1
|
Dror I, Chitiashvili T, Tan SYX, Cano CT, Sahakyan A, Markaki Y, Chronis C, Collier AJ, Deng W, Liang G, Sun Y, Afasizheva A, Miller J, Xiao W, Black DL, Ding F, Plath K. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 2024; 187:110-129.e31. [PMID: 38181737 PMCID: PMC10783549 DOI: 10.1016/j.cell.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Y X Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amanda J Collier
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jarrett Miller
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 2021; 22:653-670. [PMID: 34341548 DOI: 10.1038/s41580-021-00387-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drew Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Thiagalingam S. Epigenetic memory in development and disease: Unraveling the mechanism. Biochim Biophys Acta Rev Cancer 2020; 1873:188349. [PMID: 31982403 DOI: 10.1016/j.bbcan.2020.188349] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
Epigenetic memory is an essential process of life that governs the inheritance of predestined functional characteristics of normal cells and the newly acquired properties of cells affected by cancer and other diseases from parental to progeny cells. Unraveling the molecular basis of epigenetic memory dictated by protein and RNA factors in conjunction with epigenetic marks that are erased and re-established during embryogenesis/development during the formation of somatic, stem and disease cells will have far reaching implications to our understanding of embryogenesis/development and various diseases including cancer. While there has been enormous progress made, there are still gaps in knowledge which includes, the identity of unique epigenetic memory factors (EMFs) and epigenome coding enzymes/co-factors/scaffolding proteins involved in the assembly of defined "epigenetic memorysomes" and the epigenome marks that constitute collections of gene specific epigenetic memories corresponding to specific cell types and physiological conditions. A better understanding of the molecular basis for epigenetic memory will play a central role in improving diagnostics and prognostics of disease states and aid the development of targeted therapeutics of complex diseases.
Collapse
Affiliation(s)
- Sam Thiagalingam
- Department of Medicine (Biomedical Genetics Section and Cancer Center), Department of Pathology & Laboratory Medicine, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States of America.
| |
Collapse
|
4
|
Faria M, Shepherd P, Pan Y, Chatterjee SS, Navone N, Gustafsson JÅ, Strom A. The estrogen receptor variants β2 and β5 induce stem cell characteristics and chemotherapy resistance in prostate cancer through activation of hypoxic signaling. Oncotarget 2018; 9:36273-36288. [PMID: 30555629 PMCID: PMC6284737 DOI: 10.18632/oncotarget.26345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy resistant prostate cancer is a major clinical problem. When the prostate cancer has become androgen deprivation resistant, one of the few treatment regimens left is chemotherapy. There is a strong connection between a cancer's stem cell like characteristics and drug resistance. By performing RNA-seq we observed several factors associated with stem cells being strongly up-regulated by the estrogen receptor β variants, β2 and β5. In addition, most of these factors were also up-regulated by hypoxia. One mechanism of chemotherapy resistance was expression of the hypoxia-regulated, drug transporter genes, where especially ABCG2 and MDR1 were shown to be expressed in recurrent prostate cancer and to cause chemotherapy resistance by efficiently transporting drugs like docetaxel out of the cells. Another mechanism was expression of the hypoxia-regulated Notch3 gene, which causes chemotherapy resistance in urothelial carcinoma, although the mechanism is unknown. It is well known that hypoxic signaling is involved in increasing chemotherapy resistance. Regulation of the hypoxic factors, HIF-1α and HIF-2α is very complex and extends far beyond hypoxia itself. We have recently shown that two of the estrogen receptor β variants, estrogen receptor β2 and β5, bind to and stabilize both HIF-1α and HIF-2α proteins leading to expression of HIF target genes. This study suggests that increased expression of the estrogen receptor β variants, β2 and β5, could be involved in development of a cancer's stem cell characteristics and chemotherapy resistance, indicating that targeting these factors could prevent or reverse chemotherapy resistance and cancer stem cell expansion.
Collapse
Affiliation(s)
- Michelle Faria
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Pan
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Sujash S Chatterjee
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders Strom
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
5
|
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9:20179-20212. [PMID: 29732012 PMCID: PMC5929455 DOI: 10.18632/oncotarget.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer related deaths in women. It is therefore important to understand the mechanisms underlying breast cancer development as well as raises the need for enhanced, non-invasive strategies for novel prognostic and diagnostic methods. The emergence of long non-coding RNAs (lncRNAs) as potential key players in neoplastic disease has received considerable attention over the past few years. This relatively new class of molecular regulators has been shown from ongoing research to act as critical players for key biological processes. Deregulated expression levels of lncRNAs have been observed in a number of cancers including breast cancer. Furthermore, lncRNAs have been linked to breast cancer initiation, progression, metastases and to limit sensitivity to certain targeted therapeutics. In this review we provide an update on the lncRNAs associated with breast cancer and mammary gland development and illustrate the versatility of such lncRNAs in gene control, differentiation and development both in normal physiological conditions and in diseased states. We also highlight the therapeutic and diagnostic potential of lncRNAs in cancer.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Current Address: Genome Institute of Singapore, Agency for Science Technology and Research, 138672, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- School of Pharmacy, Curtin University, Perth, 6845, Australia
| |
Collapse
|
6
|
When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells Int 2017; 2017:3250624. [PMID: 29333164 PMCID: PMC5733163 DOI: 10.1155/2017/3250624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Most of the human genome can be transcribed into RNAs, but only a minority of these regions produce protein-coding mRNAs whereas the remaining regions are transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) were known for their influential regulatory roles in multiple biological processes such as imprinting, dosage compensation, transcriptional regulation, and splicing. The physiological functions of protein-coding genes have been extensively characterized through genome editing in pluripotent stem cells (PSCs) in the past 30 years; however, the study of lncRNAs with genome editing technologies only came into attentions in recent years. Here, we summarize recent advancements in dissecting the roles of lncRNAs with genome editing technologies in PSCs and highlight potential genome editing tools useful for examining the functions of lncRNAs in PSCs.
