning. During this simple learning task, memory formation takes place at Purkinje cells in defined areas of the cerebellar cortex, which acquire a strong temporary suppression of their activity during conditioning. Yet, it is unknown which neuronal plasticity mechanisms mediate this suppression. Two potential mechanisms include long-term depression of parallel fiber to Purkinje cell synapses and feed-forward inhibition by molecular layer interneurons. We show, using a triple transgenic approach, that only concurrent disruption of both these suppression mechanisms can severely impair conditioning, highlighting that both processes can compensate for each other's deficits.
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | | | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
- Corresponding author.
| |
Collapse
|
37
|
Information Theory and Cognition: A Review. ENTROPY 2018; 20:e20090706. [PMID: 33265795 PMCID: PMC7513233 DOI: 10.3390/e20090706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 01/12/2023]
Abstract
We examine how information theory has been used to study cognition over the last seven decades. After an initial burst of activity in the 1950s, the backlash that followed stopped most work in this area. The last couple of decades has seen both a revival of interest, and a more firmly grounded, experimentally justified use of information theory. We can view cognition as the process of transforming perceptions into information—where we use information in the colloquial sense of the word. This last clarification is one of the problems we run into when trying to use information theoretic principles to understand or analyze cognition. Information theory is mathematical, while cognition is a subjective phenomenon. It is relatively easy to discern a subjective connection between cognition and information; it is a different matter altogether to apply the rigor of information theory to the process of cognition. In this paper, we will look at the many ways in which people have tried to alleviate this problem. These approaches range from narrowing the focus to only quantifiable aspects of cognition or borrowing conceptual machinery from information theory to address issues of cognition. We describe applications of information theory across a range of cognition research, from neural coding to cognitive control and predictive coding.
Collapse
|
38
|
Gallistel CR. Finding numbers in the brain. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0119. [PMID: 29292352 DOI: 10.1098/rstb.2017.0119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 01/22/2023] Open
Abstract
After listing functional constraints on what numbers in the brain must do, I sketch the two's complement fixed-point representation of numbers because it has stood the test of time and because it illustrates the non-obvious ways in which an effective coding scheme may operate. I briefly consider its neurobiological implementation. It is easier to imagine its implementation at the cell-intrinsic molecular level, with thermodynamically stable, volumetrically minimal polynucleotides encoding the remembered numbers, than at the circuit level, with plastic synapses encoding them.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- C R Gallistel
- Rutgers Center for Cognitive Science, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
39
|
Gupta DS, Teixeira S. The Time-Budget Perspective of the Role of Time Dimension in Modular Network Dynamics during Functions of the Brain. Primates 2018. [DOI: 10.5772/intechopen.70588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Mittal D, Narayanan R. Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells. J Neurophysiol 2018; 120:576-600. [PMID: 29718802 PMCID: PMC6101195 DOI: 10.1152/jn.00136.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biological heterogeneities are ubiquitous and play critical roles in the emergence of physiology at multiple scales. Although neurons in layer II (LII) of the medial entorhinal cortex (MEC) express heterogeneities in channel properties, the impact of such heterogeneities on the robustness of their cellular-scale physiology has not been assessed. Here, we performed a 55-parameter stochastic search spanning nine voltage- or calcium-activated channels to assess the impact of channel heterogeneities on the concomitant emergence of 10 in vitro electrophysiological characteristics of LII stellate cells (SCs). We generated 150,000 models and found a heterogeneous subpopulation of 449 valid models to robustly match all electrophysiological signatures. We employed this heterogeneous population to demonstrate the emergence of cellular-scale degeneracy in SCs, whereby disparate parametric combinations expressing weak pairwise correlations resulted in similar models. We then assessed the impact of virtually knocking out each channel from all valid models and demonstrate that the mapping between channels and measurements was many-to-many, a critical requirement for the expression of degeneracy. Finally, we quantitatively predict that the spike-triggered average of SCs should be endowed with theta-frequency spectral selectivity and coincidence detection capabilities in the fast gamma-band. We postulate this fast gamma-band coincidence detection as an instance of cellular-scale-efficient coding, whereby SC response characteristics match the dominant oscillatory signals in LII MEC. The heterogeneous population of valid SC models built here unveils the robust emergence of cellular-scale physiology despite significant channel heterogeneities, and forms an efficacious substrate for evaluating the impact of biological heterogeneities on entorhinal network function. NEW & NOTEWORTHY We assessed the impact of heterogeneities in channel properties on the robustness of cellular-scale physiology of medial entorhinal cortical stellate neurons. We demonstrate that neuronal models with disparate channel combinations were endowed with similar physiological characteristics, as a consequence of the many-to-many mapping between channel properties and the physiological characteristics that they modulate. We predict that the spike-triggered average of stellate cells should be endowed with theta-frequency spectral selectivity and fast gamma-band coincidence detection capabilities.
Collapse
Affiliation(s)
- Divyansh Mittal
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| |
Collapse
|
41
|
Das A, Narayanan R. Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels. J Neurophysiol 2017; 118:2251-2266. [PMID: 28768741 PMCID: PMC5626898 DOI: 10.1152/jn.00356.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
The ability to distill specific frequencies from complex spatiotemporal patterns of afferent inputs is a pivotal functional requirement for neurons residing in networks receiving frequency-multiplexed inputs. Although the expression of theta-frequency subthreshold resonance is established in hippocampal pyramidal neurons, it is not known if their spike initiation dynamics manifest spectral selectivity, or if their intrinsic properties are tuned to process gamma-frequency inputs. Here, we measured the spike-triggered average (STA) of rat hippocampal pyramidal neurons through electrophysiological recordings and quantified spectral selectivity in their spike initiation dynamics and their coincidence detection window (CDW). Our results revealed strong theta-frequency selectivity in the STA, which was also endowed with gamma-range CDW, with prominent neuron-to-neuron variability that manifested distinct pairwise dissociations and correlations with different intrinsic measurements. Furthermore, we demonstrate that the STA and its measurements substantially adapted to the state of the neuron defined by its membrane potential and to the statistics of its afferent inputs. Finally, we tested the effect of pharmacologically blocking the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels on the STA and found that the STA characteristic frequency reduced significantly to the delta-frequency band after HCN channel blockade. This delta-frequency selectivity in the STA emerged in the absence of subthreshold resonance, which was abolished by HCN channel blockade, thereby confirming computational predictions on the dissociation between these two forms of spectral selectivity. Our results expand the roles of HCN channels to theta-frequency selectivity in the spike initiation dynamics, apart from underscoring the critical role of interactions among different ion channels in regulating neuronal physiology.NEW & NOTEWORTHY We had previously predicted, using computational analyses, that the spike-triggered average (STA) of hippocampal neurons would exhibit theta-frequency (4-10 Hz) spectral selectivity and would manifest coincidence detection capabilities for inputs in the gamma-frequency band (25-150 Hz). Here, we confirmed these predictions through direct electrophysiological recordings of STA from rat CA1 pyramidal neurons and demonstrate that blocking HCN channels reduces the frequency of STA spectral selectivity to the delta-frequency range (0.5-4 Hz).
Collapse
Affiliation(s)
- Anindita Das
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|