1
|
Monica S, Bancalari E, Siroli L, Tekiner IH, Tainsa M, Ennahli S, Bertani G, Gatti M. Lactic acid fermentation of non-conventional plant-based protein extract. Food Res Int 2025; 208:116174. [PMID: 40263788 DOI: 10.1016/j.foodres.2025.116174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The increasing demand for plant-based foods necessitates the development of effective preservation methods to ensure safety and quality. This study evaluated the effectiveness of biopreservation using eight plant-based protein extracts (PBPEs) (pea, faba, soy, potato, pumpkin, hazelnuts, rice, and hemp) fermented with 12 different lactic acid bacteria (LAB) strains from four species. The effectiveness of LAB biopreservation was assessed both at the endpoint and in real-time using impedometric analysis and was found to depend on both the matrix and the strain. Among the 12 LAB strains, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus showed the highest adaptability, particularly in soy, faba, and hemp protein extracts, highlighting their potential as effective biopreservative agents for diverse PBPEs. Given the distinctive advantage of biopreservation in enhancing organoleptic properties, this aspect was also evaluated for the two most effective LAB strains. Fermentation with L. delbrueckii subsp. bulgaricus 1932 and L. plantarum 4193 significantly improved the aroma profile of fermented PBPEs (pea, faba, soy, pumpkin, rice, and hemp) where they exhibited the best adaptability. Notably, levels of hexanal and hexanoic acid, compounds often associated with off-flavors, were markedly reduced, enhancing the organoleptic properties of the final products. These findings emphasize the dual benefits of LAB fermentation as a natural preservative and flavor enhancer, with promising implications for its application in the food industry.
Collapse
Affiliation(s)
- Saverio Monica
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy.
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ismail Hakkı Tekiner
- Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul 34303, Türkiye
| | - Marwa Tainsa
- Department of Agroalimentary, Saad Dahleb University, BP-270 Blida, Algeria
| | - Said Ennahli
- National School of Agriculture of Meknes, Meknes, Morocco
| | - Gaia Bertani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| |
Collapse
|
2
|
Ijaz M, Wang X, Ren C, Hou C, Wang Z, Li X, Zhang D. Optimizing the myofibrillar-plant proteins emulsion by ultrasound techniques: Improvements in structural and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3819-3825. [PMID: 39895517 DOI: 10.1002/jsfa.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/03/2024] [Accepted: 01/05/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The integration of myofibrillar proteins with plant proteins has gained substantial consideration in the food industry for producing healthier and more sustainable food products. However, achieving the desired properties of these protein emulsions remains challenging. High-intensity ultrasound treatment has emerged as a promising method to enhance the structural and functional properties of emulsions. We have explored the previously unexamined potential of ultrasonication with respect to improving the stability of animal-plant-based protein emulsions, providing new insights into the interactions of novel protein combinations. RESULTS Ultrasonication improved the stability of the myofibrillar protein-soybean protein isolate (MS), myofibrillar protein-pea protein (MP) and myofibrillar protein-hydrolyzed wheat protein (MW) emulsions. Interestingly, the particle size of MS, MP and MW emulsions was significantly reduced with ultrasound treatment for 20 min. Among the three protein combinations, MW presented better stability, as indicated by the higher zeta potential, lower particle size and turbidity values. Moreover, the stability of MW was increased with an increasing ultrasound time. CONCLUSION The stability of MW was significantly improved after 10 min of ultrasound treatment as a result of improving the zeta potential, particle size and turbidity values, changing the secondary structure and microstructure of the emulsion. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
- Department of Animal Sciences, CVAS-Jhang 35200, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Qian Y, Liang G, Dong J, Zhou J, Li J, Chen J, Du G, Chen J, Wang Z, Zhao X. Effect of myoglobin on the flavor, color and texture of high-moisture soy protein concentrate -wheat gluten extrudates. Food Chem 2025; 473:143102. [PMID: 39879750 DOI: 10.1016/j.foodchem.2025.143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The rising demand for plant-based meat analogues presents challenges in replicating the sensory qualities of animal meat. This study investigates the impact of Pichia-derived porcine myoglobin (PMb) and bovine hemoglobin (BHb) on the flavor profile, sensory attributes, macrostructure, color, and texture of high-moisture extruded soy protein concentrate-wheat gluten. The addition of PMb and BHb significantly altered the flavor profile by decreasing aldehyde content (hexanal and nonanal), while the contents of ketones (2,3-octanedione and 3,5-octadien-2-one), pyrazines (2-ethyl-6-methylpyrazine), and furans (2-pentylfuran) were increased. The structure of 0.5 % PMb and BHb extrudates exhibited a laminar arrangement, whereas 1 % PMb resulted in a uniform, gelatinous texture. Color analysis showed 0.5 % PMb darkened and reddened the extrudates, with the a⁎ value increasing from 5.51 ± 0.50 to 6.44 ± 0.57, and the a⁎ value reached 8.33 ± 0.37 when 1 % PMb was added. These findings offer valuable insights into the development of plant-based meat analogues.
