1
|
Noorman S, Stein T, Fahrenfort JJ, van Gaal S. Perceptual and attentional impairments of conscious access involve distinct neural mechanisms despite equal task performance. eLife 2025; 13:RP97900. [PMID: 40310881 PMCID: PMC12045619 DOI: 10.7554/elife.97900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
This study investigates failures in conscious access resulting from either weak sensory input (perceptual impairments) or unattended input (attentional impairments). Participants viewed a Kanizsa stimulus with or without an illusory triangle within a rapid serial visual presentation of distractor stimuli. We designed a novel Kanizsa stimulus that contained additional ancillary features of different complexity (local contrast and collinearity) that were independently manipulated. Perceptual performance on the Kanizsa stimulus (presence vs. absence of an illusion) was equated between the perceptual (masking) and attentional (attentional blink) manipulation to circumvent common confounds related to conditional differences in task performance. We trained and tested classifiers on electroencephalogram (EEG) data to reflect the processing of specific stimulus features, with increasing levels of complexity. We show that late stages of processing (~200-250 ms), reflecting the integration of complex stimulus features (collinearity, illusory triangle), were impaired by masking but spared by the attentional blink. In contrast, decoding of local contrast (the spatial arrangement of stimulus features) was observed early in time (~80 ms) and was left largely unaffected by either manipulation. These results replicate previous work showing that feedforward processing is largely preserved under both perceptual and attentional impairments. Crucially, however, under matched levels of performance, only attentional impairments left the processing of more complex visual features relatively intact, likely related to spared lateral and local feedback processes during inattention. These findings reveal distinct neural mechanisms associated with perceptual and attentional impairments and thus contribute to a comprehensive understanding of distinct neural stages leading to conscious access.
Collapse
Affiliation(s)
- Samuel Noorman
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdamNetherlands
| | - Timo Stein
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdamNetherlands
| | - Johannes Jacobus Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
2
|
Ferrante O, Gorska-Klimowska U, Henin S, Hirschhorn R, Khalaf A, Lepauvre A, Liu L, Richter D, Vidal Y, Bonacchi N, Brown T, Sripad P, Armendariz M, Bendtz K, Ghafari T, Hetenyi D, Jeschke J, Kozma C, Mazumder DR, Montenegro S, Seedat A, Sharafeldin A, Yang S, Baillet S, Chalmers DJ, Cichy RM, Fallon F, Panagiotaropoulos TI, Blumenfeld H, de Lange FP, Devore S, Jensen O, Kreiman G, Luo H, Boly M, Dehaene S, Koch C, Tononi G, Pitts M, Mudrik L, Melloni L. Adversarial testing of global neuronal workspace and integrated information theories of consciousness. Nature 2025:10.1038/s41586-025-08888-1. [PMID: 40307561 DOI: 10.1038/s41586-025-08888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Different theories explain how subjective experience arises from brain activity1,2. These theories have independently accrued evidence, but have not been directly compared3. Here we present an open science adversarial collaboration directly juxtaposing integrated information theory (IIT)4,5 and global neuronal workspace theory (GNWT)6-10 via a theory-neutral consortium11-13. The theory proponents and the consortium developed and preregistered the experimental design, divergent predictions, expected outcomes and interpretation thereof12. Human participants (n = 256) viewed suprathreshold stimuli for variable durations while neural activity was measured with functional magnetic resonance imaging, magnetoencephalography and intracranial electroencephalography. We found information about conscious content in visual, ventrotemporal and inferior frontal cortex, with sustained responses in occipital and lateral temporal cortex reflecting stimulus duration, and content-specific synchronization between frontal and early visual areas. These results align with some predictions of IIT and GNWT, while substantially challenging key tenets of both theories. For IIT, a lack of sustained synchronization within the posterior cortex contradicts the claim that network connectivity specifies consciousness. GNWT is challenged by the general lack of ignition at stimulus offset and limited representation of certain conscious dimensions in the prefrontal cortex. These challenges extend to other theories of consciousness that share some of the predictions tested here14-17. Beyond challenging the theories, we present an alternative approach to advance cognitive neuroscience through principled, theory-driven, collaborative research and highlight the need for a quantitative framework for systematic theory testing and building.
Collapse
Affiliation(s)
- Oscar Ferrante
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Simon Henin
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Aya Khalaf
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Alex Lepauvre
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ling Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing, China
- Speech and Hearing Impairment and Brain Computer Interface LAB, Beijing Language and Culture University, Beijing, China
| | - David Richter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Yamil Vidal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Niccolò Bonacchi
- William James Center for Research, ISPA - Instituto Universitário, Lisbon, Portugal
- Champalimaud Research, Lisbon, Portugal
| | - Tanya Brown
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Praveen Sripad
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Marcelo Armendariz
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Katarina Bendtz
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dorottya Hetenyi
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jay Jeschke
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Csaba Kozma
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - David R Mazumder
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie Montenegro
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alia Seedat
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Shujun Yang
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - David J Chalmers
- Department of Philosophy, New York University, New York, NY, USA
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Francis Fallon
- Philosophy Department, Psychology Department, St John's University, Queens, NY, USA
| | - Theofanis I Panagiotaropoulos
- Department of Psychology, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Hal Blumenfeld
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sasha Devore
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ole Jensen
- Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Gabriel Kreiman
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Christof Koch
- Allen Institute, Seattle, WA, USA
- Tiny Blue Dot Foundation, Santa Monica, CA, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Pitts
- Psychology Department, Reed College, Portland, OR, USA
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lucia Melloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
- Predictive Brain Department, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Fields C, Albarracin M, Friston K, Kiefer A, Ramstead MJ, Safron A. How do inner screens enable imaginative experience? Applying the free-energy principle directly to the study of conscious experience. Neurosci Conscious 2025; 2025:niaf009. [PMID: 40265192 PMCID: PMC12013476 DOI: 10.1093/nc/niaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
This paper examines the constraints that the free-energy principle (FEP) places on possible model of consciousness, particularly models of attentional control and imaginative experiences, including episodic memory and planning. We first rehearse the classical and quantum formulations of the FEP, focusing on their application to multi-component systems, in which only some components interact directly with the external environment. In particular, we discuss the role of internal boundaries that have the structure of Markov blankets, and hence function as classical information channels between components. We then show how this formal structure supports models of attentional control and imaginative experience, with a focus on (i) how imaginative experience can employ the spatio-temporal and object-recognition reference frames employed in ordinary, non-imaginative experience and (ii) how imaginative experience can be internally generated but still surprising. We conclude by discussing the implementation, phenomenology, and phylogeny of imaginative experience, and the implications of the large state and trait variability of imaginative experience in humans.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Mahault Albarracin
- VERSES, Los Angeles, CA, United States
- Département d’informatique, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, Canada
| | - Karl Friston
- VERSES, Los Angeles, CA, United States
- Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Alex Kiefer
- VERSES, Los Angeles, CA, United States
- Monash University, Wellington, Clayton, Australia
| | - Maxwell J.D Ramstead
- Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Adam Safron
- Allen Discovery Center, Tufts University, Medford, MA, United States
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| |
Collapse
|
4
|
Filimonov D, Lenkkeri S, Koivisto M, Revonsuo A. Event-related potential correlates of consciousness in simple auditory hallucinations. Neuroimage 2025; 310:121168. [PMID: 40127874 DOI: 10.1016/j.neuroimage.2025.121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neural correlates of consciousness (NCC) have been proposed for perceptual awareness in various sensory modalities. To date, perceptual awareness negativity (PAN) and late positivity (LP) are considered the main NCC candidates, and the question remains which one is the NCC proper. Investigating states where the content of consciousness is independent of the physical stimulus, may provide additional theoretical and empirical value. We studied the event-related potential (ERP) markers of auditory awareness in simple auditory hallucinations using a Pavlovian conditioning paradigm, where participants listened to the near-threshold tones and stimulus-absent trials, rating subjective clarity with the perceptual awareness scale (PAS). The results showed auditory awareness negativity (AAN) - an early event-related potential difference between aware and unaware stimuli - in the hallucinatory condition, suggesting that AAN is an NCC proper in auditory consciousness. Late positivity was absent in simple auditory hallucinations.
