1
|
Bell CC, Faulkner GJ, Gilan O. Chromatin-based memory as a self-stabilizing influence on cell identity. Genome Biol 2024; 25:320. [PMID: 39736786 DOI: 10.1186/s13059-024-03461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Cell types are traditionally thought to be specified and stabilized by gene regulatory networks. Here, we explore how chromatin memory contributes to the specification and stabilization of cell states. Through pervasive, local, feedback loops, chromatin memory enables cell states that were initially unstable to become stable. Deeper appreciation of this self-stabilizing role for chromatin broadens our perspective of Waddington's epigenetic landscape from a static surface with islands of stability shaped by evolution, to a plasticine surface molded by experience. With implications for the evolution of cell types, stabilization of resistant states in cancer, and the widespread plasticity of complex life.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4169, Australia
| | - Omer Gilan
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
2
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Rehman A, Fatima I, Noor F, Qasim M, Wang P, Jia J, Alshabrmi FM, Liao M. Role of small molecules as drug candidates for reprogramming somatic cells into induced pluripotent stem cells: A comprehensive review. Comput Biol Med 2024; 177:108661. [PMID: 38810477 DOI: 10.1016/j.compbiomed.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan; Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
4
|
Sangalli JR, Sampaio RV, De Bem THC, Smith LC, Meirelles FV. Cattle Cloning by Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:225-244. [PMID: 37041338 DOI: 10.1007/978-1-0716-3064-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them. We then describe our bovine SCNT protocol for delivering live cloned calves and addressing basic questions about nuclear reprogramming. Other research groups can benefit from our basic protocol and build up on it to improve SCNT in the future. Strategies to correct or mitigate epigenetic errors (e.g., correcting imprinting loci, overexpression of demethylases, chromatin-modifying drugs) can integrate the protocol described here.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
5
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
6
|
DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell. Proc Natl Acad Sci U S A 2022; 119:2116091119. [PMID: 35074915 PMCID: PMC8795562 DOI: 10.1073/pnas.2116091119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
How differentiated cells such as muscle or nerve maintain their gene expression for prolonged times is currently elusive. Here, using Xenopus oocyte, we have shown that the stability of gene expression in nondividing cells may arise due to the local entrapment of transcriptional machinery to specific gene transcription start sites. We found that within the same nucleus active versus inactive versions of the same gene are spatially segregated through liquid–liquid phase separation. We further observe that silent genes are associated with RNA-Pol-II phosphorylated on Ser5 but fails to attract RNA-Pol-II elongation factors. We propose that liquid–liquid phase separation mediated entrapment of limiting transcriptional machinery factors maintain stable expression of some genes in nondividing cells. An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type–specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid–liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.
Collapse
|
7
|
Deng M, Chen B, Yang Y, Wan Y, Liu Z, Fu J, Wang F. Characterization of transcriptional activity during ZGA in mammalian SCNT embryo. Biol Reprod 2021; 105:905-917. [PMID: 34192747 DOI: 10.1093/biolre/ioab127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA-seq of the 8-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat. RNA-seq data revealed 3966 differentially expressed genes (DEGs) failed to be reprogrammed or activated during EGA of SCNT embryos in goat. Series test of cluster analysis showed four clusters of DEGs and similar changes of the clusters in the four species. Specifically, genes in cluster 3 were somehow upregulated compared with the donor cells and the IVF embryo. Moreover, the histone methylation key players and N6-methyladenosine modifiers (SUV39H1, SETDB1, SETD2, KDM5B, IGF2BP1, and YTHDF2) were differentially expressed in SCNT embryos of all species. Finally, we identified three modules correlated with the development of SCNT embryos in mice and screened 288 genes (such as BTG4, WEE1, KLF3, and USP21) that are likely critical for SCNT reprogramming using weighted gene correlation network analysis. Our data will broaden the current understanding of transcriptome activity during stochastic reprogramming events and provide an excellent source for future studies.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Fu
- LC Bio Ltd., Hangzhou, 310018, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Rzhanova LA, Kuznetsova AV, Aleksandrova MA. Reprogramming of Differentiated Mammalian and Human Retinal Pigment Epithelium: Current Achievements and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Impairment of the homeostatic and functional integrity of the retina and retinal pigment epithelium (RPE) is the main cause of some degenerative diseases of the human eye, which are accompanied by loss of eyesight. Despite the significant progress made over the past decades in the development of new methods for treatment for this pathology, there are still several complications when using surgical methods for correction of eyesight and so far insurmountable limitations in the applications of modern approaches, such as gene therapy and genetic engineering. One of the promising approaches to the treatment of degenerative diseases of the retina may be an approach based on the application of regenerative capacities of its endogenous cells with high plasticity, in particular, of RPE cells and Müller glia. Currently, vertebrate RPE cells are of great interest as a source of new photoreceptors and other neurons in the degrading retina in vivo. In this regard, the possibilities of their direct reprogramming by genetic, epigenetic, and chemical methods and their combination are being investigated. This review focuses on research in gene-directed reprogramming of vertebrate RPE cells into retinal neurons, with detailed analysis of the genes used as the main reprogramming factors, comparative analysis, and extrapolation of experimental data from animals to humans. Also, this review covers studies on the application of alternative approaches to gene-directed reprogramming, such as chemical-mediated reprogramming with the use of cocktails of therapeutic low-molecular-weight compounds and microRNAs. In general, the research results indicate the complexity of the process for direct reprogramming of human RPE cells into retinal neurons. However, taking into account the results of direct reprogramming of vertebrate cells and the accessibility of human RPE cells for various vectors that deliver a variety of molecules to cells, such as transcription factors, chimeric endonucleases, recombinant proteins, and low-weight molecular compounds, the most optimal combination of factors for the successful conversion of human RPE cells to retinal neurons can be suggested.