Collapse
|
7
|
Elucidating the Role of Host Long Non-Coding RNA during Viral Infection: Challenges and Paths Forward. Vaccines (Basel) 2017; 5:vaccines5040037. [PMID: 29053596 PMCID: PMC5748604 DOI: 10.3390/vaccines5040037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Research over the past decade has clearly shown that long non-coding RNAs (lncRNAs) are functional. Many lncRNAs can be related to immunity and the host response to viral infection, but their specific functions remain largely elusive. The vast majority of lncRNAs are annotated with extremely limited knowledge and tend to be expressed at low levels, making ad hoc experimentation difficult. Changes to lncRNA expression during infection can be systematically profiled using deep sequencing; however, this often produces an intractable number of candidate lncRNAs, leaving no clear path forward. For these reasons, it is especially important to prioritize lncRNAs into high-confidence “hits” by utilizing multiple methodologies. Large scale perturbation studies may be used to screen lncRNAs involved in phenotypes of interest, such as resistance to viral infection. Single cell transcriptome sequencing quantifies cell-type specific lncRNAs that are less abundant in a mixture. When coupled with iterative experimental validations, new computational strategies for efficiently integrating orthogonal high-throughput data will likely be the driver for elucidating the functional role of lncRNAs during viral infection. This review highlights new high-throughput technologies and discusses the potential for integrative computational analysis to streamline the identification of infection-related lncRNAs and unveil novel targets for antiviral therapeutics.
Collapse
|
8
|
Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 2017; 36:4887-4900. [PMID: 28436947 PMCID: PMC5582213 DOI: 10.1038/onc.2017.72] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Our recent perplexing findings that polyploid giant cancer cells (PGCCs) acquired embryonic-like stemness and were capable of tumor initiation raised two important unanswered questions: how do PGCCs acquire such stemness, and to which stage of normal development do PGCCs correspond. Intriguingly, formation of giant cells due to failed mitosis/cytokinesis is common in the blastomere stage of the preimplantation embryo. However, the relationship between PGCCs and giant blastomeres has never been studied. Here, we tracked the fate of single PGCCs following paclitaxel-induced mitotic failure. Morphologically, early spheroids derived from PGCCs were indistinguishable from human embryos at the blastomere, polyploid blastomere, compaction, morula and blastocyst-like stages by light, scanning electron or three-dimensional confocal scanning microscopy. Formation of PGCCs was associated with activation of senescence, while budding of daughter cells was associated with senescence escape. PGCCs showed time- and space-dependent activation of expression of the embryonic stem cell markers OCT4, NANOG, SOX2 and SSEA1 and lacked expression of Xist. PGCCs acquired mesenchymal phenotype and were capable of differentiation into all three germ layers in vitro. The embryonic-like stemness of PGCCs was associated with nuclear accumulation of YAP, a key mediator of the Hippo pathway. Spheroids derived from single PGCCs grew into a wide spectrum of human neoplasms, including germ cell tumors, high-grade and low-grade carcinomas and benign tissues. Daughter cells derived from PGCCs showed attenuated capacity for invasion and increased resistance to paclitaxel. We also observed formation of PGCCs and dedifferentiation in ovarian cancer specimens from patients treated with chemotherapy. Taken together, our findings demonstrate that PGCCs represent somatic equivalents of blastomeres, the most primitive cancer stem cells reported to date. Thus, our studies reveal an evolutionarily conserved archaic embryonic program in somatic cells that can be de-repressed for oncogenesis. Our work offers a new paradigm for cancer origin and disease relapse.
Collapse
Affiliation(s)
- N Niu
- Departments of Pathology, Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - I Mercado-Uribe
- Departments of Pathology, Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Liu
- Departments of Pathology, Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
A natural antisense transcript regulates acetylcholinesterase gene expression via epigenetic modification in Hepatocellular Carcinoma. Int J Biochem Cell Biol 2014; 55:242-51. [DOI: 10.1016/j.biocel.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
|
10
|
Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014; 73:71-83. [PMID: 25139119 DOI: 10.1016/j.fct.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/03/2023]
Abstract
The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Bontempo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
11
|
Meng L, Jia RX, Sun YY, Wang ZY, Wan YJ, Zhang YL, Zhong BS, Wang F. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats. Theriogenology 2014; 81:459-66. [DOI: 10.1016/j.theriogenology.2013.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
|
12
|
Epigenetic regulation of stem cells : the role of chromatin in cell differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:307-28. [PMID: 23696364 DOI: 10.1007/978-94-007-6621-1_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The specialized cell types of tissues and organs are generated during development and are replenished over lifetime though the process of differentiation. During differentiation the characteristics and identity of cells are changed to meet their functional requirements. Differentiated cells then faithfully maintain their characteristic gene expression patterns. On the molecular level transcription factors have a key role in instructing specific gene expression programs. They act together with chromatin regulators which stabilize expression patterns. Current evidence indicates that epigenetic mechanisms are essential for maintaining stable cell identities. Conversely, the disruption of chromatin regulators is associated with disease and cellular transformation. In mammals, a large number of chromatin regulators have been identified. The Polycomb group complexes and the DNA methylation system have been widely studied in development. Other chromatin regulators remain to be explored. This chapter focuses on recent advances in understanding epigenetic regulation in embryonic and adult stem cells in mammals. The available data illustrate that several chromatin regulators control key lineage specific genes. Different epigenetic systems potentially could provide stability and guard against loss or mutation of individual components. Recent experiments also suggest intervals in cell differentiation and development when new epigenetic patterns are established. Epigenetic patterns have been observed to change at a progenitor state after stem cells commit to differentiation. This finding is consistent with a role of epigenetic regulation in stabilizing expression patterns after their establishment by transcription factors. However, the available data also suggest that additional, presently unidentified, chromatin regulatory mechanisms exist. Identification of these mechanism is an important aim for future research to obtain a more complete framework for understanding stem cell differentiation during tissue homeostasis.