Collapse
Affiliation(s)
- Dmitri Filimonov
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland; Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden.
| | - Saana Lenkkeri
- Faculty of Medicine, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Mika Koivisto
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Antti Revonsuo
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland; Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden
| |
Collapse
|
5
|
Fang Z, Dang Y, Ping A, Wang C, Zhao Q, Zhao H, Li X, Zhang M. Human high-order thalamic nuclei gate conscious perception through the thalamofrontal loop. Science 2025; 388:eadr3675. [PMID: 40179184 DOI: 10.1126/science.adr3675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/24/2024] [Accepted: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Human high-order thalamic nuclei activity is known to closely correlate with conscious states. However, it is not clear how those thalamic nuclei and thalamocortical interactions directly contribute to the transient process of human conscious perception. We simultaneously recorded stereoelectroencephalography data from the thalamic nuclei and prefrontal cortex (PFC), while patients with implanted electrodes performed a visual consciousness task. Compared with the ventral nuclei and PFC, the intralaminar and medial nuclei presented earlier and stronger consciousness-related activity. Transient thalamofrontal neural synchrony and cross-frequency coupling were both driven by the θ phase of the intralaminar and medial nuclei during conscious perception. The intralaminar and medial thalamic nuclei thus play a gate role to drive the activity of the PFC during the emergence of conscious perception.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - An'an Ping
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Chenyu Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Qianchuan Zhao
- Center for Intelligent and Networked Systems, Department of Automation, TNLIST, Tsinghua University, Beijing, China
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
- Pazhou Laboratory, Guangzhou, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Kataoka M, Niikawa T, Nagaishi N, Lee TL, Erler A, Savulescu J, Sawai T. Beyond consciousness: Ethical, legal, and social issues in human brain organoid research and application. Eur J Cell Biol 2025; 104:151470. [PMID: 39729735 DOI: 10.1016/j.ejcb.2024.151470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024] Open
Abstract
This study aims to provide a comprehensive review of the ethical, legal and social issues in human brain organoid research, with a view to different types of research and applications: in vitro research, transplantation into non-human animals, and biocomputing. Despite the academic and societal attention on the possibility that human brain organoids may be conscious, we have identified diverse issues in human brain organoid research and applications. To guide the complex terrain of human brain organoid research and applications, a multidisciplinary approach that integrates ethical, legal, and social perspectives is essential.
Collapse
Affiliation(s)
- Masanori Kataoka
- Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Niikawa
- Graduate School of Humanities, Kobe University, Hyogo, Japan
| | - Naoya Nagaishi
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan
| | - Tsung-Ling Lee
- Graduate Institute of Health and Biotechnology Law, Taipei Medical University, Taipei, Taiwan
| | - Alexandre Erler
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taiwan
| | - Julian Savulescu
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Australia; Melbourne Law School, The University of Melbourne, Australia
| | - Tsutomu Sawai
- Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Mudrik L, Boly M, Dehaene S, Fleming SM, Lamme V, Seth A, Melloni L. Unpacking the complexities of consciousness: Theories and reflections. Neurosci Biobehav Rev 2025; 170:106053. [PMID: 39929381 DOI: 10.1016/j.neubiorev.2025.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
As the field of consciousness science matures, the research agenda has expanded from an initial focus on the neural correlates of consciousness, to developing and testing theories of consciousness. Several theories have been put forward, each aiming to elucidate the relationship between consciousness and brain function. However, there is an ongoing, intense debate regarding whether these theories examine the same phenomenon. And, despite ongoing research efforts, it seems like the field has so far failed to converge around any single theory, and instead exhibits significant polarization. To advance this discussion, proponents of five prominent theories of consciousness-Global Neuronal Workspace Theory (GNWT), Higher-Order Theories (HOT), Integrated Information Theory (IIT), Recurrent Processing Theory (RPT), and Predictive Processing (PP)-engaged in a public debate in 2022, as part of the annual meeting of the Association for the Scientific Study of Consciousness (ASSC). They were invited to clarify the explananda of their theories, articulate the core mechanisms underpinning the corresponding explanations, and outline their foundational premises. This was followed by an open discussion that delved into the testability of these theories, potential evidence that could refute them, and areas of consensus and disagreement. Most importantly, the debate demonstrated that at this stage, there is more controversy than agreement between the theories, pertaining to the most basic questions of what consciousness is, how to identify conscious states, and what is required from any theory of consciousness. Addressing these core questions is crucial for advancing the field towards a deeper understanding and comparison of competing theories.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| | - Melanie Boly
- University of Wisconsin-Madison, Madison, WI, USA
| | - Stanislas Dehaene
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Institut National de la Santé et de la Recherche Médicale (INSERM), Gif-sur-Yvette, France; Collège de France, Paris, France
| | - Stephen M Fleming
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Department of Experimental Psychology, University College London, England, United Kingdom; Functional Imaging Laboratory, University College London, London, England, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, England, United Kingdom
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Dept of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Anil Seth
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Sussex Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Lucia Melloni
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Max Planck Institute for Empirical Aesthetics, Frankfurt am Main Germany
| |
Collapse
|
8
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Fleiner AS, Kolnier D, Hagger-Vaughan N, Ræder J, Storm JF. Effects of ketamine and propofol on muscarinic plateau potentials in rat neocortical pyramidal cells. PLoS One 2025; 20:e0316262. [PMID: 39746093 PMCID: PMC11695037 DOI: 10.1371/journal.pone.0316262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added. Here we tested mechanisms of anaesthetics in rat medial prefrontal cortex (mPFC) slices after bath-applying the cholinergic agonist muscarine to partly mimic an "aroused-like" state, using whole-cell patch-clamp recordings from layer 2/3 pyramidal cells (L2/3PCs). According to leading theories of access consciousness and working memory, L2/3PCs are particularly important for these cognitive functions. We found that muscarine induced long-lasting depolarising plateau potentials (PPs) and spiking following brief depolarising current injections in the L2/3PCs. After 2 hours of pre-incubation with ketamine or propofol, the muscarine-induced PPs were altered in seemingly different ways: 3 μM propofol reduced the PPs and (significantly) spiking, whereas 20 μM ketamine seemed to enhance PPs and spiking (non-significantly). Brief wash-in of these drug concentrations failed to induce such effects, probably due to insufficient equilibration by diffusion in the slices. In contrast, pre-incubation with a high dose (100 μM) of ketamine suppressed the PPs and spiking. We discuss whether the apparently different effects on PPs may possibly be related to contrasting clinical effects: ketamine causing atypical anaesthesia with vivid, "psychedelic" dreaming while propofol causes less dreaming.
Collapse
Affiliation(s)
- Anne S. Fleiner
- Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway
| | - Daniel Kolnier
- Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway
| | - Nicholas Hagger-Vaughan
- Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway
| | - Johan Ræder
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johan F. Storm
- Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Chowdhury A, Bianciardi M, Chapdelaine E, Riaz OS, Timmermann C, van Lutterveld R, Sparby T, Sacchet MD. Multimodal neurophenomenology of advanced concentration absorption meditation: An intensively sampled case study of Jhana. Neuroimage 2025; 305:120973. [PMID: 39681243 PMCID: PMC11770875 DOI: 10.1016/j.neuroimage.2024.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Using a combination of fMRI, EEG, and phenomenology ratings, we examined the neurophenomenology of advanced concentrative absorption meditation, namely jhanas (ACAM-J), in a practitioner with over 23,000 h of meditation practice. Our study shows that ACAM-J states induce reliable changes in conscious experience and that these experiences are related to neural activity. Using resting-state fMRI functional connectivity, we found that ACAM-J is associated with decreased within-network modularity, increased global functional connectivity (GFC), and desegregation of the default mode and visual networks. Compared to control tasks, the ACAM-J were also related to widespread decreases in broadband EEG oscillatory power and increases in Lempel-Ziv complexity (LZ, a measure of brain entropy). Some fMRI findings varied by the control task used, while EEG results remained consistent, emphasizing both shared and unique neural features of ACAM-J. These differences in fMRI and EEG-measured neurophysiological properties correlated with specific changes in phenomenology - and especially with ACAM-J-induced states of bliss - enriching our understanding of these advanced meditative states. Our results show that advanced meditation practices markedly dysregulate high-level brain systems via practices of enhanced attention to sensations, corroborating recent neurocognitive theories of meditation as the deconstruction of the brain's cortical hierarchy. Overall, our results suggest that ACAM-J is associated with the modulation of large-scale brain networks in both fMRI and EEG, with potential implications for understanding the mechanisms of deep concentration practices and their effects on subjective experience.
Collapse
Affiliation(s)
- Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Depression and Anxiety Centre for Discovery and Treatment, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA.
| | - Marta Bianciardi
- Brainstem Imaging Lab, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Chapdelaine
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar S Riaz
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Remko van Lutterveld
- Brain Research and Innovation Centre, Dutch Ministry of Defence; Department of Psychiatry, University Medical Center, Utrecht, the Netherlands
| | - Terje Sparby
- Rudolf Steiner University College, Oslo, Norway; Department of Psychology and Psychotherapy, Witten/Herdecke University, Witten, Germany; Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, Witten, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Jimenez M, Prieto A, Hinojosa JA, Montoro PR. Consciousness Under the Spotlight: The Problem of Measuring Subjective Experience. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1697. [PMID: 39449331 DOI: 10.1002/wcs.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The study of consciousness is considered by many one of the most difficult contemporary scientific endeavors and confronts several methodological and theoretical challenges. A central issue that makes the study of consciousness so challenging is that, while the rest of science is concerned with problems that can be verified from a "third person" view (i.e., objectively), the study of consciousness deals with the phenomenon of subjective experience, only accessible from a "first person" view. In the present article, we review early (starting during the late 19th century) and later efforts on measuring consciousness and its absence, focusing on the two main approaches used by researchers within the field: objective (i.e., performance based) and subjective (i.e., report based) measures of awareness. In addition, we compare the advantages and disadvantages of both types of awareness measures, evaluate them according to different methodological considerations, and discuss, among other issues, the possibility of comparing them by transforming them to a common sensitivity measure (d'). Finally, we explore several new approaches-such as Bayesian models to support the absence of awareness or new machine-learning based decoding models-as well as future challenges-such as measuring the qualia, the qualitative contents of awareness-in consciousness research.