Collapse
|
9
|
Sampaio RV, Sangalli JR, De Bem THC, Ambrizi DR, Del Collado M, Bridi A, de Ávila ACFCM, Macabelli CH, de Jesus Oliveira L, da Silveira JC, Chiaratti MR, Perecin F, Bressan FF, Smith LC, Ross PJ, Meirelles FV. Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci Rep 2020; 10:11493. [PMID: 32661262 PMCID: PMC7359371 DOI: 10.1038/s41598-020-67733-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Orchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone methyltransferases EHMT1 and EHMT2. Either the donor cell (before reconstruction) or the early embryo was exposed to the probe to assess its effect on developmental rates and epigenetic marks. First, we showed that the treatment of bovine fibroblasts with UNC0638 did mitigate the levels of H3K9me2. Moreover, H3K9me2 levels were decreased in cloned embryos regardless of treating either donor cells or early embryos with UNC0638. Additional epigenetic marks such as H3K9me3, 5mC, and 5hmC were also affected by the UNC0638 treatment. Therefore, the use of UNC0638 did diminish the levels of H3K9me2 and H3K9me3 in SCNT-derived blastocysts, but this was unable to improve their preimplantation development. These results indicate that the specific reduction of H3K9me2 by inhibiting EHMT1/2 during nuclear reprogramming impacts the levels of H3K9me3, 5mC, and 5hmC in preimplantation bovine embryos.
Collapse
Affiliation(s)
- Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- Department of Animal Science, University of California Davis, Davis, USA.
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
- Department of Animal Science, University of California Davis, Davis, USA
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Dewison Ricardo Ambrizi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | | | - Lilian de Jesus Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fértilité, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, USA
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
10
|
Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J. Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nat Commun 2020; 11:3491. [PMID: 32661239 PMCID: PMC7359334 DOI: 10.1038/s41467-020-17238-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.
Collapse
Affiliation(s)
- Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eva Hormanseder
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Alan O'Doherty
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, D04 V1W8, Ireland
| | - Emma Falk
- CRTI, INSERM, UNIV Nantes, Nantes, France
| | | | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Declan Keane
- ReproMed Ireland, Rockfield Medical Campus, Northblock, Dundrum, Dublin 16, D16 W7W3, Ireland
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes, France
| | | | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- CRTI, INSERM, UNIV Nantes, Nantes, France.
| |
Collapse
|
11
|
Meng F, Stamms K, Bennewitz R, Green A, Oback F, Turner P, Wei J, Oback B. Targeted histone demethylation improves somatic cell reprogramming into cloned blastocysts but not postimplantation bovine concepti†. Biol Reprod 2020; 103:114-125. [PMID: 32318688 DOI: 10.1093/biolre/ioaa053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Correct reprogramming of epigenetic marks in the donor nucleus is a prerequisite for successful cloning by somatic cell transfer (SCT). In several mammalian species, repressive histone (H) lysine (K) trimethylation (me3) marks, in particular H3K9me3, form a major barrier to somatic cell reprogramming into pluripotency and totipotency. We engineered bovine embryonic fibroblasts (BEFs) for the doxycycline-inducible expression of a biologically active, truncated form of murine Kdm4b, a demethylase that removes H3K9me3 and H3K36me3 marks. Upon inducing Kdm4b, H3K9me3 and H3K36me3 levels were reduced about 3-fold and 5-fold, respectively, compared with noninduced controls. Donor cell quiescence has been previously associated with reduced somatic trimethylation levels and increased cloning efficiency in cattle. Simultaneously inducing Kdm4b expression (via doxycycline) and quiescence (via serum starvation) further reduced global H3K9me3 and H3K36me3 levels by a total of 18-fold and 35-fold, respectively, compared with noninduced, nonstarved control fibroblasts. Following SCT, Kdm4b-BEFs reprogrammed significantly better into cloned blastocysts than noninduced donor cells. However, detrimethylated donors and sustained Kdm4b-induction during embryo culture did not increase the rates of postblastocyst development from implantation to survival into adulthood. In summary, overexpressing Kdm4b in donor cells only improved their reprogramming into early preimplantation stages, highlighting the need for alternative experimental approaches to reliably improve somatic cloning efficiency in cattle.