Collapse
Affiliation(s)
- Yuan Qian
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guijiang Liang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Junli Dong
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Pei Y, Yan S, Liao Y, Qi B, Huang Y, Li Y. Recent advances in the modification of soy proteinase: Enzyme types, structural and functional characteristics, and applications in foods. Food Res Int 2025; 207:116056. [PMID: 40086957 DOI: 10.1016/j.foodres.2025.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Soy protein, as the major component of soybean, has important applications in food, medicine and materials. This review summarizes the research progress in the technology of enzymatic modification of soy protein, focusing on the principles and applications of enzymatic hydrolysis and enzymatic cross-linking. Enzymatic modification can modulate the structure and properties of soy protein, providing a theoretical basis for its wide application in the food industry. The functional properties of soy protein are closely related to its structure. Enzyme-modified soy protein can be improved in terms of solubility, emulsification, water and oil retention, and gel properties. The enzyme modification technology is highly specific, safe and mild and provides new ideas for functional improvement of soy protein. However, in practical applications, enzymatic modification still has problems such as poor control of the degree of hydrolysis. Therefore, in the future, the effects of different types of enzymes and modification methods on soy protein, as well as efficient and targeted regulatory mechanisms, can be further explored to make it more widely used in food, medicine and materials.
Collapse
Affiliation(s)
- Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (International Cooperation), Department of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Jukanti AK, Karapati D, Bharali V, Gudla M, Thati S, Yadla S, Kumar M, Sundaram RM. From Gene to Plate: Molecular Insights into and Health Implications of Rice ( Oryza sativa L.) Grain Protein. Int J Mol Sci 2025; 26:3163. [PMID: 40243926 PMCID: PMC11989779 DOI: 10.3390/ijms26073163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Rice is a staple food crop widely consumed across the world. It is rich in carbohydrates, quality protein, and micronutrients. The grain protein content (GPC) in rice varies considerably. Although it is generally lower than that of other major cereals, the quality of protein is superior. GPC and its components are complex quantitative traits influenced by both genetics and environmental factors. Glutelin is the major protein fraction (70-80%) in rice. Rice protein is rich in lysine, methionine, and cysteine along with other amino acids. Globally, Protein-Energy Malnutrition (PEM) is a major concern, particularly in Asia and Africa. Additionally, non-communicable diseases (NCDs) including diabetes, cancer, cardiovascular diseases, hypertension, and obesity are on the rise due to various reasons including changes in lifestyle and consumption patterns. Rice plays a very important part in the daily human diet, and therefore, substantial research efforts focus on the genetic characterization of GPC and understanding its role in the prevention of NCDs. The contribution of both rice grain and bran protein in improving human health is an established fact. The present study summarizes the different aspects of rice grain protein including its variability, composition, factors affecting it, and its industrial uses and more importantly its role in human health.
Collapse
Affiliation(s)
| | - Divya Karapati
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Violina Bharali
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Mahesh Gudla
- Department of Crop Physiology, School of Agricultural Sciences, Malla Reddy University, Hyderabad 500043, Telangana, India
| | - Srinivas Thati
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Suneetha Yadla
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Manoj Kumar
- Agricultural Research Station, Agriculture University, Kota 324001, Rajasthan, India
| | | |
Collapse
|
6
|
Lei S, Zhao C, Miao Y, Zhao H, Liu Z, Zhang Y, Zhao L, Peng C, Gong J. Quality characteristics and fibrous structure formation mechanism of walnut protein and wheat gluten meat analogues during high-moisture extrusion cooking process. Food Chem 2025; 463:141168. [PMID: 39276553 DOI: 10.1016/j.foodchem.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Blending two or more materials to create better high-moisture meat analogues has been actively studied in the food science and technology field. Walnut protein is a high-quality plant-based protein resource, yet its full potential remains underexploited. Thus, this study focused on exploring the quality characteristics and fibrous structure formation mechanism of walnut protein (WP) and wheat gluten (WG) meat analogues during high-moisture extrusion cooking process. Results showed that the optimized WP and WG-blended high-moisture meat analogues exhibited a more pronounced anisotropic and oriented fibrous structure. The blending of WP and WG can protect the molecular chains from the thermal transition, and promote the aggregation of protein molecules mainly by enhancing the interaction between hydrophobic interactions and hydrogen bonds, increasing the apparent viscosity and forming protein subunits with larger molecular weights (>100 kDa) to stabilize the newly formed conformation. Additionally, the content of α-helix was the highest among the secondary structures. This study provides a theoretical basis for the application of WG and WP to produce HMMAs with rich fibrous structures.