Collapse
Affiliation(s)
- Mikel Jimenez
- Department of Psychology, University of Durham, Durham, UK
| | - Antonio Prieto
- Departamento de Psicología Básica I, UNED, Madrid, Spain
| | - José Antonio Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicología Experimental, Procesos Psicológicos y Logopedia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | | |
Collapse
|
12
|
Hagger-Vaughan N, Kolnier D, Storm JF. Non-apical plateau potentials and persistent firing induced by metabotropic cholinergic modulation in layer 2/3 pyramidal cells in the rat prefrontal cortex. PLoS One 2024; 19:e0314652. [PMID: 39656720 DOI: 10.1371/journal.pone.0314652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite. Thus, surprisingly, these PPs persisted when the apical dendrite was cut off (~50 μm from the soma), and were sustained by local calcium application only to the somatic and basal dendritic compartments. The prefrontal L2/3PCs have been postulated to have a key role in consciousness, according to the Global Neuronal Workspace Theory: their long-range cortico-cortical connections provide the architecture required for the "global work-space", "ignition", amplification, and sustained, reverberant activity, considered essential for conscious access. The PPs in L2/3PCs caused sustained spiking that profoundly altered the input-output relationships of these neurons, resembling the sustained activity suggested to underlie working memory and the mechanism underlying "behavioural time scale synaptic plasticity" in hippocampal pyramidal cells. The non-apical L2/3 PPs depended on metabotropic cholinergic (mAChR) or glutamatergic (mGluR) modulation, which is probably essential also for conscious brain states and experience, in both wakefulness and dreaming. Pharmacological tests indicated that the non-apical L2/3 PPs depend on transient receptor potential (TRP) cation channels, both TRPC4 and TRPC5, and require external calcium (Ca2+) and internal Ca2+ stores, but not voltage-gated Ca2+ channels, unlike Ca2+-dependent PPs in other cortical pyramidal neurons. These L2/3 non-apical plateau potentials may be involved in prefrontal functions, such as access consciousness, working memory, and executive functions such as planning, decision-making, and outcome prediction.
Collapse
Affiliation(s)
- Nicholas Hagger-Vaughan
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel Kolnier
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johan F Storm
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Xiong W, Yu L. The Antagonism Hypothesis: A New View on the Emergence of Consciousness. Brain Behav 2024; 14:e70201. [PMID: 39711077 DOI: 10.1002/brb3.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE The generation of consciousness poses a complex scientific challenge. Neuroscience and biological sciences have extensively studied this phenomenon, yielding numerous theories and hypotheses. However, to date, no reliable evidence has emerged to exclude any hypothesis conclusively, nor has any theory garnered unanimous agreement. This study aims to offer novel insights for further in-depth study on consciousness. METHOD A new theoretical hypothesis was proposed based on reviews and comments from predictive processing theory, information theory, thermodynamics, and neuroscience. FINDINGS This study argues that, first, it is necessary to clarify that the core implication of the concept of consciousness is first-person perception. Accordingly, the study of consciousness is based on this premise. Second, on this basis, the antagonistic hypothesis of consciousness generation was proposed. This hypothesis holds that consciousness arises from the antagonism of mature individual experiences that cannot be seamlessly integrated with the function of addressing and navigating these conflicts. CONCLUSION The antagonism hypothesis is a new concept regarding the generation of consciousness that deserves further study.
Collapse
Affiliation(s)
- Weirui Xiong
- School of Educational Science, Chongqing Normal University, Chongqing, China
| | - Lu Yu
- School of Educational Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
14
|
She J, Liu Y, Xu Z, Xiang B, Li N, Liu W, Yan F, Yan L. Long-Lasting Neural Activity Indexed by Cognitive Function Underlying Unconscious Color Perception. IEEE SENSORS JOURNAL 2024; 24:37169-37182. [DOI: 10.1109/jsen.2024.3444274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Jingyang She
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Yan Liu
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Zhipeng Xu
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Biao Xiang
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Ningna Li
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Wenjiang Liu
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Fuwu Yan
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Lirong Yan
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
15
|
Cohen MA, Dembski C, Ortego K, Steinhibler C, Pitts M. Neural signatures of visual awareness independent of postperceptual processing. Cereb Cortex 2024; 34:bhae415. [PMID: 39535504 PMCID: PMC11558846 DOI: 10.1093/cercor/bhae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
What are the neural processes associated with perceptual awareness that are distinct from preconscious sensory encoding and postperceptual processes such as reporting an experience? Using electroencephalography and a no-report visual masking paradigm, we manipulated stimulus visibility by varying the time between stimuli and masks in linear steps (17, 33, 50, 67, and 83 ms). Awareness increased nonlinearly, with stimuli never seen at the two shortest intervals, always seen at the two longest, and 50% seen at the intermediate interval. Separate report and no-report conditions were used to isolate awareness from task performance. Our results revealed a neural signal closely linked to perceptual awareness, independent of the task: a fronto-central event-related potential that we refer to as the N2 (~250 to 300 ms). Earlier event-related potential signals reflected the linear manipulation of stimulus strength, while later signals like P3b and temporal generalization of decoding were tied to task performance, appearing only in the report condition. Taken together, these findings inform current debates regarding theories of consciousness and offer new avenues for exploring the neural mechanisms supporting conscious processing.
Collapse
Affiliation(s)
- Michael A Cohen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-4141, Cambridge MA, 02140, United States
- Department of Psychology and Program in Neuroscience, Amherst College, 220 South Pleasant St, Amherst MA, 01002, United States
| | - Cole Dembski
- Department of Psychology and Program in Neuroscience, Amherst College, 220 South Pleasant St, Amherst MA, 01002, United States
- Department of Psychology, Reed College, 3203 Southeast Woodstock Blvd, Portland OR, 97202, United States
| | - Kevin Ortego
- Department of Psychological and Brain Sciences, Dartmouth College, 3 Maynard St., Hanover NH, 03755, United States
| | - Clay Steinhibler
- Department of Psychology, Reed College, 3203 Southeast Woodstock Blvd, Portland OR, 97202, United States
| | - Michael Pitts
- Department of Psychology, Reed College, 3203 Southeast Woodstock Blvd, Portland OR, 97202, United States
| |
Collapse
|
16
|
Cushing CA, Lau H, Kawato M, Craske MG, Taschereau-Dumouchel V. A double-blind trial of decoded neurofeedback intervention for specific phobias. Psychiatry Clin Neurosci 2024; 78:678-686. [PMID: 39221769 PMCID: PMC11531993 DOI: 10.1111/pcn.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
AIM A new closed-loop functional magnetic resonance imaging method called multivoxel neuroreinforcement has the potential to alleviate the subjective aversiveness of exposure-based interventions by directly inducing phobic representations in the brain, outside of conscious awareness. The current study seeks to test this method as an intervention for specific phobia. METHODS In a randomized, double-blind, controlled single-university trial, individuals diagnosed with at least two (one target, one control) animal subtype-specific phobias were randomly assigned (1:1:1) to receive one, three, or five sessions of multivoxel neuroreinforcement in which they were rewarded for implicit activation of a target animal representation. Amygdala response to phobic stimuli was assessed by study staff blind to target and control animal assignments. Pretreatment to posttreatment differences were analyzed with a two-way repeated-measures anova. RESULTS A total of 23 participants (69.6% female) were randomized to receive one (n = 8), three (n = 7), or five (n = 7) sessions of multivoxel neuroreinforcement. Eighteen (n = 6 each group) participants were analyzed for our primary outcome. After neuroreinforcement, we observed an interaction indicating a significant decrease in amygdala response for the target phobia but not the control phobia. No adverse events or dropouts were reported as a result of the intervention. CONCLUSION Results suggest that multivoxel neuroreinforcement can specifically reduce threat signatures in specific phobia. Consequently, this intervention may complement conventional psychotherapy approaches with a nondistressing experience for patients seeking treatment. This trial sets the stage for a larger randomized clinical trial to replicate these results and examine the effects on real-life exposure. CLINICAL TRIAL REGISTRATION The now-closed trial was prospectively registered at ClinicalTrials.gov with ID NCT03655262.