Collapse
Affiliation(s)
- Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Kathrin Stamms
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Institute of Nutrition, University Jena, Jena, Germany
| | - Romina Bennewitz
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Institute of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Andria Green
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Fleur Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Pavla Turner
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, China
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Jafarpour F, Ghazvini Zadegan F, Ostadhosseini S, Hajian M, Kiani-Esfahani A, Nasr-Esfahani MH. siRNA inhibition and not chemical inhibition of Suv39h1/2 enhances pre-implantation embryonic development of bovine somatic cell nuclear transfer embryos. PLoS One 2020; 15:e0233880. [PMID: 32497112 PMCID: PMC7272017 DOI: 10.1371/journal.pone.0233880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (SCNT) is low due to the strong resistance of somatic donor cells to epigenetic reprogramming. Many epigenetic drugs targeting DNA methylation and histone acetylation have been used in attempts to improve the in vitro and in vivo development of SCNT embryos. H3K9me3 has been shown to be an important reprogramming barrier for generating induced pluripotent stem cells (iPSCs) and SCNT embryos in mice and humans. In this study, we examined the effects of selective siRNA and chemical inhibition of H3K9me3 in somatic donor cells on the in vitro development of bovine SCNT embryos. Chaetocin, an inhibitor of SUV39H1/H2, was supplemented during the culture of donor cells. In addition, the siRNA knockdown of SUV39H1/H2 was performed in the donor cells. The effects of chaetocin and siSUV39H1/H2 on H3K9me3 and H3K9ac were quantified using flow cytometry. Furthermore, we assessed chaetocin treatment and SUV39H1/H2 knockdown on the blastocyst formation rate. Both chaetocin and siSUV39H1/H2 significantly reduced and elevated the relative intensity level of H3K9me3 and H3K9ac in treated fibroblast cells, respectively. siSUV39H1/H2 transfection, but not chaetocin treatment, improved the in vitro development of SCNT embryos. Moreover, siSUV39H1/H2 altered the expression profile of the selected genes in the derived blastocysts, similar to those derived from in vitro fertilization (IVF). In conclusion, our results demonstrated H3K9me3 as an epigenetic barrier in the reprogramming process mediated by SCNT in bovine species, a finding which supports the role of H3K9me3 as a reprogramming barrier in mammalian species. Our findings provide a promising approach for improving the efficiency of mammalian cloning for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayyeh Ostadhosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M. H. Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
13
|
Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med 2020; 52:213-226. [PMID: 32080339 PMCID: PMC7062739 DOI: 10.1038/s12276-020-0383-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/01/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022] Open
Abstract
Techniques for reprogramming somatic cells create new opportunities for drug screening, disease modeling, artificial organ development, and cell therapy. The development of reprogramming techniques has grown exponentially since the discovery of induced pluripotent stem cells (iPSCs) by the transduction of four factors (OCT3/4, SOX2, c-MYC, and KLF4) in mouse embryonic fibroblasts. Initial studies on iPSCs led to direct-conversion techniques using transcription factors expressed mainly in target cells. However, reprogramming transcription factors with a virus risks integrating viral DNA and can be complicated by oncogenes. To address these problems, many researchers are developing reprogramming methods that use clinically applicable small molecules and growth factors. This review summarizes research trends in reprogramming cells using small molecules and growth factors, including their modes of action. The reprogramming of cells using small molecules to generate viable, safe stem-cell populations could transform stem-cell therapies, disease modeling and artificial organ development. Existing ways of reprogramming cells to generate stem cells carry risks, because the methods used often involve using viral DNA components or oncogenes, genes with the potential to turn cells into tumour cells. Safer, inexpensive alternatives are sought by scientists, and the efficient reprogramming of cells using small molecules and growth factors shows promise. Dongho Choi and co-workers at Hanyang University College of Medicine in Seoul, South Korea, reviewed recent research highlighting how small molecules including chemical compounds, plant derivatives and certain approved drugs are being used effectively to create different stem-cell populations. Recent successes are also contributing valuable insights into how stem cells differentiate into different cell types.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea. .,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