Collapse
Affiliation(s)
- Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650201, China
| | - Hong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichen Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuzhuang Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China.
| |
Collapse
|
7
|
Barozzi L, Plazzotta S, Nucci A, Manzocco L. Elucidating the role of compositional and processing variables in tailoring the technological functionalities of plant protein ingredients. Curr Res Food Sci 2025; 10:100971. [PMID: 39911601 PMCID: PMC11795097 DOI: 10.1016/j.crfs.2025.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Although various plant protein (PP) ingredients are available on the market, their application in foods is not trivial, and food companies are struggling to identify PP ingredients fitting the intended use. To fill this gap, abundant literature has appeared but data are hardly comparable due to the absence of a recognized classification of PP ingredients accounting not only for protein purity but also for the process history, and of standardised protocols for technological functionality assessment. In this review, a comprehensive analysis of comparable literature data was thus carried out to elucidate the effect of composition and processing variables on PP technological functionalities. The review presents four sections describing: (i) the approach followed for the construction of a database of PP ingredient functionalities; (ii) the composition and processing factors relevant to PP ingredients; (iii) PP ingredient functional properties and methods used for their determination; (iv) the effect of composition and processing factors on PP ingredient functionalities. This analysis showed legume proteins to present the highest solubility and interfacial properties while pseudocereal ones the highest water-holding capacity. Although pure ingredients show higher functionalities, non-protein components could contribute to interfacial properties. Alkaline extraction, isoelectric precipitation and freeze-drying is the process mostly used in academic research to obtain PP ingredients. However, other extraction, purification, and drying methods can be properly combined, resulting in specific PP ingredient functionalities. Overall, this review highlights that, besides protein purity and source, knowledge of the processing history is required to select PP ingredients with desired functionalities.
Collapse
Affiliation(s)
- Lorenzo Barozzi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Ada Nucci
- Lavazza innovation Center, Luigi Lavazza s.p.a., Str. di Settimo, 10156, Famolenta, Italy
| | - Lara Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| |
Collapse
|
8
|
Tkaczewska J, Mungure T, Warner R. Is it still meat? The effects of replacing meat with alternative ingredients on the nutritional and functional properties of hybrid products: a review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39579157 DOI: 10.1080/10408398.2024.2430750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Consumer interest in a shift toward moderating animal products in their diets (flexitarian) is constantly increasing. One way to meet this consumer demand is through hybrid meat products, defined as those in which a portion of the meat is substituted by plant protein. This review article aims to analyze literature regarding the impact of replacing meat proteins with other alternative proteins on the functional and nutritional properties of hybrid products. Different food matrices created by hybrid products have impact on the digestive processes and outcomes in vitro and in vivo, and the bioavailability of protein, lipid, and mineral nutrients is modified, hence these aspects are reviewed. The functional properties of hybrid products change with regard to type of alternative protein source used. In hybrid products, deficiencies in amino acids in alternative proteins are balanced by amino acids from meat proteins, resulting in wholesome products. Additionally, animal protein degrades into peptides in the gut which bind non-animal iron and increase the availability of iron from the alternative protein material. This relationship may support the development of hybrid products offering products with increased iron bioavailability and a previously unseen beneficial nutritional composition. The effects of alternative protein addition in hybrid meat products on protein and mineral digestibility remains unclear. More research is required to clarify the interaction of the protein-food matrix as well as its effects on digestibility. Very little research has been conducted on the oxidative stability and microbiological safety of hybrid products.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, University of Agriculture in Kraków, Poland Kraków
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Tanyaradzwa Mungure
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Robyn Warner
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Vargha S, Igual M, Miraballes M, Gámbaro A, García-Segovia P, Martínez-Monzó J. Influence of Cooking Technique on Bioaccessibility of Bioactive Compounds in Vegetable Lentil Soup. Foods 2024; 13:2405. [PMID: 39123597 PMCID: PMC11311475 DOI: 10.3390/foods13152405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Vegetables and legume soups contain various essential and bioactive constituents such as vitamin C, carotenoids, and phenolics. Antioxidant activity characteristics related to those compounds are well known to contribute profusely to human health. The cooking technique affects the bioavailability of nutrients and bioactive compounds, making it crucial to explore optimal alternatives to maximize them. The objective of this study was to explore the influence of different cooking techniques (boiling, pressure cooking, sous-vide, and cook-vide) on the physicochemical properties and bioactive characteristics of a ready-to-eat vegetable lentil soup. For this, the bioaccessibility of those compounds was assessed through an in vitro simulated gastrointestinal methodology. The firmness of vegetables was established to define treatments' cooking times, allowing subsequent comparison of the nutritional and functional properties of the soups. The color of vegetables was also evaluated as a quality parameter, which contributed to providing a global vision of the process impact. The results revealed that in vitro digestion (IVD) caused a decrease in all bioactive compound determinations for all cooking treatments of up to 72% for total phenols, 92% for lycopene, 98% for carotenoids, and 100% for vitamin C. Additionally, the antioxidant activity of the soups after thermal treatment improved up to 46% measured by the DPPH method. This study emphasizes the importance of considering the digestion process in the selection of the most adequate cooking technique. After IVD, traditional cooking (boiling) reached the maximum total carotenoid and lycopene contents; cook-vide and pressure-cooking techniques provided the highest total phenol content, showing these three techniques to have the maximum antioxidant capacity.