Collapse
Affiliation(s)
- Cody A Cushing
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | | | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Québec, Canada
| |
Collapse
|
17
|
Pepperell R. Consciousness and Energy Processing in Neural Systems. Brain Sci 2024; 14:1112. [PMID: 39595875 PMCID: PMC11591782 DOI: 10.3390/brainsci14111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Our understanding of the relationship between neural activity and psychological states has advanced greatly in recent decades. But we are still unable to explain conscious experience in terms of physical processes occurring in our brains. METHODS This paper introduces a conceptual framework that may contribute to an explanation. All physical processes entail the transfer, transduction, and transformation of energy between portions of matter as work is performed in material systems. If the production of consciousness in nervous systems is a physical process, then it must entail the same. Here the nervous system, and the brain in particular, is considered as a material system that transfers, transduces, and transforms energy as it performs biophysical work. CONCLUSIONS Evidence from neuroscience suggests that conscious experience is produced in the organic matter of nervous systems when they perform biophysical work at classical and quantum scales with a certain level of dynamic complexity or organization. An empirically grounded, falsifiable, and testable hypothesis is offered to explain how energy processing in nervous systems may produce conscious experience at a fundamental physical level.
Collapse
|
18
|
Kozuch B. Better bridges: Integrating the neuroscience and philosophy of consciousness. Conscious Cogn 2024; 126:103774. [PMID: 39488884 DOI: 10.1016/j.concog.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Contemporary consciousness research has given rise to numerous theories in both the philosophical and neuroscientific domains (such as higher-order theory and global neuronal workspace), raising the question as to how well each is supported. This article develops a relatively novel method for determining this, which is to use evidence, not just from a theory's own domain, but also from its complementary domain (e.g., neuroscientific evidence is used to judge a philosophical theory, and vice versa). This approach works when a neuroscientific and a philosophical theory are conceptually linked, allowing evidence confirming or disconfirming one theory to do the same for the other. After developing this method, the article uses it to draw conclusions concerning some of our leading neuroscientific and philosophical theories of consciousness, including first- and second-order representationalism and theories emphasizing the prefrontal cortex's role in consciousness.
Collapse
Affiliation(s)
- Benjamin Kozuch
- University of Alabama, Philosophy Department, 336 ten Hoor Hall, 350 Marrs Spring Road, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
19
|
Dai R, Jang H, Hudetz AG, Huang Z, Mashour GA. Neural Correlates of Psychedelic, Sleep, and Sedated States Support Global Theories of Consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619731. [PMID: 39484478 PMCID: PMC11526930 DOI: 10.1101/2024.10.23.619731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions. To disentangle the global vs. local and frontoparietal vs. posterior dilemmas, we measured global functional connectivity and local neural synchrony with functional magnetic resonance imaging (fMRI) data across a spectrum of conscious states in humans induced by psychedelics, sleep, and deep sedation. We found that psychedelic states are associated with increased global functional connectivity and decreased local neural synchrony. In contrast, non-REM sleep and deep sedation displayed the opposite pattern, suggesting that consciousness arises from global brain network interactions rather than localized activity. This mirror-image pattern between enhanced and diminished states was observed in both anterior-posterior (A-P) and posterior-posterior (P-P) brain regions but not within the anterior part of the brain alone. Moreover, anterior transmodal regions played a key role in A-P connectivity, while both posterior transmodal and posterior unimodal regions were critical for P-P connectivity. Overall, these findings provide empirical evidence supporting global theories of consciousness in relation to varying states of consciousness. They also bridge the gap between two prominent theories, GNW and IIT, by demonstrating how different theories can converge on shared neuronal mechanisms.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hyunwoo Jang
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Rebouillat B, Barascud N, Kouider S. Partial awareness during voluntary endogenous decision. Conscious Cogn 2024; 125:103769. [PMID: 39413689 DOI: 10.1016/j.concog.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Despite our feeling of control over decisions, our ability to consciously access choices before execution remains debated. Recent research reveals prospective access to intention to act, allowing potential vetoes of impending decisions. However, whether the content of impending decision can be accessed remain debated. Here we track neural signals during participants' early deliberation in free decisions. Participants chose freely between two options but sometimes had to reject their current decision just before execution. The initially preferred option, tracked in real time, significantly predicts the upcoming choice, but remain mostly outside of conscious awareness. Participants often display overconfidence in their access to this content. Instead, confidence is associated with a neural marker of self-initiated decision, indicating a qualitative confusion in the confidence evaluation process. Our results challenge the notion of complete agency over choices, suggesting inflated awareness of forthcoming decisions and providing insights into metacognitive processes in free decision-making.
Collapse
Affiliation(s)
- Benjamin Rebouillat
- Laboratoire DysCo, Université Paris 8, Saint-Denis, France; Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France; Ecole Doctorale Cerveau Cognition Comportement, ENS/ Paris VI / Paris V, Paris 75005, France.
| | - Nicolas Barascud
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
21
|
Fleming SM, Shea N. Quality space computations for consciousness. Trends Cogn Sci 2024; 28:896-906. [PMID: 39025769 DOI: 10.1016/j.tics.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
The quality space hypothesis about conscious experience proposes that conscious sensory states are experienced in relation to other possible sensory states. For instance, the colour red is experienced as being more like orange, and less like green or blue. Recent empirical findings suggest that subjective similarity space can be explained in terms of similarities in neural activation patterns. Here, we consider how localist, workspace, and higher-order theories of consciousness can accommodate claims about the qualitative character of experience and functionally support a quality space. We review existing empirical evidence for each of these positions, and highlight novel experimental tools, such as altering local activation spaces via brain stimulation or behavioural training, that can distinguish these accounts.
Collapse
Affiliation(s)
- Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Department of Experimental Psychology, University College London, London, UK; Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada.
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Key B, Brown DJ. Making sense of feelings. Neurosci Conscious 2024; 2024:niae034. [PMID: 39301415 PMCID: PMC11412240 DOI: 10.1093/nc/niae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Internal feeling states such as pain, hunger, and thirst are widely assumed to be drivers of behaviours essential for homeostasis and animal survival. Call this the 'causal assumption'. It is becoming increasingly apparent that the causal assumption is incompatible with the standard view of motor action in neuroscience. While there is a well-known explanatory gap between neural activity and feelings, there is also a disjuncture in the reverse direction-what role, if any, do feelings play in animals if not to cause behaviour? To deny that feelings cause behaviours might thus seem to presage epiphenomenalism-the idea that subjective experiences, including feelings, are inert, emergent and, on some views, non-physical properties of brain processes. Since epiphenomenalism is antagonistic to fundamental commitments of evolutionary biology, the view developed here challenges the standard view about the function of feelings without denying that feelings have a function. Instead, we introduce the 'sense making sense' hypothesis-the idea that the function of subjective experience is not to cause behaviour, but to explain, in a restricted but still useful sense of 'explanation'. A plausible framework is derived that integrates commonly accepted neural computations to blend motor control, feelings, and explanatory processes to make sense of the way feelings are integrated into our sense of how and why we do and what we do.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Deborah J Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Block N. What does decoding from the PFC reveal about consciousness? Trends Cogn Sci 2024; 28:804-813. [PMID: 38862352 DOI: 10.1016/j.tics.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Disputes between rival theories of consciousness have often centered on whether perceptual contents can be decoded from the prefrontal cortex (PFC). Failures to decode from the PFC are taken to challenge 'cognitive' theories of consciousness such as the global workspace theory and higher-order monitoring theories, and decoding successes have been taken to confirm these theories. However, PFC decoding shows both too much and too little. Too much because cognitive theories of consciousness do not need PFC rerepresentation of perceptual contents since pointers to perceptual representations suffice. Too little because there is evidence that PFC decoding of perceptual content reflects postperceptual cognitive representation, such as thoughts that have those perceptual contents rather than conscious percepts.
Collapse
Affiliation(s)
- Ned Block
- New York University, 5 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
24
|
Josipovic Z. Reflexivity gradient-Consciousness knowing itself. Front Psychol 2024; 15:1450553. [PMID: 39246319 PMCID: PMC11377282 DOI: 10.3389/fpsyg.2024.1450553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Some consider phenomenal consciousness to be the great achievement of the evolution of life on earth, but the real achievement is much more than mere phenomenality. The real achievement is that consciousness has woken up within us and has recognized itself, that within us humans, consciousness knows that it is conscious. This short review explores the reflexivity of consciousness from the perspective of consciousness itself-a non-conceptual nondual awareness, whose main property is its non-representational reflexivity. In light of this nondual reflexivity, different types of reflexivity proposed by current theories can be seen as a gradation of relational or transitive distances between consciousness as the knower and consciousness as the known, from fully representational and dual, through various forms of qualified monism, to fully non-representational and nondual.