14
|
Vanheer L, Song J, De Geest N, Janiszewski A, Talon I, Provenzano C, Oh T, Chappell J, Pasque V. Tox4 modulates cell fate reprogramming. J Cell Sci 2019; 132:jcs.232223. [PMID: 31519808 PMCID: PMC6826012 DOI: 10.1242/jcs.232223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023] Open
Abstract
Reprogramming to induced pluripotency induces the switch of somatic cell identity to induced pluripotent stem cells (iPSCs). However, the mediators and mechanisms of reprogramming remain largely unclear. To elucidate the mediators and mechanisms of reprogramming, we used a siRNA-mediated knockdown approach for selected candidate genes during the conversion of somatic cells into iPSCs. We identified Tox4 as a novel factor that modulates cell fate through an assay that determined the efficiency of iPSC reprogramming. We found that Tox4 is needed early in reprogramming to efficiently generate early reprogramming intermediates, irrespective of the reprogramming conditions used. Tox4 enables proper exogenous reprogramming factor expression, and the closing and opening of putative somatic and pluripotency enhancers early during reprogramming, respectively. We show that the TOX4 protein assembles into a high molecular form. Moreover, Tox4 is also required for the efficient conversion of fibroblasts towards the neuronal fate, suggesting a broader role of Tox4 in modulating cell fate. Our study reveals Tox4 as a novel transcriptional modulator of cell fate that mediates reprogramming from the somatic state to the pluripotent and neuronal fate.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lotte Vanheer
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Juan Song
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Natalie De Geest
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Irene Talon
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Caterina Provenzano
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Taeho Oh
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
15
|
The effect of Xenopus laevis egg extracts with/without BRG1 on the development of preimplantation cloned mouse embryos. ZYGOTE 2019; 27:143-152. [PMID: 31182178 DOI: 10.1017/s0967199419000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryMuch effort has been devoted to improving the efficiency of animal cloning. The aim of this study was to investigate the effect of BRG1 contained in Xenopus egg extracts on the development of cloned mouse embryos. The results showed that mouse NIH/3T3 cells were able to express pluripotent genes after treatment with egg extracts, indicating that the egg extracts contained reprogramming factors. After co-injection of Xenopus egg extracts and single mouse cumulus cells into enucleated mouse oocytes, statistically higher pronucleus formation and development rates were observed in the egg Extract- co-injected group compared with those in the no egg extract-injected (NT) group (38-66% vs 18-34%, P<0.001). Removal of BRG1 protein from Xenopus egg extracts was conducted, and the BRG1-depleted extracts were co-injected with single donor cells into recipient oocytes. The results showed that the percentages of pronucleus formation were significantly higher in both BRG1-depleted and BRG1-intact groups than that in the nuclear transfer (NT) group (94, 64% vs 50%, P<0.05). Furthermore, percentages in the BRG1-depleted group were even higher than in the BRG1-intact group (94% vs 64%). More confined expression of Oct4 in the inner cell mass (ICM) was observed in the blastocyst derived from the egg extract-injected groups. However, Nanog expression was more contracted in the ICM of cloned blastocysts in the BRG1-depleted group than in the BGR1-intact group. Based on the present study, BRG1 might not play an essential role in reprogramming, but the factors enhancing pronucleus formation and development of cloned mouse embryos are contained in Xenopus egg extracts.
Collapse
|
16
|
Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: Current status and outlook. Alcohol 2019; 74:83-93. [PMID: 30087005 DOI: 10.1016/j.alcohol.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
17
|
Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, Beato Del Rosal ML, Herzog S, Ul Fatima N, Mertins P, Seelk-Müthel S, Tursun B. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans. Genetics 2019; 211:121-139. [PMID: 30425042 PMCID: PMC6325694 DOI: 10.1534/genetics.118.301674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.