Collapse
Affiliation(s)
- Sofía Vargha
- Food Department, School of Nutrition, Universidad de la República (UdelaR), Montevideo 11800, Uruguay;
| | - Marta Igual
- Food Technology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| | - Marcelo Miraballes
- Food Science and Technology Department, School of Chemistry, Universidad de la República (UdelaR), Montevideo 11800, Uruguay;
| | - Adriana Gámbaro
- Food Science and Technology Department, School of Chemistry, Universidad de la República (UdelaR), Montevideo 11800, Uruguay;
| | - Purificación García-Segovia
- Food Technology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| | - Javier Martínez-Monzó
- Food Technology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| |
Collapse
|
11
|
Huang Y, Liu L, Sun B, Zhu Y, Lv M, Li Y, Zhu X. A Comprehensive Review on Harnessing Soy Proteins in the Manufacture of Healthy Foods through Extrusion. Foods 2024; 13:2215. [PMID: 39063299 PMCID: PMC11276047 DOI: 10.3390/foods13142215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.
Collapse
Affiliation(s)
- Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Bingyu Sun
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| |
Collapse
|
12
|
Luo X, Cao L, Yu L, Gao M, Ai J, Gao D, Zhang X, John Lucas W, Huang S, Xu J, Shang Y. Deep learning-based characterization and redesign of major potato tuber storage protein. Food Chem 2024; 443:138556. [PMID: 38290299 DOI: 10.1016/j.foodchem.2024.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.
Collapse
Affiliation(s)
- Xuming Luo
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lijuan Cao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Langhua Yu
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Meng Gao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Ju Ai
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Dongli Gao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xiaopeng Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - William John Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Jianfei Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
13
|
Su T, Le B, Zhang W, Bak KH, Soladoye PO, Zhao Z, Zhao Y, Fu Y, Wu W. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Res Int 2024; 186:114351. [PMID: 38729699 DOI: 10.1016/j.foodres.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Le
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Center for Sustainable Protein, DeePro Technology (Beijing) Co., Ltd., Beijing 101200, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Philip O Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Ud Din J, Li H, Li Y, Liu X, Al-Dalali S. Conjugation of Soybean Proteins 7S/11S Isolate with Glucose/Fructose in Gels through Wet-Heating Maillard Reaction. Gels 2024; 10:237. [PMID: 38667656 PMCID: PMC11049473 DOI: 10.3390/gels10040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Conjugation with glucose (G) and fructose (F) via the Maillard reaction under the wet-heating condition is a natural and non-toxic method of improving the technological functions of 7S/11S proteins in different kinds of gels. It may be used as an affordable supply of emulsifiers and an excellent encapsulating matrix for gels. This study aimed to create a glucose/fructose-conjugated 7S/11S soy protein via the Maillard reaction. The conjugation was confirmed by determining the SDS-PAGE profile and circular dichroism spectra. In addition, these conjugates were comprehensively characterized in terms of grafting degree, browning degree, sulfhydryl content, surface hydrophobicity (H0), and differential scanning calorimetry (DSC) through various reaction times (0, 24, 48, and 72 h) to evaluate their ability to be used in food gels. The functional characteristics of the 7S/11S isolate-G/F conjugate formed at 70 °C, with a high degree of glycosylation and browning, were superior to those obtained at other reaction times. The SDS-PAGE profile indicated that the conjugation between the 7S and 11S proteins and carbohydrate sources of G and F through the Maillard reaction occurred. Secondary structural results revealed that covalent interactions with G and F affected the secondary structural components of 7S/11S proteins, leading to increased random coils. When exposed to moist heating conditions, G and F have significant potential for protein alteration through the Maillard reaction. The results of this study may provide new insights into protein modification and establish the theoretical basis for the therapeutic application of both G and F conjugation with soy proteins in different food matrixes and gels.
Collapse
Affiliation(s)
- Jalal Ud Din
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing 100048, China
| | - You Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing 100048, China
| | - Sam Al-Dalali
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
| |
Collapse
|
15
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
16
|
Shao J, Yang J, Jin W, Huang F, Xiao J, Chen Y, Chen H, Geng F, Peng D, Deng Q. Regulation of interfacial mechanics of soy protein via co-extraction with flaxseed protein for efficient fabrication of foams and emulsions. Food Res Int 2024; 175:113673. [PMID: 38129022 DOI: 10.1016/j.foodres.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.