Collapse
Affiliation(s)
- Zoran Josipovic
- Department of Psychology, New York University, New York, NY, United States
- Nonduality Institute, Woodstock, NY, United States
| |
Collapse
|
25
|
Eisen AJ, Kozachkov L, Bastos AM, Donoghue JA, Mahnke MK, Brincat SL, Chandra S, Tauber J, Brown EN, Fiete IR, Miller EK. Propofol anesthesia destabilizes neural dynamics across cortex. Neuron 2024; 112:2799-2813.e9. [PMID: 39013467 PMCID: PMC11923585 DOI: 10.1016/j.neuron.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Every day, hundreds of thousands of people undergo general anesthesia. One hypothesis is that anesthesia disrupts dynamic stability-the ability of the brain to balance excitability with the need to be stable and controllable. To test this hypothesis, we developed a method for quantifying changes in population-level dynamic stability in complex systems: delayed linear analysis for stability estimation (DeLASE). Propofol was used to transition animals between the awake state and anesthetized unconsciousness. DeLASE was applied to macaque cortex local field potentials (LFPs). We found that neural dynamics were more unstable in unconsciousness compared with the awake state. Cortical trajectories mirrored predictions from destabilized linear systems. We mimicked the effect of propofol in simulated neural networks by increasing inhibitory tone. This in turn destabilized the networks, as observed in the neural data. Our results suggest that anesthesia disrupts dynamical stability that is required for consciousness.
Collapse
Affiliation(s)
- Adam J Eisen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leo Kozachkov
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - André M Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob A Donoghue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Beacon Biosignals, Boston, MA 02114, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott L Brincat
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarthak Chandra
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Tauber
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ila R Fiete
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Fang Z, Dang Y, Li X, Zhao Q, Zhang M, Zhao H. Intracranial neural representation of phenomenal and access consciousness in the human brain. Neuroimage 2024; 297:120699. [PMID: 38944172 DOI: 10.1016/j.neuroimage.2024.120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Qianchuan Zhao
- Center for Intelligent and Networked Systems, Department of Automation, TNLIST, Tsinghua University, Beijing 100084, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
27
|
Granato G, Baldassarre G. Bridging flexible goal-directed cognition and consciousness: The Goal-Aligning Representation Internal Manipulation theory. Neural Netw 2024; 176:106292. [PMID: 38657422 DOI: 10.1016/j.neunet.2024.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Goal-directed manipulation of internal representations is a key element of human flexible behaviour, while consciousness is commonly associated with higher-order cognition and human flexibility. Current perspectives have only partially linked these processes, thus preventing a clear understanding of how they jointly generate flexible cognition and behaviour. Moreover, these limitations prevent an effective exploitation of this knowledge for technological scopes. We propose a new theoretical perspective that extends our 'three-component theory of flexible cognition' toward higher-order cognition and consciousness, based on the systematic integration of key concepts from Cognitive Neuroscience and AI/Robotics. The theory proposes that the function of conscious processes is to support the alignment of representations with multi-level goals. This higher alignment leads to more flexible and effective behaviours. We analyse here our previous model of goal-directed flexible cognition (validated with more than 20 human populations) as a starting GARIM-inspired model. By bridging the main theories of consciousness and goal-directed behaviour, the theory has relevant implications for scientific and technological fields. In particular, it contributes to developing new experimental tasks and interpreting clinical evidence. Finally, it indicates directions for improving machine learning and robotics systems and for informing real-world applications (e.g., in digital-twin healthcare and roboethics).
Collapse
Affiliation(s)
- Giovanni Granato
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| | - Gianluca Baldassarre
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| |
Collapse
|
28
|
Cushing CA, Lau H, Kawato M, Craske MG, Taschereau-Dumouchel V. A double-blind trial of decoded neurofeedback intervention for specific phobias. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.04.25.23289107. [PMID: 39132473 PMCID: PMC11312662 DOI: 10.1101/2023.04.25.23289107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Aim A new closed-loop fMRI method called multi-voxel neuro-reinforcement has the potential to alleviate the subjective aversiveness of exposure-based interventions by directly inducing phobic representations in the brain, outside of conscious awareness. The current study seeks to test this method as an intervention for specific phobia. Methods In a randomized, double-blind, controlled single-university trial, individuals diagnosed with at least two (1 target, 1 control) animal subtype specific phobias were randomly assigned (1:1:1) to receive 1, 3, or 5 sessions of multi-voxel neuro-reinforcement in which they were rewarded for implicit activation of a target animal representation. Amygdala response to phobic stimuli was assessed by study staff blind to target and control animal assignments. Pre-treatment to post-treatment differences were analyzed with a 2-way repeated-measures ANOVA. Results A total of 23 participants (69.6% female) were randomized to receive 1 (n=8), 3 (n=7), or 5 (n=7) sessions of multi-voxel neuro-reinforcement. Eighteen (n=6 each group) participants were analyzed for our primary outcome. After neuro-reinforcement, we observed an interaction indicating a significant decrease in amygdala response for the target phobia but not the control phobia. No adverse events or dropouts were reported as a result of the intervention. Conclusion Results suggest multi-voxel neuro-reinforcement can specifically reduce threat signatures in specific phobia. Consequently, this intervention may complement conventional psychotherapy approaches with a non-distressing experience for patients seeking treatment. This trial sets the stage for a larger randomized clinical trial to replicate these results and examine the effects on real-life exposure. Clinical Trial Registration The now-closed trial was prospectively registered at ClinicalTrials.gov with ID NCT03655262.
Collapse
Affiliation(s)
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | | | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Cushing CA, Lau H, Hofmann SG, LeDoux JE, Taschereau‐Dumouchel V. Metacognition as a window into subjective affective experience. Psychiatry Clin Neurosci 2024; 78:430-437. [PMID: 38884177 PMCID: PMC11488623 DOI: 10.1111/pcn.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
When patients seek professional help for mental disorders, they often do so because of troubling subjective affective experiences. While these subjective states are at the center of the patient's symptomatology, scientific tools for studying them and their cognitive antecedents are limited. Here, we explore the use of concepts and analytic tools from the science of consciousness, a field of research that has faced similar challenges in having to develop robust empirical methods for addressing a phenomenon that has been considered difficult to pin down experimentally. One important strand is the operationalization of some relevant processes in terms of metacognition and confidence ratings, which can be rigorously studied in both humans and animals. By assessing subjective experience with similar approaches, we hope to develop new scientific approaches for studying affective processes and promoting psychological resilience in the face of debilitating emotional experiences.
Collapse
Affiliation(s)
| | | | | | - Joseph E. LeDoux
- Center for Neural Science and Department of PsychologyNew York UniversityNew YorkNew YorkUSA
- Emotional Brain InstituteNathan Kline InstituteOrangeburgNew YorkUSA
- Department of Psychiatry, and Department of Child and Adolescent PsychiatryNew York University Langone Medical SchoolNew YorkNew YorkUSA
- Max‐Planck‐NYU Center for Language, Music, and Emotion (CLaME)New York UniversityNew YorkNew YorkUSA
| | - Vincent Taschereau‐Dumouchel
- Department of Psychiatry and AddictologyUniversité de MontréalMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de MontréalMontrealQuebecCanada
| |
Collapse
|
30
|
Perez Velazquez JL, Mateos DM, Guevara R, Wennberg R. Unifying biophysical consciousness theories with MaxCon: maximizing configurations of brain connectivity. Front Syst Neurosci 2024; 18:1426986. [PMID: 39135560 PMCID: PMC11317472 DOI: 10.3389/fnsys.2024.1426986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
There is such a vast proliferation of scientific theories of consciousness that it is worrying some scholars. There are even competitions to test different theories, and the results are inconclusive. Consciousness research, far from converging toward a unifying framework, is becoming more discordant than ever, especially with respect to theoretical elements that do not have a clear neurobiological basis. Rather than dueling theories, an integration across theories is needed to facilitate a comprehensive view on consciousness and on how normal nervous system dynamics can develop into pathological states. In dealing with what is considered an extremely complex matter, we try to adopt a perspective from which the subject appears in relative simplicity. Grounded in experimental and theoretical observations, we advance an encompassing biophysical theory, MaxCon, which incorporates aspects of several of the main existing neuroscientific consciousness theories, finding convergence points in an attempt to simplify and to understand how cellular collective activity is organized to fulfill the dynamic requirements of the diverse theories our proposal comprises. Moreover, a computable index indicating consciousness level is presented. Derived from the level of description of the interactions among cell networks, our proposal highlights the association of consciousness with maximization of the number of configurations of neural network connections -constrained by neuroanatomy, biophysics and the environment- that is common to all consciousness theories.