Collapse
|
13
|
Abstract
Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.
Collapse
Affiliation(s)
- Xiajun Li
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
| |
Collapse
|
14
|
Abstract
Acquisition and maintenance of cell fate and potential are dependent on the complex interplay of extracellular signaling, gene regulatory networks and epigenetic states. During embryonic development, embryonic stem cells become progressively more restricted along specific lineages, ultimately giving rise to the diversity of cell types in the adult mammalian organism. Recent years have seen major advances in our understanding of the mechanisms that regulate the underlying transcriptional programmes during development. In particular, there has been a significant increase in our knowledge of how epigenetic marks on chromatin can regulate transcription by generating more or less permissive chromatin conformations. This article focuses on how a single transcription factor, repressor element-1 silencing transcription factor, can function as both a transcriptional and epigenetic regulator, controlling diverse aspects of development. We will discuss how the elucidation of repressor element-1 silencing transcription factor function in both normal and disease conditions has provided valuable insights into how the epigenome and transcriptional regulators might cooperatively orchestrate correct development.
Collapse
Affiliation(s)
- Angela Bithell
- King's College London, Institute of Psychiatry, Department of Neuroscience, Centre for the Cellular Basis of Behaviour, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
15
|
Maccani MA, Knopik VS. Cigarette smoke exposure-associated alterations to non-coding RNA. Front Genet 2012; 3:53. [PMID: 22509180 PMCID: PMC3321413 DOI: 10.3389/fgene.2012.00053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of non-coding RNA (ncRNA), important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and long non-coding RNA (long ncRNA). The best-characterized species of ncRNA are miRNA, the mature forms of which are ∼22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of ncRNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of research.
Collapse
Affiliation(s)
- Matthew A Maccani
- Division of Behavioral Genetics, Rhode Island Hospital Providence, RI, USA
| | | |
Collapse
|
16
|
Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A, Zander SAL, Pajic M, Jaspers JE, Jonkers M, Lodén M, Sol W, van der Burg E, Wesseling J, Gillet JP, Gottesman MM, Gribnau J, Wessels L, Linn SC, Jonkers J, Borst P. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 2012; 72:2350-61. [PMID: 22396490 DOI: 10.1158/0008-5472.can-11-4201] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of markers to predict chemotherapy responses in patients poses a major handicap in cancer treatment. We searched for gene expression patterns that correlate with docetaxel or cisplatin response in a mouse model for breast cancer associated with BRCA1 deficiency. Array-based expression profiling did not identify a single marker gene predicting docetaxel response, despite an increase in Abcb1 (P-glycoprotein) expression that was sufficient to explain resistance in several poor responders. Intertumoral heterogeneity explained the inability to identify a predictive gene expression signature for docetaxel. To address this problem, we used a novel algorithm designed to detect differential gene expression in a subgroup of the poor responders that could identify tumors with increased Abcb1 transcript levels. In contrast, standard analytical tools, such as significance analysis of microarrays, detected a marker only if it correlated with response in a substantial fraction of tumors. For example, low expression of the Xist gene correlated with cisplatin hypersensitivity in most tumors, and it also predicted long recurrence-free survival of HER2-negative, stage III breast cancer patients treated with intensive platinum-based chemotherapy. Our findings may prove useful for selecting patients with high-risk breast cancer who could benefit from platinum-based therapy.
Collapse
Affiliation(s)
- Sven Rottenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon J. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 2011; 27:516-25. [PMID: 21940062 PMCID: PMC3814186 DOI: 10.1016/j.tig.2011.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022]
Abstract
Patient-specific somatic cell reprogramming is likely to have a large impact on medicine by providing a source of cells for disease modelling and regenerative medicine. Several strategies can be used to reprogram cells, yet they are generally characterised by a low reprogramming efficiency, reflecting the remarkable stability of the differentiated state. Transcription factors, chromatin modifications, and noncoding RNAs can increase the efficiency of reprogramming. However, the success of nuclear reprogramming is limited by epigenetic mechanisms that stabilise the state of gene expression in somatic cells and thereby resist efficient reprogramming. We review here the factors that influence reprogramming efficiency, especially those that restrict the natural reprogramming mechanisms of eggs and oocytes. We see this as a step towards understanding the mechanisms by which nuclear reprogramming takes place.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Richard P. Halley-Stott
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - J.B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
18
|
Abstract
In humans, sexual dimorphism is associated with the presence of two X chromosomes in the female, whereas males possess only one X and a small and largely degenerate Y chromosome. How do men cope with having only a single X chromosome given that virtually all other chromosomal monosomies are lethal? Ironically, or even typically many might say, women and more generally female mammals contribute most to the job by shutting down one of their two X chromosomes at random. This phenomenon, called X-inactivation, was originally described some 50 years ago by Mary Lyon and has captivated an increasing number of scientists ever since. The fascination arose in part from the realisation that the inactive X corresponded to a dense heterochromatin mass called the “Barr body” whose number varied with the number of Xs within the nucleus and from the many intellectual questions that this raised: How does the cell count the X chromosomes in the nucleus and inactivate all Xs except one? What kind of molecular mechanisms are able to trigger such a profound, chromosome-wide metamorphosis? When is X-inactivation initiated? How is it transmitted to daughter cells and how is it reset during gametogenesis? This review retraces some of the crucial findings, which have led to our current understanding of a biological process that was initially considered as an exception completely distinct from conventional regulatory systems but is now viewed as a paradigm “par excellence” for epigenetic regulation.