Collapse
Affiliation(s)
- Jiaqi Shao
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
17
|
Wang X, Zhao Z. A mini-review about direct steam heating and its application in dairy and plant protein processing. Food Chem 2023; 408:135233. [PMID: 36535181 DOI: 10.1016/j.foodchem.2022.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The world's requirement for plant protein consumption is increasing. However, their application in different foods is limited due to their low techno-functionality. Heating is the most widely used method to improve the functionality of proteins. Compared to indirect tubular or plate heating methods, direct steam injection heating (DSIH) can heat the sample much faster, thus modifying the structure and functionality of protein differently. It is used in the sterilization of milk to minimize the heat-induced denaturation of whey proteins and the loss of volatiles. By contrast, its application in producing plant protein ingredients is seldom. This review summarizes recent research using DSIH to process dairy- and plant-based proteins and proposes future research perspectives. DSIH is a promising technique for producing functional protein ingredients. It is of particular interest to overcome the techno-functional hurdles of plant protein blends using DSIH to improve their behavior in different food matrices.
Collapse
Affiliation(s)
- Xiuju Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhengtao Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China.
| |
Collapse
|
18
|
Grasso N, Bot F, Roos YH, Crowley SV, Arendt EK, O’Mahony JA. Plant-Based Alternatives to Cheese Formulated Using Blends of Zein and Chickpea Protein Ingredients. Foods 2023; 12:foods12071492. [PMID: 37048312 PMCID: PMC10093979 DOI: 10.3390/foods12071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In this study, zein protein isolate (ZPI) and chickpea protein concentrate (CPC) ingredients were used to formulate five plant-based cheese alternatives. Ingredient ratios based on protein contributions of 0:100, 25:75, 50:50, 75:25 and 100:0 from ZPI and CPC, respectively, were used. Formulations were developed at pH ~4.5, with a moisture target of 59%. Shea butter was used to target 15% fat, while tapioca starch was added to target the same carbohydrate content for all samples. Microstructural analysis showed differences among samples, with samples containing ZPI displaying a protein-rich layer surrounding the fat globules. Schreiber meltability and dynamic low amplitude oscillatory shear rheological analyses showed that increasing the proportion of ZPI was associated with increasing meltability and greater ability to flow at high temperatures. In addition, the sample containing only CPC showed the highest adhesiveness, springiness and cohesiveness values from the texture profile analysis, while the sample containing only ZPI exhibited the highest hardness. Furthermore, stretchability increased with increasing ZPI proportions. This work will help understanding of the role and potential of promising plant-protein-ingredient blends in formulating plant-based alternatives to cheese with desirable functional properties.
Collapse
Affiliation(s)
- Nadia Grasso
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
| | - Francesca Bot
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Yrjo H. Roos
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
| | - Shane V. Crowley
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
| | - James A. O’Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland
| |
Collapse
|
19
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
20
|
Hadidi M, Tan C, Assadpour E, Kharazmi MS, Jafari SM. Emerging plant proteins as nanocarriers of bioactive compounds. J Control Release 2023; 355:327-342. [PMID: 36731801 DOI: 10.1016/j.jconrel.2023.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
21
|
Zhao L, Chen MH, Bi X, Du J. Physicochemical properties, structural characteristics and in vitro digestion of brown rice–pea protein isolate blend treated by microbial transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
22
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
23
|
Stability and viscoelastic properties of mixed lupin-whey protein at oil-water interfaces depend on mixing sequence. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Extraction of plant protein from green leaves: Biomass composition and processing considerations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nasrollahzadeh F, Roman L, Skov K, Jakobsen LM, Trinh BM, Tsochatzis ED, Mekonnen T, Corredig M, Dutcher JR, Martinez MM. A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Xie Y, Cai L, Huang Z, Shan K, Xu X, Zhou G, Li C. Plant-Based Meat Analogues Weaken Gastrointestinal Digestive Function and Show Less Digestibility Than Real Meat in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12442-12455. [PMID: 36070521 DOI: 10.1021/acs.jafc.2c04246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real meat and plant-based meat analogues have different in vitro protein digestibility properties. This study aims to further explore their in vivo digestion and absorption and their effects on the gastrointestinal digestive function of mice. Compared with the real pork and beef, plant-based meat analogues significantly reduced the number of gastric parietal cells, the levels of gastrin/CCKBR, acetylcholine/AchR, Ca2+, CAMK II, PKC, and PKA, the activity of H+, K+-ATPase, and pepsin, the duodenal villus height, and the ratio of villus height to crypt depth and downregulated the expression of most nitrogen nutrient sensors. Peptidomics revealed that plant-based meat analogues released fewer peptides during in vivo digestion and increased the host- and microbial-derived peptides. Moreover, the real beef showed better absorption properties. These results suggested that plant-based meat analogues weaken gastrointestinal digestive function of mice, and their digestion and absorption performance in vivo is not as good as the real meat.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiji Huang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Nasrollahzadeh F, Roman L, Swaraj V, Ragavan K, Vidal NP, Dutcher JR, Martinez MM. Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