Collapse
Affiliation(s)
- Jose Luis Perez Velazquez
- The Ronin Institute, Montclair, NJ, United States
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Diego Martin Mateos
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
| | - Ramon Guevara
- Department of Physics and Astronomy, Department of Developmental Psychology and Socialization, University of Padua, Padova, Italy
| | - Richard Wennberg
- University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Karakose-Akbiyik S, Schubert TM, Caramazza A. Preserved recognition of basic visual features despite lack of awareness of shape: Evidence from a case of neglect. Cortex 2024; 176:62-76. [PMID: 38754211 DOI: 10.1016/j.cortex.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Human visual experience of objects comprises a combination of visual features, such as color, position, and shape. Spatial attention is thought to play a role in creating a coherent perceptual experience, integrating visual information coming from a given location, but the mechanisms underlying this process are not fully understood. Deficits of spatial attention in which this integration process does not occur normally, such as neglect, can provide insights regarding the mechanisms of spatial attention in visual object recognition. In this study, we describe a series of experiments conducted with an individual with neglect, DH. DH presents characteristic lack of awareness of the left side of individual objects, evidenced by poor object and face recognition, and impaired word reading. However, he exhibits intact recognition of color within the boundaries of the same objects he fails to recognize. Furthermore, he can also report the orientation and location of a colored region on the neglected left side despite lack of awareness of the shape of the region. Overall, DH shows selective lack of awareness of shape despite intact processing of basic visual features in the same spatial location. DH's performance raises intriguing questions and challenges about the role of spatial attention in the formation of coherent object percepts and visual awareness.
Collapse
Affiliation(s)
| | | | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
32
|
Dou W, Martinez Arango LJ, Castaneda OG, Arellano L, Mcintyre E, Yballa C, Samaha J. Neural Signatures of Evidence Accumulation Encode Subjective Perceptual Confidence Independent of Performance. Psychol Sci 2024; 35:760-779. [PMID: 38722666 DOI: 10.1177/09567976241246561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Confidence is an adaptive computation when environmental feedback is absent, yet there is little consensus regarding how perceptual confidence is computed in the brain. Difficulty arises because confidence correlates with other factors, such as accuracy, response time (RT), or evidence quality. We investigated whether neural signatures of evidence accumulation during a perceptual choice predict subjective confidence independently of these factors. Using motion stimuli, a central-parietal positive-going electroencephalogram component (CPP) behaves as an accumulating decision variable that predicts evidence quality, RT, accuracy, and confidence (Experiment 1, N = 25 adults). When we psychophysically varied confidence while holding accuracy constant (Experiment 2, N = 25 adults), the CPP still predicted confidence. Statistically controlling for RT, accuracy, and evidence quality (Experiment 3, N = 24 adults), the CPP still explained unique variance in confidence. The results indicate that a predecision neural signature of evidence accumulation, the CPP, encodes subjective perceptual confidence in decision-making independent of task performance.
Collapse
Affiliation(s)
- Wei Dou
- Department of Psychology, University of California, Santa Cruz
| | | | - Olenka Graham Castaneda
- Department of Psychology, University of California, Santa Cruz
- Department of Cognitive Sciences, University of California, Irvine
| | | | - Emily Mcintyre
- Department of Psychology, University of California, Santa Cruz
| | - Claire Yballa
- Department of Psychology, University of California, Santa Cruz
- Memory and Aging Center, University of California, San Francisco
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz
| |
Collapse
|
33
|
Kozuch B. An embarrassment of richnesses: the PFC isn't the content NCC. Neurosci Conscious 2024; 2024:niae017. [PMID: 38938921 PMCID: PMC11210398 DOI: 10.1093/nc/niae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
Recent years have seen the rise of several theories saying that the prefrontal cortex (PFC) is a neural correlate of visual consciousness (NCC). Especially popular here are theories saying that the PFC is the 'content NCC' for vision, i.e. it contains those brain areas that are not only necessary for consciousness, but also determine 'what' it is that we visually experience (e.g. whether we experience green or red). This article points out how this "upper-deck" form of PFC theory is at odds with the character of visual experience: on the one hand, visual consciousness appears to contain copious amounts of content, with many properties (such as object, shape, or color) being simultaneously represented in many parts of the visual field. On the other hand, the functions that the PFC carries out (e.g. attention and working memory) are each dedicated to processing only a relatively small subset of available visual stimuli. In short, the PFC probably does not produce enough or the right kind of visual representations for it to supply all of the content found in visual experience, in which case the idea that the PFC is the content NCC for vision is probably false. This article also discusses data thought to undercut the idea that visual experience is informationally rich (inattentional blindness, etc.), along with theories of vision according to which "ensemble statistics" are used to represent features in the periphery of the visual field. I'll argue that these lines of evidence fail to close the apparently vast gap between the amount of visual content represented in the visual experience and the amount represented in the PFC.
Collapse
Affiliation(s)
- Benjamin Kozuch
- Philosophy Department, University of Alabama, Tuscaloosa, AL 35401, United States
| |
Collapse
|
34
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
35
|
Dijkstra N. Uncovering the Role of the Early Visual Cortex in Visual Mental Imagery. Vision (Basel) 2024; 8:29. [PMID: 38804350 PMCID: PMC11130976 DOI: 10.3390/vision8020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The question of whether the early visual cortex (EVC) is involved in visual mental imagery remains a topic of debate. In this paper, I propose that the inconsistency in findings can be explained by the unique challenges associated with investigating EVC activity during imagery. During perception, the EVC processes low-level features, which means that activity is highly sensitive to variation in visual details. If the EVC has the same role during visual mental imagery, any change in the visual details of the mental image would lead to corresponding changes in EVC activity. Within this context, the question should not be whether the EVC is 'active' during imagery but how its activity relates to specific imagery properties. Studies using methods that are sensitive to variation in low-level features reveal that imagery can recruit the EVC in similar ways as perception. However, not all mental images contain a high level of visual details. Therefore, I end by considering a more nuanced view, which states that imagery can recruit the EVC, but that does not mean that it always does so.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
36
|
Maffei A, Gambarota F, Liotti M, Dell'Acqua R, Tsuchiya N, Sessa P. Conscious perception of fear in faces: Insights from high-density EEG and perceptual awareness scale with threshold stimuli. Cortex 2024; 174:93-109. [PMID: 38493568 DOI: 10.1016/j.cortex.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Contrary to the extensive research on processing subliminal and/or unattended emotional facial expressions, only a minority of studies have investigated the neural correlates of consciousness (NCCs) of emotions conveyed by faces. In the present high-density electroencephalography (EEG) study, we first employed a staircase procedure to identify each participant's perceptual threshold of the emotion expressed by the face and then compared the EEG signals elicited in trials where the participants were aware with the activity elicited in trials where participants were unaware of the emotions expressed by these, otherwise identical, faces. Drawing on existing knowledge of the neural mechanisms of face processing and NCCs, we hypothesized that activity in frontal electrodes would be modulated in relation to participants' awareness of facial emotional content. More specifically, we hypothesized that the NCC of fear seen on someone else's face could be detected as a modulation of a later and more anterior (i.e., at frontal sites) event-related potential (ERP) than the face-sensitive N170. By adopting a data-driven approach and cluster-based statistics to the analysis of EEG signals, the results were clear-cut in showing that visual awareness of fear was associated with the modulation of a frontal ERP component in a 150-300 msec interval. These insights are dissected and contextualized in relation to prevailing theories of visual consciousness and their proposed NCC benchmarks.
Collapse
Affiliation(s)
- Antonio Maffei
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Filippo Gambarota
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Mario Liotti
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Roberto Dell'Acqua
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita-shi, Osaka, Japan; Laboratory Head, Laboratory of Qualia Structure, ATR Computational Neuroscience Laboratories, Seika-cho, Soraku-gun, Kyoto, Japan.