Collapse
Affiliation(s)
- Céline Morey
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
- * E-mail:
| | - Philip Avner
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
| |
Collapse
|
19
|
Fan G, Tran J. X chromosome inactivation in human and mouse pluripotent stem cells. Hum Genet 2011; 130:217-22. [PMID: 21678064 DOI: 10.1007/s00439-011-1038-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Since the groundbreaking hypothesis of X chromosome inactivation (XCI) proposed by Mary Lyon over 50 years ago, a great amount of knowledge has been gained regarding this essential dosage compensation mechanism in female cells. For the mammalian system, most of the mechanistic studies of XCI have so far been investigated in the mouse model system, but recently, a number of interesting XCI studies have been extended to human pluripotent stem cells, including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Emerging data indicate that XCI in hESCs and hiPSCs is much more complicated than that of their mouse counterparts. XCI in human pluripotent stem cells is not as stable and is subject to environmental influences and epigenetic regulation in vitro. This mini-review highlights the key differences in XCI between mouse and human stem cells with a greater emphasis placed on the understanding of the epigenetic regulation of XCI in human stem cells.
Collapse
Affiliation(s)
- Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
20
|
X-chromosome inactivation: molecular mechanisms from the human perspective. Hum Genet 2011; 130:175-85. [PMID: 21553122 DOI: 10.1007/s00439-011-0994-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
X-chromosome inactivation is an epigenetic process whereby one X chromosome is silenced in mammalian female cells. Since it was first proposed by Lyon in 1961, mouse models have been valuable tools to uncover the molecular mechanisms underlying X inactivation. However, there are also inherent differences between mouse and human X inactivation, ranging from sequence content of the X inactivation center to the phenotypic outcomes of X-chromosome abnormalities. X-linked gene dosage in males, females, and individuals with X aneuploidies and X/autosome translocations has demonstrated that many human genes escape X inactivation, implicating cis-regulatory elements in the spread of silencing. We discuss the potential nature of these elements and also review the elements in the X inactivation center involved in the early events in X-chromosome inactivation.
Collapse
|
21
|
Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol 2011; 8:226-36. [PMID: 21278766 PMCID: PMC3093958 DOI: 10.1038/cmi.2010.78] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 12/12/2022] Open
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
22
|
X inactivation and progenitor cancer cells. Cancers (Basel) 2011; 3:2169-75. [PMID: 24212802 PMCID: PMC3757410 DOI: 10.3390/cancers3022169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/16/2011] [Accepted: 04/12/2011] [Indexed: 12/12/2022] Open
Abstract
In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.
Collapse
|
23
|
Nakagawa S, Prasanth KV. eXIST with matrix-associated proteins. Trends Cell Biol 2011; 21:321-7. [PMID: 21392997 DOI: 10.1016/j.tcb.2011.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 12/14/2022]
Abstract
X-chromosome inactivation has long served as an experimental model system for understanding the epigenetic regulation of gene expression. Central to this phenomenon is the long, non-coding RNA Xist that is specifically expressed from the inactive X chromosome and spreads along the entire length of the chromosome in cis. Recently, two of the proteins originally identified as components of the nuclear scaffold/matrix (S/MAR-associated proteins) have been shown to control the principal features of X-chromosome inactivation; specifically, context-dependent competency and the chromosome-wide association of Xist RNA. These findings implicate the involvement of nuclear S/MAR-associated proteins in the organization of epigenetic machinery. Here, we describe a model for the functional role of S/MAR-associated proteins in the regulation of key epigenetic processes.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
24
|
Mathews HL, Janusek LW. Epigenetics and psychoneuroimmunology: mechanisms and models. Brain Behav Immun 2011; 25:25-39. [PMID: 20832468 PMCID: PMC2991515 DOI: 10.1016/j.bbi.2010.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/21/2010] [Accepted: 08/30/2010] [Indexed: 12/21/2022] Open
Abstract
In this Introduction to the Named Series "Epigenetics, Brain, Behavior, and Immunity" an overview of epigenetics is provided with a consideration of the nature of epigenetic regulation including DNA methylation, histone modification and chromatin re-modeling. Illustrative examples of recent scientific developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These examples are presented in order to provide a perspective on how epigenetic analysis will add insight into the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune outcome.