van den Berg LA, Mes JJ, Mensink M, Wanders AJ. Protein quality of soy and the effect of processing: A quantitative review. Front Nutr 2022; 9:1004754. [PMID: 36238463 PMCID: PMC9552267 DOI: 10.3389/fnut.2022.1004754] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
There is a growing demand for plant-based protein-rich products for human consumption. During the production of plant-based protein-rich products, ingredients such as soy generally undergo several processing methods. However, little is known on the effect of processing methods on protein nutritional quality. To gain a better understanding of the effect of processing on the protein quality of soy, we performed a quantitative review of in-vivo and in-vitro studies that assessed the indispensable amino acid (IAA) composition and digestibility of varying soy products, to obtain digestibility indispensable amino acids scores (DIAAS) and protein digestibility corrected amino acid scores (PDCAAS). For all soy products combined, mean DIAAS was 84.5 ± 11.4 and mean PDCAAS was 85.6 ± 18.2. Data analyses showed different protein quality scores between soy product groups. DIAAS increased from tofu, soy flakes, soy hulls, soy flour, soy protein isolate, soybean, soybean meal, soy protein concentrate to soymilk with the highest DIAAS. In addition, we observed broad variations in protein quality scores within soy product groups, indicating that differences and variations in protein quality scores may also be attributed to various forms of post-processing (such as additional heat-treatment or moisture conditions), as well as study conditions. After excluding post-processed data points, for all soy products combined, mean DIAAS was 86.0 ± 10.8 and mean PDCAAS was 92.4 ± 11.9. This study confirms that the majority of soy products have high protein quality scores and we demonstrated that processing and post-processing conditions can increase or decrease protein quality. Additional experimental studies are needed to quantify to which extent processing and post-processing impact protein quality of plant-based protein-rich products relevant for human consumption.
Collapse
Affiliation(s)
- Lisa A. van den Berg
- Unilever Foods Innovation Centre, Unilever R&D, Wageningen, Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Marco Mensink
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Anne J. Wanders
- Unilever Foods Innovation Centre, Unilever R&D, Wageningen, Netherlands
- *Correspondence: Anne J. Wanders
| |
Collapse
|
30
|
Lin Q, Pan L, Deng N, Sang M, Cai K, Chen C, Han J, Ye A. Protein digestibility of textured-wheat-protein (TWP) -based meat analogues: (I) Effects of fibrous structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Peng D, Ye J, Jin W, Yang J, Geng F, Deng Q. A review on the utilization of flaxseed protein as interfacial stabilizers for food applications. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| | - Jieting Ye
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Weiping Jin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering Chengdu University Chengdu Sichuan China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| |
Collapse
|
32
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Hassoun A, Bekhit AED, Jambrak AR, Regenstein JM, Chemat F, Morton JD, Gudjónsdóttir M, Carpena M, Prieto MA, Varela P, Arshad RN, Aadil RM, Bhat Z, Ueland Ø. The fourth industrial revolution in the food industry-part II: Emerging food trends. Crit Rev Food Sci Nutr 2022; 64:407-437. [PMID: 35930319 DOI: 10.1080/10408398.2022.2106472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian AcademicExpertise (SAE), Gaziantep, Turkey
| | | | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Farid Chemat
- Green Extraction Team, INRAE, Avignon University, Avignon, France
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - María Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Paula Varela
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Zuhaib Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Øydis Ueland
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| |
Collapse
|
34
|
A Narrative Review on Rice Proteins: Current Scenario and Food Industrial Application. Polymers (Basel) 2022; 14:polym14153003. [PMID: 35893967 PMCID: PMC9370113 DOI: 10.3390/polym14153003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Rice, Oryza sativa, is the major staple food that provides a larger share of dietary energy for more of the population than other cereal crops. Moreover, rice has a significant amount of protein including four different fractions such as prolamin, glutelin, globulin, and albumin with different solubility characteristics. However, these proteins exhibit a higher amino acid profile, so they are nutritionally important and possess several functional properties. Compared with many other cereal grains, rice protein is hypoallergic due to the absence of gluten, and therefore it is used to formulate food for infants and gluten-allergic people. Furthermore, the availability makes rice an easily accessible protein source and it exhibits several activities in the human body which discernibly affect total health. Because of these advantages, food industries are currently focusing on the effective application of rice protein as an alternative to animal-based and gluten-containing protein by overcoming limiting factors, such as poor solubility. Hence, it is important to gain an in-depth understanding of the rice protein to expand its application so, the underlined concept of this review is to give a current summary of rice protein, a detailed discussion of the chemistry of rice protein, and extraction techniques, and its functional properties. Furthermore, the impact of rice protein on human health and the current application of rice protein is also mentioned.