| | - Paola Sessa
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
37
|
Forti B. The hidden structure of consciousness. Front Psychol 2024; 15:1344033. [PMID: 38650907 PMCID: PMC11033517 DOI: 10.3389/fpsyg.2024.1344033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
According to Loorits, if we want consciousness to be explained in terms of natural sciences, we should be able to analyze its seemingly non-structural aspects, like qualia, in structural terms. However, the studies conducted over the last three decades do not seem to be able to bridge the explanatory gap between physical phenomena and phenomenal experience. One possible way to bridge the explanatory gap is to seek the structure of consciousness within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience. First, this analysis leads us to identify the explanandum concerning the simplest forms of experience not in qualia but in the unitary set of qualities found in early vision. Second, it leads us to hypothesize that consciousness is also made up of non-apparent parts, and that there exists a hidden structure of consciousness. This structure, corresponding to a simple early visual experience, is constituted by a Hierarchy of Spatial Belongings nested within each other. Each individual Spatial Belonging is formed by a primary content and a primary space. The primary content can be traced in the perceptibility of the contents we can distinguish in the phenomenal field. The primary space is responsible for the perceptibility of the content and is not perceptible in itself. However, the phenomenon I refer to as subtraction of visibility allows us to characterize it as phenomenally negative. The hierarchical relationships between Spatial Belongings can ensure the qualitative nature of components of perceptual organization, such as object, background, and detail. The hidden structure of consciousness presents aspects that are decidedly counterintuitive compared to our idea of phenomenal experience. However, on the one hand, the Hierarchy of Spatial Belongings can explain the qualities of early vision and their appearance as a unitary whole, while on the other hand, it might be more easily explicable in terms of brain organization. In other words, the hidden structure of consciousness can be considered a bridge structure which, placing itself at an intermediate level between experience and physical properties, can contribute to bridging the explanatory gap.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
38
|
Cortese A, Kawato M. The cognitive reality monitoring network and theories of consciousness. Neurosci Res 2024; 201:31-38. [PMID: 38316366 DOI: 10.1016/j.neures.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Theories of consciousness abound. However, it is difficult to arbitrate reliably among competing theories because they target different levels of neural and cognitive processing or anatomical loci, and only some were developed with computational models in mind. In particular, theories of consciousness need to fully address the three levels of understanding of the brain proposed by David Marr: computational theory, algorithms and hardware. Most major theories refer to only one or two levels, often indirectly. The cognitive reality monitoring network (CRMN) model is derived from computational theories of mixture-of-experts architecture, hierarchical reinforcement learning and generative/inference computing modules, addressing all three levels of understanding. A central feature of the CRMN is the mapping of a gating network onto the prefrontal cortex, making it a prime coding circuit involved in monitoring the accuracy of one's mental states and distinguishing them from external reality. Because the CRMN builds on the hierarchical and layer structure of the cerebral cortex, it may connect research and findings across species, further enabling concrete computational models of consciousness with new, explicitly testable hypotheses. In sum, we discuss how the CRMN model can help further our understanding of the nature and function of consciousness.
Collapse
Affiliation(s)
- Aurelio Cortese
- Computational Neuroscience Labs, ATR Institute International, Kyoto 619-0228, Japan.
| | - Mitsuo Kawato
- Computational Neuroscience Labs, ATR Institute International, Kyoto 619-0228, Japan; XNef, Kyoto 619-0288, Japan.
| |
Collapse
|
39
|
Baetu TM. Extrapolating animal consciousness. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 104:150-159. [PMID: 38520882 DOI: 10.1016/j.shpsa.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
I argue that the question of animal consciousness is an extrapolation problem and, as such, is best tackled by deploying currently accepted methodology for validating experimental models of a phenomenon of interest. This methodology relies on an assessment of similarities and dissimilarities between experimental models, the partial replication of findings across complementary models, and evidence from the successes and failures of explanations, technologies and medical applications developed by extrapolating and aggregating findings from multiple models. Crucially important, this methodology does not require a commitment to any particular theory or construct of consciousness, thus avoiding theory-biased reinterpretations of empirical findings rampant in the literature.
Collapse
Affiliation(s)
- Tudor M Baetu
- Université du Québec à Trois-Rivières, Département de philosophie et des arts, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada.
| |
Collapse
|
40
|
Andersen S. The maps of meaning consciousness theory. Front Psychol 2024; 15:1161132. [PMID: 38659681 PMCID: PMC11040679 DOI: 10.3389/fpsyg.2024.1161132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
In simple terms, consciousness is constituted by multiple goals for action and the continuous adjudication of such goals to implement action, which is referred to as the maps of meaning (MoM) consciousness theory. The MoM theory triangulates through three parallel corollaries: action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism's consciousness contains fluid, nested goals. These goals are not intentionality, but intersectionality, via the Darwinian byproduct of embodiment meeting the world, i.e., Darwinian inclusive fitness or randomization and then survival of the fittest. (2) These goals are formed via a gradual descent under inclusive fitness and are the abstraction of a "match" between the evolutionary environment and the organism. (3) Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience-crystallized efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one's adaptive environment. These efficiencies are objectively arbitrary but determine the operation and level of one's consciousness, termed as extreme thrownness. (4) Since inclusive fitness drives efficiencies in the physiologic mechanism, morphology, and behavior (action) and originates one's goals, embodiment is necessarily entangled to human consciousness as it is at the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. (5) Perception is the operant process of consciousness and is the de facto goal adjudication process of consciousness. Goal operationalization is fundamentally efficiency-based via one's unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. (6) Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception is not a 'frame rate' but Bayesian priors of efficiency based on one's extreme thrownness. (7) Consciousness and human consciousness are modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as the emergent phenomena at various modularities such as the stratified factors in factor analysis). (8) The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. (9) Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.
Collapse
Affiliation(s)
- Scott Andersen
- United States Department of Homeland Security, Washington, DC, United States
- Liberty University, Lynchburg, VA, United States
| |
Collapse
|
41
|
Forti B. Approaching the nature of consciousness through a phenomenal analysis of early vision. What is the explanandum? Front Psychol 2024; 15:1329259. [PMID: 38562232 PMCID: PMC10982490 DOI: 10.3389/fpsyg.2024.1329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Loorits (2014) identifies the solution to the hard problem of consciousness in the possibility of fully analyzing seemingly non-structural aspects of consciousness in structural terms. However, research on consciousness conducted in recent decades has failed to bridge the explanatory gap between the brain and conscious mind. One reason why the explanatory gap cannot be filled, and consequently the problem remains hard, is that experience and neural structure are too different or "distant" to be directly compatible. Conversely, structural aspects of consciousness can be found in phenomenal experience. One possible alternative, therefore, is to seek the structure of seemingly non-structural aspects of consciousness not in the neural substrate, but within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience, starting from its simplest forms. An essential premise is to reformulate the explanandum of consciousness, which is usually attributed to qualia and what it is like to be in a certain state. However, these properties do not allow us to identify the fundamental aspects of phenomenal experience. Sensations such as the redness of red or the painfulness of pain are inseparable from the context of the experience to which they belong, making qualia appear as phenomenal artifacts. Furthermore, the simplest qualitative aspects can be found in early vision. They are involved in perceptual organization and necessarily have relational significance. The unitary set of qualities found in early vision-such as those related to being an object, background or detail-constitutes the explanandum of the simplest forms of consciousness and seems to imply a justifying structure. Although early vision is characterized by interdependent qualitative components that form a unitary whole, we cannot find in it the structure of seemingly non-structural aspects of consciousness. Phenomenal appearance alone does not seem sufficient to identify a unitary structure of consciousness. However, the closeness of these characteristics to a unitary structure prompts us to delve into less explored territory, using the components of experience also as possible explanans.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
42
|
Negro N. (Dis)confirming theories of consciousness and their predictions: towards a Lakatosian consciousness science. Neurosci Conscious 2024; 2024:niae012. [PMID: 38495333 PMCID: PMC10944285 DOI: 10.1093/nc/niae012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The neuroscience of consciousness is undergoing a significant empirical acceleration thanks to several adversarial collaborations that intend to test different predictions of rival theories of consciousness. In this context, it is important to pair consciousness science with confirmation theory, the philosophical discipline that explores the interaction between evidence and hypotheses, in order to understand how exactly, and to what extent, specific experiments are challenging or validating theories of consciousness. In this paper, I examine this intricate relationship by adopting a Lakatosian lens. I propose that Lakatos' philosophy of science can aid consciousness scientists to better interpret adversarial collaborations in consciousness science and, more generally, to develop a confirmation-theoretic model of theory-appraisal in this field. I do so by suggesting that such a model be built upon three Lakatos-inspired criteria for assessing the relationship between empirical evidence and theoretical predictions: (i) the model should represent the 'distinction between prediction and accommodation'; (ii) the model should represent the 'structural relevance' of predictions; (iii) the model should represent the 'boldness' of the predictions. I argue that a Lakatosian model of theory-appraisal has both normative and descriptive virtues, and can move the debate forward by acknowledging that theory-appraisal needs to consider the diachronic development of theories, their logical structure, and their relationship with background beliefs and knowledge.
Collapse
Affiliation(s)
- Niccolò Negro
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
43
|
Evers K, Farisco M, Pennartz CMA. Assessing the commensurability of theories of consciousness: On the usefulness of common denominators in differentiating, integrating and testing hypotheses. Conscious Cogn 2024; 119:103668. [PMID: 38417198 DOI: 10.1016/j.concog.2024.103668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
How deep is the current diversity in the panoply of theories to define consciousness, and to what extent do these theories share common denominators? Here we first examine to what extent different theories are commensurable (or comparable) along particular dimensions. We posit logical (and, when applicable, empirical) commensurability as a necessary condition for identifying common denominators among different theories. By consequence, dimensions for inclusion in a set of logically and empirically commensurable theories of consciousness can be proposed. Next, we compare a limited subset of neuroscience-based theories in terms of commensurability. This analysis does not yield a denominator that might serve to define a minimally unifying model of consciousness. Theories that seem to be akin by one denominator can be remote by another. We suggest a methodology of comparing different theories via multiple probing questions, allowing to discern overall (dis)similarities between theories. Despite very different background definitions of consciousness, we conclude that, if attention is paid to the search for a common methological approach to brain-consciousness relationships, it should be possible in principle to overcome the current Babylonian confusion of tongues and eventually integrate and merge different theories.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden.