Collapse
Affiliation(s)
- Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, 2160 South First Ave., Maywood, IL 60153, USA.
| | | |
Collapse
|
25
|
A thymus-specific noncoding RNA, Thy-ncR1, is a cytoplasmic riboregulator of MFAP4 mRNA in immature T-cell lines. BMC Mol Biol 2010; 11:99. [PMID: 21162727 PMCID: PMC3023731 DOI: 10.1186/1471-2199-11-99] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
Background Postgenomic transcriptome analyses have identified large numbers of noncoding (nc)RNAs in mammalian cells. However, the biological function of long ncRNAs in mammalian cells remains largely unknown. Our recent expression profiling of selected human long ncRNAs revealed that a majority were expressed in an organ-specific manner, suggesting their function was linked to specific physiological phenomena in each organ. We investigated the characteristics and function of ncRNAs that were specifically expressed in the thymus, the site of T-cell selection and maturation. Results Expression profiling of 10 thymus-specific ncRNAs in 17 T-cell leukemia cell lines derived from various stages of T-cell maturation revealed that HIT14168 ncRNA, named Thy-ncR1, was specifically expressed in cell lines derived from stage III immature T cells in which the neighbouring CD1 gene cluster is also specifically activated. The Thy-ncR1 precursor exhibited complex alternative splicing patterns and differential usage of the 5' terminus leading to the production of an estimated 24 isoforms, which were predominantly located in the cytoplasm. Selective RNAi knockdown of each Thy-ncR1 isoform demonstrated that microfibril-associated glycoprotein 4 (MFAP4) mRNA was negatively regulated by two major Thy-ncR1 isoforms. Intriguingly, the MFAP4 mRNA level was controlled by a hUPF1-dependent mRNA degradation pathway in the cytoplasm distinct from nonsense-mediated decay. Conclusions This study identified Thy-ncR1 ncRNA to be specifically expressed in stage III immature T cells in which the neighbouring CD1 gene cluster was activated. Complex alternative splicing produces multiple Thy-ncR1 isoforms. Two major Thy-ncR1 isoforms are cytoplasmic riboregulators that suppress the expression of MFAP4 mRNA, which is degraded by an uncharacterized hUPF1-dependent pathway.
Collapse
|
26
|
Zhao L, Zhao G, Xi H, Liu Y, Wu K, Zhou H. Molecular and DNA methylation analysis of Peg10 and Xist gene in sheep. Mol Biol Rep 2010; 38:3495-504. [PMID: 21113679 DOI: 10.1007/s11033-010-0460-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022]
Abstract
Peg10 is a maternally imprinted gene located in the imprinted domain of human chromosome 7q21 and mouse proximal chromosome 6. It is predominantly expressed in, and participates in the formation of, the placenta. Moreover, Peg10 is overexpressed in hepatocellular carcinoma, and is involved in hepatocarcinogenesis. The large noncoding RNA Xist has been shown to direct the female mammalian X chromatosome dosage compensation pathway. In the present study, we obtained partial cDNA sequences of sheep Peg10 and Xist. mRNA expression analysis in nine organs showed that they were universally expressed in two-day old lambs. The mRNA expression profile of Peg10 showed similar tissue specificity to pig, but was different compared with human and mouse. We concluded that the Peg10 mRNA expression profile was species specific. However, there was little difference in Xist expression between nine tissues of female lambs. Using bisulfite sequencing, we revealed that the first exon of Xist was either completely methylated or completely unmethylated, indicating that the newly obtained fragment of Xist was also differentially methylated in sheep as the DMR of Peg10. We did not find tissue specific DNA methylation of Xist, consistent with the Xist mRNA expression profile.
Collapse
Affiliation(s)
- Lixia Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Epigenetics is a steadily growing research area. In many human diseases, especially in cancers, but also in autoimmune diseases, epigenetic aberrations have been found. Rheumatoid arthritis is an autoimmune disease characterized by chronic inflammation and destruction of synovial joints. Even though the etiology is not yet fully understood, rheumatoid arthritis is generally considered to be caused by a combination of genetic predisposition, deregulated immunomodulation, and environmental influences. To gain a better understanding of this disease, researchers have become interested in studying epigenetic changes in rheumatoid arthritis. Here, we want to review the current knowledge on epigenetics in rheumatoid arthritis.
Collapse
Affiliation(s)
- Michelle Trenkmann
- Center of Experimental Rheumatology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol Life Sci 2010; 68:27-44. [PMID: 20799050 PMCID: PMC3015210 DOI: 10.1007/s00018-010-0505-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/19/2010] [Accepted: 08/09/2010] [Indexed: 12/30/2022]
Abstract
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.
Collapse
|
29
|
Huber SA. Autoimmunity in Coxsackievirus B3 induced myocarditis: role of estrogen in suppressing autoimmunity. Future Virol 2010; 5:273-286. [PMID: 20963181 PMCID: PMC2956018 DOI: 10.2217/fvl.10.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Picornaviruses are small, non-enveloped, single stranded, positive sense RNA viruses which cause multiple diseases including myocarditis/dilated cardiomyopathy, type 1 diabetes, encephalitis, myositis, orchitis and hepatitis. Although picornaviruses directly kill cells, tissue injury primarily results from autoimmunity to self antigens. Viruses induce autoimmunity by: aborting deletion of self-reactive T cells during T cell ontogeny; reversing anergy of peripheral autoimmune T cells; eliminating T regulatory cells; stimulating self-reactive T cells through antigenic mimicry or cryptic epitopes; and acting as an adjuvant for self molecules released during virus infection. Most autoimmune diseases (SLE, rheumatoid arthritis, Grave's disease) predominate in females, but diseases associated with picornavirus infections predominate in males. T regulatory cells are activated in infected females because of the combined effects of estrogen and innate immunity.