Collapse
|
35
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|
36
|
Lingiardi N, Galante M, de Sanctis M, Spelzini D. Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation? Food Chem 2022; 394:133485. [PMID: 35753255 DOI: 10.1016/j.foodchem.2022.133485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Emulsion gels are structured emulsion systems that behave as soft solid-like materials. Emulsion gels are commonly used in food-product design both as fat replacers and as delivery carriers of bioactive compounds. Different plant-derived proteins like soy, chia, and oat have been used in emulsion gel formulation to substitute fat in meat products and to deliver some vegetable dyes or extracts. Quinoa protein isolates have been scarcely applied in emulsion gel formulation although they seem to be a promising alternative as emulsion stabilizers. Quinoa protein isolates have a high protein content with a well-balanced amino acid profile and show good emulsifying and gelling capabilities. Unlike quinoa starch, quinoa protein isolates do not require any chemical modification before being used. The present article reviews the state of the art in food emulsion gels stabilized with vegetable proteins and highlights the potential uses of quinoa proteins in emulsion gel formulation.
Collapse
Affiliation(s)
- Nadia Lingiardi
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina.
| | - Micaela Galante
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Católica Argentina, Facultad de Química e Ingeniería del Rosario, Pellegrini 3314, Rosario, Argentina
| | - Mariana de Sanctis
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina
| | - Darío Spelzini
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
37
|
Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea (Pisum Sativum L.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Rojas Conzuelo Z, Robyr R, Kopf-Bolanz KA. Optimization of Protein Quality of Plant-Based Foods Through Digitalized Product Development. Front Nutr 2022; 9:902565. [PMID: 35619962 PMCID: PMC9128549 DOI: 10.3389/fnut.2022.902565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
With the increasing availability of plant-based protein products that should serve as alternatives to animal-based protein products, it is necessary to develop not only environmentally friendly but also nutritious foods. Especially the protein content and quality are of concern in these products. The algorithm of NutriOpt was developed using linear programming to support the development of food products with a balanced amino acid profile while considering digestibility. The current version contains a database with 84 plant protein sources from different food groups (legumes, cereals, nuts, seeds) and with different grades of purification (flours, concentrates, isolates) from which NutriOpt can create mixtures with high protein quality while complying with constraints such as protein content, number of ingredients, and weight of the mixture. The program was tested through different case studies based on commercial plant-based drinks. It was possible to obtain formulations with a Protein Digestibility Corrected Amino Acid Score (PDCAAS) over 100 with ingredients and quantities potentially suitable for plant-based analogs. Our model can help to develop the second generation of plant-based product alternatives that can really be used as an alternative on long-term consumption. Further, there is still a great potential of expansion of the program for example to use press cakes or even to model whole menus or diets in the future.
Collapse
Affiliation(s)
- Zaray Rojas Conzuelo
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| | - Roger Robyr
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| | - Katrin A Kopf-Bolanz
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
39
|
Chen N, Yang B, Wang Y, Zhang N, Li Y, Qiu C, Wang Y. Improving the colloidal stability and emulsifying property of flaxseed 11S globulin by heat induced complexation with soy 7S globulin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Abstract
Our global population is growing at a pace to exceed 10 billion people by the year 2050. This growth will place pressure on the agricultural production of food to feed the hungry masses. One category that will be strained is protein. Per capita protein consumption is rising in virtually every country for both nutritional reasons and consumption enjoyment. The United Nations estimates protein demand will double by 2050, and this will result in a critical overall protein shortage if drastic changes are not made in the years preceding these changes. Therefore, the world is in the midst of identifying technological breakthroughs to make protein more readily available and sustainable for future generations. One protein sourcing category that has grown in the past decade is plant-based proteins, which seem to fit criteria established by discerning consumers, including healthy, sustainable, ethical, and relatively inexpensive. Although demand for plant-based protein continues to increase, these proteins are challenging to utilize in novel food formulations. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- William R. Aimutis
- Nutrition Science and North Carolina Food Innovation Lab, Department of Food Bioprocessing, North Carolina State University, Kannapolis, North Carolina
| |
Collapse
|
41
|
Huang Y, Zhan L, Du B, Li P, Lin Q, Zheng J, Chen P. Effects of Inca peanut seed albumin fraction on rheological, thermal and microstructural properties of native corn starch. Int J Biol Macromol 2022; 194:626-631. [PMID: 34822826 DOI: 10.1016/j.ijbiomac.2021.11.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
In this work, the effect of Inca peanut seed albumin fraction (IPA) on the rheological, thermal and microstructural properties of native corn starch (NCS) was firstly studied. Compared to the NCS, IPA addition could obviously decrease the transparency of NCS, and the transparency of NCS and NCS-IPA suspensions decreased during the storage time. The textural paraments of NCS pastes with or without IPA reached to the maximum at a concentration of 5%. Steady shear rheological tests showed that all systems were non-Newtonian fluid, and the consistency coefficient (K) values reached to the maximum at 5% IPA concentration. The storage and loss modulus values of NCS-IPA pastes were higher than those of NCS pastes, and curves of loss angle (tan δ) indicated that all pastes were typical weak gel. With the increasing addition of IPA, DSC analysis showed that the thermal properties (To, Tp and Tc) of NCS were significantly changed, whereas, there was no distinct difference in the enthalpy. Microscopy illustrated that there were some wrinkle shrinkage and severe folds on the NCS-IPA granules. Fourier-transform infrared (FT-IR) spectroscopy showed that the hydrogen bonding was primarily interaction forces between IPA and NCS molecules.