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Bioethics Unit, Biogem, Molecular Biology and Molecular Genetics Research Institute, Ariano Irpino (AV), Italy
| | - C M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherland; Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Rowe EG, Garrido MI, Tsuchiya N. Feedforward connectivity patterns from visual areas to the front of the brain contain information about sensory stimuli regardless of awareness or report. Cortex 2024; 172:284-300. [PMID: 38142179 DOI: 10.1016/j.cortex.2023.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/25/2023]
Abstract
Current theories of consciousness can be categorized to some extent by their predictions about the putative role of the prefrontal cortex (PFC) in conscious perception. One family of the theories proposes that the PFC is necessary for conscious perception. The other postulates that the PFC is not necessary and that other areas (e.g., posterior cortical areas) are more important for conscious perception. No-report paradigms could potentially arbitrate the debate as they disentangle task reporting from conscious perception. While previous no-report paradigms tend to point to a reduction in PFC activity, they have not examined the critical role of the PFC in "monitoring" or "reading out" the patterns of activity in the sensory cortex to generate conscious perception. To address this, we reanalysed electroencephalography (EEG) data from a no-report inattentional blindness paradigm (Shafto & Pitts, 2015). We examined the role of feedforward input patterns to the PFC from sensory cortices. We employed nonparametric spectral Granger causality and quantified the amount of information that reflected the contents of consciousness using multivariate classifiers. Unexpectedly, regardless of whether the stimulus was consciously seen or not, we found that information relating to the current sensory stimulus was present in the pattern of inputs from visual areas to the PFC. In light of these findings, we suggest various theories of consciousness need to be revised to accommodate the fact that the contents of consciousness are decodable from the input patterns from posterior sensory regions to the PFC, regardless of awareness (or report).
Collapse
Affiliation(s)
- Elise G Rowe
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia.
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; ARC Centre of Excellence for Integrative Brain Function, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan; Department of Qualia Structure, ATR Computational Neuroscience Laboratories, Seika-cho, Soraku-gun, Kyoto, Japan; ARC Centre of Excellence for Integrative Brain Function, Victoria, Australia
| |
Collapse
|
45
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
46
|
Fang Z, Dang Y, Ling Z, Han Y, Zhao H, Xu X, Zhang M. The involvement of the human prefrontal cortex in the emergence of visual awareness. eLife 2024; 12:RP89076. [PMID: 38265851 PMCID: PMC10945701 DOI: 10.7554/elife.89076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Exploring the neural mechanisms of awareness is a fundamental task of cognitive neuroscience. There is an ongoing dispute regarding the role of the prefrontal cortex (PFC) in the emergence of awareness, which is partially raised by the confound between report- and awareness-related activity. To address this problem, we designed a visual awareness task that can minimize report-related motor confounding. Our results show that saccadic latency is significantly shorter in the aware trials than in the unaware trials. Local field potential (LFP) data from six patients consistently show early (200-300ms) awareness-related activity in the PFC, including event-related potential and high-gamma activity. Moreover, the awareness state can be reliably decoded by the neural activity in the PFC since the early stage, and the neural pattern is dynamically changed rather than being stable during the representation of awareness. Furthermore, the enhancement of dynamic functional connectivity, through the phase modulation at low frequency, between the PFC and other brain regions in the early stage of the awareness trials may explain the mechanism of conscious access. These results indicate that the PFC is critically involved in the emergence of awareness.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal UniversityBeijingChina
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third HospitalBeijingChina
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal UniversityBeijingChina
| |
Collapse
|
47
|
Fazekas P, Cleeremans A, Overgaard M. A construct-first approach to consciousness science. Neurosci Biobehav Rev 2024; 156:105480. [PMID: 38008237 DOI: 10.1016/j.neubiorev.2023.105480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
We propose a new approach to consciousness science that instead of comparing complex theoretical positions deconstructs existing theories, takes their central assumptions while disregarding their auxiliary hypotheses, and focuses its investigations on the main constructs that these central assumptions rely on (like global workspace, recurrent processing, metarepresentation). Studying how these main constructs are anchored in lower-level constructs characterizing underlying neural processing will not just offer an alternative to theory comparisons but will also take us one step closer to empirical resolutions. Moreover, exploring the compatibility and possible combinations of the lower-level constructs will allow for new theoretical syntheses. This construct-first approach will improve our ability to understand the commitments of existing theories and pave the way for moving beyond them.
Collapse
Affiliation(s)
- Peter Fazekas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark.
| | - Axel Cleeremans
- Center for Research in Cognition & Neurosciences, Université Libre De Bruxelles, 50 avenue F.D. Roosevelt CP191, 1050 Bruxelles, Belgium
| | - Morten Overgaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark
| |
Collapse
|
48
|
Montupil J, Cardone P, Staquet C, Bonhomme A, Defresne A, Martial C, Alnagger NL, Gosseries O, Bonhomme V. The nature of consciousness in anaesthesia. BJA OPEN 2023; 8:100224. [PMID: 37780201 PMCID: PMC10539891 DOI: 10.1016/j.bjao.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.
Collapse
Affiliation(s)
- Javier Montupil
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| | - Arthur Bonhomme
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Aline Defresne
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Naji L.N. Alnagger
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| |
Collapse
|
49
|
Cheng FL, Horikawa T, Majima K, Tanaka M, Abdelhack M, Aoki SC, Hirano J, Kamitani Y. Reconstructing visual illusory experiences from human brain activity. SCIENCE ADVANCES 2023; 9:eadj3906. [PMID: 37967184 PMCID: PMC10651116 DOI: 10.1126/sciadv.adj3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Visual illusions provide valuable insights into the brain's interpretation of the world given sensory inputs. However, the precise manner in which brain activity translates into illusory experiences remains largely unknown. Here, we leverage a brain decoding technique combined with deep neural network (DNN) representations to reconstruct illusory percepts as images from brain activity. The reconstruction model was trained on natural images to establish a link between brain activity and perceptual features and then tested on two types of illusions: illusory lines and neon color spreading. Reconstructions revealed lines and colors consistent with illusory experiences, which varied across the source visual cortical areas. This framework offers a way to materialize subjective experiences, shedding light on the brain's internal representations of the world.
Collapse
Affiliation(s)
- Fan L. Cheng
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- ATR Computational Neuroscience Laboratories, Soraku, Kyoto 619-0288, Japan
| | - Tomoyasu Horikawa
- ATR Computational Neuroscience Laboratories, Soraku, Kyoto 619-0288, Japan
| | - Kei Majima
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Misato Tanaka
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mohamed Abdelhack
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuntaro C. Aoki
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jin Hirano
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiyasu Kamitani
- Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- ATR Computational Neuroscience Laboratories, Soraku, Kyoto 619-0288, Japan
| |
Collapse
|
50
|
Párraga JP, Castellanos A. A Manifesto in Defense of Pain Complexity: A Critical Review of Essential Insights in Pain Neuroscience. J Clin Med 2023; 12:7080. [PMID: 38002692 PMCID: PMC10672144 DOI: 10.3390/jcm12227080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pain has increasingly become a significant health challenge, not just as a symptomatic manifestation but also as a pathological condition with profound socioeconomic implications. Despite the expansion of medical interventions, the prevalence of chronic pain remains remarkably persistent, prompting a turn towards non-pharmacological treatments, such as therapeutic education, exercise, and cognitive-behavioral therapy. With the advent of cognitive neuroscience, pain is often presented as a primary output derived from the brain, aligning with Engel's Biopsychosocial Model that views disease not solely from a biological perspective but also considering psychological and social factors. This paradigm shift brings forward potential misconceptions and over-simplifications. The current review delves into the intricacies of nociception and pain perception. It questions long-standing beliefs like the cerebral-centric view of pain, the forgotten role of the peripheral nervous system in pain chronification, misconceptions around central sensitization syndromes, the controversy about the existence of a dedicated pain neuromatrix, the consciousness of the pain experience, and the possible oversight of factors beyond the nervous system. In re-evaluating these aspects, the review emphasizes the critical need for understanding the complexity of pain, urging the scientific and clinical community to move beyond reductionist perspectives and consider the multifaceted nature of this phenomenon.
Collapse
Affiliation(s)
- Javier Picañol Párraga
- Laboratory of Neurophysiology, Biomedicine Department, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | | |
Collapse
|