Collapse
Affiliation(s)
- SA Huber
- Department of Pathology, University of Vermont, 208 S Park Drive, Colchester, VT05446, USA. Tel.: Fax:
| |
Collapse
|
30
|
Williams A, Spilianakis CG, Flavell RA. Interchromosomal association and gene regulation in trans. Trends Genet 2010; 26:188-97. [PMID: 20236724 PMCID: PMC2865229 DOI: 10.1016/j.tig.2010.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/12/2010] [Accepted: 01/21/2010] [Indexed: 01/18/2023]
Abstract
The nucleus is an ordered three-dimensional entity, and organization of the genome within the nuclear space might have implications for orchestrating gene expression. Recent technological developments have revealed that chromatin is folded into loops bringing distal regulatory elements into intimate contact with the genes that they regulate. Such intrachromosomal contacts appear to be a general mechanism of enhancer-promoter communication in cis. Tantalizing evidence is emerging that regulatory elements might have the capacity to act in trans to regulate genes on other chromosomes. However, unequivocal data required to prove that interchromosomal gene regulation truly represents another level of control within the nucleus is lacking, and this concept remains highly contentious. Such controversy emphasizes that our current understanding of the mechanisms that govern gene expression are far from complete.
Collapse
Affiliation(s)
- Adam Williams
- Department of Immunobiology, Yale University School of Medicine and The Howard Hughes Medical Institute, 300 Cedar street, TAC S-569, New Haven, CT 06520
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Nikolaou Plastira 100, GR 70013, Heraklion, Crete, Greece
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine and The Howard Hughes Medical Institute, 300 Cedar street, TAC S-569, New Haven, CT 06520
| |
Collapse
|
31
|
Abstract
Epigenetic regulation is important for stable maintenance of cell identity. For continued function of organs and tissues, illegitimate changes in cell identity must be avoided. Failure to do so can trigger tumour development and disease. How epigenetic patterns are established during cell differentiation has been explored by studying model systems such as X inactivation. Mammals balance the X-linked gene dosage between the sexes by silencing of one of the two X chromosomes in females. This is initiated by expression of the non-coding X-inactive specific transcript (Xist) RNA and depends on specific cellular contexts, in which essential silencing factors are expressed. Normally X inactivation is initiated in early embryogenesis, but recent reports identified instances where Xist is expressed and can initiate gene repression. Here we describe the features that characterize the cellular permissivity to initiation of X inactivation and note that these can also occur in cancer cells and in specific haematopoietic progenitors. We propose that embryonic pathways for epigenetic regulation are re-established in adult progenitor cells and tumour cells. Understanding their reactivation will deepen our understanding of tumourigenesis and may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Ruben Agrelo
- Research Institute of Molecular Pathology, Vienna, Austria.
| | | |
Collapse
|
32
|
Takizawa T, Gemma A, Ui-Tei K, Aizawa Y, Sadovsky Y, Robinson JM, Seike M, Miyake K. Basic and Clinical Studies on Functional RNA Molecules for Advanced Medical Technologies. J NIPPON MED SCH 2010; 77:71-9. [DOI: 10.1272/jnms.77.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Toshihiro Takizawa
- Division of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School
| | - Akihiko Gemma
- Division of Pulmonary Medicine, Infection Diseases and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kumiko Ui-Tei
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo
| | - Yasunori Aizawa
- Center for Biological Resources and Informatics, Tokyo Institute of Technology
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh
| | - John M. Robinson
- Department of Physiology and Cell Biology, Ohio State University
| | - Masahiro Seike
- Division of Pulmonary Medicine, Infection Diseases and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Koichi Miyake
- Division of Biochemistry and Molecular Biology, Graduate School of Medicine, and Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| |
Collapse
|
33
|
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10:697-708. [PMID: 19738629 DOI: 10.1038/nrm2763] [Citation(s) in RCA: 1024] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
34
|
Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B, Churchill GA. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009; 39:172-82. [PMID: 19671657 DOI: 10.1152/physiolgenomics.90350.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA x DBA/2 and PERA x I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey).
Collapse
|
35
|
Sawalha AH, Harley JB, Scofield RH. Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 2009; 33:31-4. [PMID: 19464849 PMCID: PMC2885450 DOI: 10.1016/j.jaut.2009.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
Abstract
Similar to other autoimmune diseases, systemic lupus erythematosus (SLE) predominately affects women. Recent reports demonstrate excess Klinefelter's among men with SLE and a possible under-representation of Turner's syndrome among women with SLE as well as a case report of a 46,XX boy with SLE. These data suggest that risk of SLE is related to a gene dose effect for the X chromosome. Such an effect could be mediated by abnormal inactivation of genes on the X chromosome as has been demonstrated for CD40L, or by genetic polymorphism as has been demonstrated for Xq28. On the other hand, a gene dose effect could also be mediated by a gene without an SLE-associated polymorphism in that a gene that avoids X inactivation will have a higher level of expression in persons with two X chromosomes.
Collapse
Affiliation(s)
- Amr H. Sawalha
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| | - John B. Harley
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| | - R. Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
36
|
Cantrell MA, Carstens BC, Wichman HA. X chromosome inactivation and Xist evolution in a rodent lacking LINE-1 activity. PLoS One 2009; 4:e6252. [PMID: 19603076 PMCID: PMC2705805 DOI: 10.1371/journal.pone.0006252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 05/28/2009] [Indexed: 02/05/2023] Open
Abstract
Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures.