Collapse
Affiliation(s)
- Yanxia Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qiumin Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingshao Zheng
- Xinxing County Weifeng Agricultural Science and Technology Co. Ltd, Yunfu, Guangdong 510642, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
42
|
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021; 27:60. [PMID: 35011292 PMCID: PMC8746547 DOI: 10.3390/molecules27010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| |
Collapse
|
43
|
Wang Y, Tibbetts SM, McGinn PJ. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021; 10:3002. [PMID: 34945551 PMCID: PMC8700990 DOI: 10.3390/foods10123002] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
As a result of population growth, an emerging middle-class, and a more health-conscious society concerned with overconsumption of fats and carbohydrates, dietary protein intake is on the rise. To address this rapid change in the food market, and the subsequent high demand for protein products, agriculture, aquaculture, and the food industry have been working actively in recent years to increase protein product output from both production and processing aspects. Dietary proteins derived from animal sources are of the highest quality, containing well-balanced profiles of essential amino acids that generally exceed those of other food sources. However, as a result of studies highlighting low production efficiency (e.g., feed to food conversion) and significant environmental impacts, together with the negative health impacts associated with the dietary intake of some animal products, especially red meats, the consumption of animal proteins has been remaining steady or even declining over the past few decades. To fill this gap, researchers and product development specialists at all levels have been working closely to discover new sources of protein, such as plant-based ingredients. In this regard, microalgae have been recognized as strategic crops, which, due to their vast biological diversity, have distinctive phenotypic traits and interactions with the environment in the production of biomass and protein, offering possibilities of production of large quantities of microalgal protein through manipulating growing systems and conditions and bioengineering technologies. Despite this, microalgae remain underexploited crops and research into their nutritional values and health benefits is in its infancy. In fact, only a small handful of microalgal species are being produced at a commercial scale for use as human food or protein supplements. This review is intended to provide an overview on microalgal protein content, its impact by environmental factors, its protein quality, and its associated evaluation methods. We also attempt to present the current challenges and future research directions, with a hope to enhance the research, product development, and commercialization, and ultimately meet the rapidly increasing market demand for high-quality protein products.
Collapse
Affiliation(s)
- Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Sean M. Tibbetts
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; (S.M.T.); (P.J.M.)
| | - Patrick J. McGinn
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; (S.M.T.); (P.J.M.)
| |
Collapse
|
44
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
45
|
How Do Consumers' Food Values across Countries Lead to Changes in the Strategy of Food Supply-Chain Management? Foods 2021; 10:foods10071523. [PMID: 34359391 PMCID: PMC8306766 DOI: 10.3390/foods10071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 12/03/2022] Open
Abstract
Although one of the main goals of supply-chain management is to maximize consumer values, the research to date has mainly focused on the supply side. In the case of the food industry, understanding consumer needs and maximizing its utility are essential. In this study, we analyze consumers’ 12 meta-values (e.g., safety, taste, health, price, environment, etc.), then suggest the strategy of food cold-chain management satisfying consumers’ perception. We focused on consumers from three countries in Asia: Korea, China, and Japan. The survey was conducted with over 1000 consumers in those three countries, and a random parameter logit model was utilized to determine the importance of each food value that could affect consumers’ food choice. Similarities and differences were both found in share of preference of each food value across countries. While safety is one of the top three values in all three countries, naturalness and nutritional value ranked among the top three only in China. To propose the consumer-centric strategy of food cold-chain management, we investigated the relationship between each food value and each node of supply chain based on the big data analysis. It shows that consumers prefer when the entire supply chain is managed where each node is organically connected with each other instead of individual nodes being managed separately. Further, strategies for food cold-chain management should be developed differently by country, incorporating differences of consumers’ preferences on food value. These results would motivate governments and companies related to food cold chain to reconsider their marketing strategies on the import and export food market.
Collapse
|