Collapse
Affiliation(s)
- Michael A. Cantrell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Bryan C. Carstens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
37
|
Kikuchi K, Fukuda M, Ito T, Inoue M, Yokoi T, Chiku S, Mitsuyama T, Asai K, Hirose T, Aizawa Y. Transcripts of unknown function in multiple-signaling pathways involved in human stem cell differentiation. Nucleic Acids Res 2009; 37:4987-5000. [PMID: 19531736 PMCID: PMC2731886 DOI: 10.1093/nar/gkp426] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mammalian transcriptome analysis has uncovered tens of thousands of novel transcripts of unknown function (TUFs). Classical and recent examples suggest that the majority of TUFs may underlie vital intracellular functions as non-coding RNAs because of their low coding potentials. However, only a portion of TUFs have been studied to date, and the functional significance of TUFs remains mostly uncharacterized. To increase the repertoire of functional TUFs, we screened for TUFs whose expression is controlled during differentiation of pluripotent human mesenchymal stem cells (hMSCs). The resulting six TUFs, named transcripts related to hMSC differentiation (TMDs), displayed distinct transcriptional kinetics during hMSC adipogenesis and/or osteogenesis. Structural and comparative genomic characterization suggested a wide variety of biologically active structures of these TMDs, including a long nuclear non-coding RNA, a microRNA host gene and a novel small protein gene. Moreover, the transcriptional response to established pathway activators indicated that most of these TMDs were transcriptionally regulated by each of the two key pathways for hMSC differentiation: the Wnt and protein kinase A (PKA) signaling pathways. The present study suggests that not only TMDs but also other human TUFs may in general participate in vital cellular functions with different molecular mechanisms.
Collapse
Affiliation(s)
- Kunio Kikuchi
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, Ibrahim JG, Thomas NE, Sharpless NE. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 2009; 4:e5027. [PMID: 19343170 PMCID: PMC2660422 DOI: 10.1371/journal.pone.0005027] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have linked common single nucleotide polymorphisms (SNPs) on chromosome 9p21 near the INK4/ARF (CDKN2A/B) tumor suppressor locus with risk of atherosclerotic diseases and type 2 diabetes mellitus. To explore the mechanism of this association, we investigated whether expression of proximate transcripts (p16(INK4a), p15(INK4b), ARF, ANRIL and MTAP) correlate with genotype of representative 9p21 SNPs. METHODOLOGY/PRINCIPAL FINDINGS We analyzed expression of 9p21 transcripts in purified peripheral blood T-cells (PBTL) from 170 healthy donors. Samples were genotyped for six selected disease-related SNPs spanning the INK4/ARF locus. Correlations among these variables were determined by univariate and multivariate analysis. Significantly reduced expression of all INK4/ARF transcripts (p15(INK4b), p16(INK4a), ARF and ANRIL) was found in PBTL of individuals harboring a common SNP (rs10757278) associated with increased risk of coronary artery disease, stroke and aortic aneurysm. Expression of MTAP was not influenced by rs10757278 genotype. No association of any these transcripts was noted with five other tested 9p21 SNPs. CONCLUSIONS/SIGNIFICANCE Genotypes of rs10757278 linked to increased risk of atherosclerotic diseases are also associated with decreased expression in PBTL of the INK4/ARF locus, which encodes three related anti-proliferative transcripts of known importance in tumor suppression and aging.
Collapse
Affiliation(s)
- Yan Liu
- Department of Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Hanna K. Sanoff
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Hyunsoon Cho
- Department of Biostastisitcs, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christin E. Burd
- Department of Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Chad Torrice
- Department of Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Karen L. Mohlke
- Department of Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Joseph G. Ibrahim
- Department of Biostastisitcs, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nancy E. Thomas
- Department of Dermatology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Norman E. Sharpless
- Department of Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
39
|
Baumann C, De La Fuente R. ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 2009; 118:209-22. [PMID: 19005673 PMCID: PMC2877807 DOI: 10.1007/s00412-008-0189-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Mammalian X chromosome inactivation (XCI) is an essential mechanism to compensate for dosage imbalances between male and female embryos. Although the molecular pathways are not fully understood, heterochromatinization of the Xi requires the coordinate recruitment of multiple epigenetic marks. Using fluorescence in situ hybridization analysis combined with immunocytochemistry, we demonstrate that the chromatin remodeling protein ATRX decorates the chromatids of a single, late replicating X chromosome in female somatic cells and co-localizes with the bona fide marker of the Xi, macroH2A1.2. Chromatin immunoprecipitation using somatic, embryonic stem (ES) cells and trophoblast stem (TS) cells as model for random and imprinted XCI, respectively, revealed that, in somatic and TS cells, ATRX exhibits a specific association with sequences located within the previously described H3K9me2-hotspot, a region 5' to the X inactive-specific transcript (Xist) locus. While no ATRX-Xi interaction was detectable in undifferentiated ES cells, an enrichment of ATRX was observed after 8 days of differentiation, indicating that ATRX associates with the Xi following the onset of random XCI, consistent with a potential role in maintenance of XCI. These results have important implications regarding a previously described escape from imprinted XCI in ATRX-deficient mice as well as cases of skewed XCI in patients with ATRX syndrome.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Chromatin Immunoprecipitation
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- DNA Helicases/deficiency
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Female
- Genomic Imprinting
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Knockout
- Models, Genetic
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pregnancy
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Syndrome
- Trophoblasts/cytology
- Trophoblasts/metabolism
- X Chromosome/genetics
- X Chromosome/metabolism
- X Chromosome Inactivation
- X-linked Nuclear Protein
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, New Bolton Center, Kennett Square, PA, 19348, USA
| | | |
Collapse
|
40
|
Latos PA, Stricker SH, Steenpass L, Pauler FM, Huang R, Senergin BH, Regha K, Koerner MV, Warczok KE, Unger C, Barlow DP. An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias. Development 2009; 136:437-48. [PMID: 19141673 PMCID: PMC2846269 DOI: 10.1242/dev.032060] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles.
Collapse
Affiliation(s)
| | | | | | - Florian M. Pauler
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Ru Huang
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Basak H. Senergin
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Kakkad Regha
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Martha V. Koerner
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Katarzyna E. Warczok
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Christine Unger
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | - Denise P. Barlow
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| |
Collapse
|
41
|
Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 2008; 19:221-33. [PMID: 19047520 DOI: 10.1101/gr.080861.108] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons.
Collapse
Affiliation(s)
- Florian M Pauler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, A1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ. Diamonds in the rough: mRNA-like non-coding RNAs. TRENDS IN PLANT SCIENCE 2008; 13:329-34. [PMID: 18448381 DOI: 10.1016/j.tplants.2008.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 05/20/2023]
Abstract
Non-coding RNAs are increasingly being identified as crucial regulators of gene expression and other cellular functions in plants. Experimental and computational methods have revealed the existence of mRNA-like non-coding RNAs (mlncRNAs), a class of non-coding RNAs that, in plants, are associated with tissue-specific expression, development and the phosphate-starvation response. Although their mechanisms of action are largely unknown, one can speculate that mlncRNAs act through secondary structures or specific sequences that bind to proteins or metabolites, or that have catalytic activity. This review summarizes the computational methods developed to identify candidate mlncRNAs, and the current experimental evidence regarding the function of several known mlncRNAs.
Collapse
Affiliation(s)
- Linda A Rymarquis
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
43
|
Kanno R, Janakiraman H, Kanno M. Epigenetic regulator polycomb group protein complexes control cell fate and cancer. Cancer Sci 2008; 99:1077-84. [PMID: 18422744 PMCID: PMC11159164 DOI: 10.1111/j.1349-7006.2008.00797.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 12/31/2007] [Accepted: 01/30/2008] [Indexed: 02/02/2023] Open
Abstract
The chromatin-associated Polycomb group (PcG) proteins were first identified in genetic screens for homeotic transformations in Drosophila melanogaster. Besides body patterning, members of the PcG are now known to regulate epigenetic cellular memory, stem cell self-renewal, and cancer development. Here, we discuss the multifarious functions of the PcG family, isoforms of protein complexes, and its enzymatic activities, for example histone methylation, links to DNA methylation, its phosphorylation status, H2A mono-ubiquitination, SUMOylation, and links to non-coding RNA. We also discuss the function of cytosolic PcG complexes as a regulator of receptor-induced actin polymerization and proliferation in a methylation-dependent manner. We propose that the functional versatility of PcG protein complexes contributed significantly to the complexity of heritable gene repression mechanisms, signal transduction, and cell proliferation in cancer development.
Collapse
Affiliation(s)
- Rieko Kanno
- Department of Immunology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
44
|
Abstract
Dosage compensation, the mechanism by which organisms equalize the relative gene expression of dimorphic sex chromosomes, requires action of a diverse range of epigenetic mechanisms. The mammalian form, 'named X-chromosome inactivation' (XCI), involves silencing of one X chromosome in the female cell and regulation by genes that make noncoding RNAs (ncRNA). With large-scale genomic and transcriptome studies pointing to a crucial role for noncoding elements in organizing the epigenome, XCI emerges as a major paradigm and a focus of active research worldwide. With more surprising twists, recent advances point to the significance of RNA-directed chromatin change, chromosomal trans-interactions, nuclear organization, and evolutionary change. These findings have impacted our understanding of general gene regulation and are discussed herein.
Collapse
Affiliation(s)
- Jennifer A Erwin
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
45
|
Bönisch C, Nieratschker SM, Orfanos NK, Hake SB. Chromatin proteomics and epigenetic regulatory circuits. Expert Rev Proteomics 2008; 5:105-19. [PMID: 18282127 DOI: 10.1586/14789450.5.1.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.
Collapse
Affiliation(s)
- Clemens Bönisch
- Adolf-Butenandt-Institute & Center for Integrated Protein Science Munich (CIPSM), Department of Molecular Biology, Ludwig-Maximilians University, Schillerstr. 44, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
46
|
Angelopoulou R, Lavranos G, Manolakou P. Regulatory RNAs and chromatin modification in dosage compensation: a continuous path from flies to humans? Reprod Biol Endocrinol 2008; 6:12. [PMID: 18355403 PMCID: PMC2324084 DOI: 10.1186/1477-7827-6-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/20/2008] [Indexed: 11/20/2022] Open
Abstract
Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history.
Collapse
Affiliation(s)
- Roxani Angelopoulou
- Department of Histology-Embryology, Medical School, Athens University, Greece
| | - Giagkos Lavranos
- Department of Histology-Embryology, Medical School, Athens University, Greece
| | - Panagiota Manolakou
- Department of Histology-Embryology, Medical School, Athens University, Greece
| |
Collapse
|