Collapse
Affiliation(s)
- Martina Hajduskova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Gülkiz Baytek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Ena Kolundzic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Alexander Gosdschan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Marlon Kazmierczak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Andreas Ofenbauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Maria Lena Beato Del Rosal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Sergej Herzog
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Nida Ul Fatima
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Seelk-Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Baris Tursun
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| |
Collapse
|
18
|
Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL. Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon + α-cells. Nat Cell Biol 2018; 20:1267-1277. [PMID: 30361701 PMCID: PMC6215453 DOI: 10.1038/s41556-018-0216-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
The mechanisms that restrict regeneration and maintain cell identity following injury are poorly characterized in higher vertebrates. Following β-cell loss, 1-2% of the glucagon-producing α-cells spontaneously engage in insulin production in mice. Here we explore the mechanisms inhibiting α-cell plasticity. We show that adaptive α-cell identity changes are constrained by intra-islet insulin- and Smoothened-mediated signalling, among others. The combination of β-cell loss or insulin-signalling inhibition, with Smoothened inactivation in α- or δ-cells, stimulates insulin production in more α-cells. These findings suggest that the removal of constitutive 'brake signals' is crucial to neutralize the refractoriness to adaptive cell-fate changes. It appears that the maintenance of cell identity is an active process mediated by repressive signals, which are released by neighbouring cells and curb an intrinsic trend of differentiated cells to change.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Gupta
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Graduate School of Medicine , Juntendo University , Tokyo, Japan
| | - Hideaki Kaneto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mark A Magnuson
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Christopher E V Wright
- Department of Cell and Developmental Biology, Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa K Thomas
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
The Polycomb-Dependent Epigenome Controls β Cell Dysfunction, Dedifferentiation, and Diabetes. Cell Metab 2018; 27:1294-1308.e7. [PMID: 29754954 PMCID: PMC5989056 DOI: 10.1016/j.cmet.2018.04.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/10/2018] [Accepted: 04/12/2018] [Indexed: 12/28/2022]
Abstract
To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track β cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. β cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring β cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of β cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of β cell identity in diabetes.
Collapse
|
20
|
Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 2018; 145:145/4/dev158261. [DOI: 10.1242/dev.158261] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanpeng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kezhen Yao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanli An
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Liang S, Nie ZW, Guo J, Niu YJ, Shin KT, Ock SA, Cui XS. Overexpression of MicroRNA-29b Decreases Expression of DNA Methyltransferases and Improves Quality of the Blastocysts Derived from Somatic Cell Nuclear Transfer in Cattle. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:29-37. [PMID: 29485024 DOI: 10.1017/s1431927618000016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared with in vitro fertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3b and Dnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.
Collapse
Affiliation(s)
- Shuang Liang
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Zheng-Wen Nie
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Jing Guo
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Ying-Jie Niu
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Kyung-Tae Shin
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Sun A Ock
- 4Animal Biotechnology Division,National Institute of Animal Science,Rural Development Administration,Jeonju 55365,Republic of Korea
| | - Xiang-Shun Cui
- 1Department of Animal Sciences,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| |
Collapse
|
22
|
Lo Re O, Vinciguerra M. Histone MacroH2A1: A Chromatin Point of Intersection between Fasting, Senescence and Cellular Regeneration. Genes (Basel) 2017; 8:genes8120367. [PMID: 29206173 PMCID: PMC5748685 DOI: 10.3390/genes8120367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
Histone variants confer chromatin unique properties. They have specific genomic distribution, regulated by specific deposition and removal machineries. Histone variants, mostly of canonical histones H2A, H2B and H3, have important roles in early embryonic development, in lineage commitment of stem cells, in the converse process of somatic cell reprogramming to pluripotency and, in some cases, in the modulation of animal aging and life span. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Furthermore, macroH2A1 participates in the formation of senescence-associated heterochromatic foci (SAHF) in senescent cells, and multiple lines of evidence in genetically modified mice suggest that macroH2A1 integrates nutritional cues from the extracellular environment to transcriptional programs. Here, we review current molecular evidence based on next generation sequencing data, cell assays and in vivo models supporting different mechanisms that could mediate the function of macroH2A1 in health span and life span. We will further discuss context-dependent and isoform-specific functions. The aim of this review is to provide guidance to assess histone variant macroH2A1 potential as a therapeutic intervention point.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine, International Clinical Research Center, St'Anne University Hospital, Brno 656 91, Czech Republic.
- Faculty of Medicine, Masaryk University, Brno 656 91, Czech Republic.
| | - Manlio Vinciguerra
- Center for Translational Medicine, International Clinical Research Center, St'Anne University Hospital, Brno 656 91, Czech Republic.
- Faculty of Medicine, Masaryk University, Brno 656 91, Czech Republic.
- Division of Medicine, Institute for Liver and Digestive Health, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
23
|
Lv L, Tang Y, Zhang P, Liu Y, Bai X, Zhou Y. Biomaterial Cues Regulate Epigenetic State and Cell Functions-A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:112-132. [PMID: 28903618 DOI: 10.1089/ten.teb.2017.0287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial cues can act as potent regulators of cell niche and microenvironment. Epigenetic regulation plays an important role in cell functions, including proliferation, differentiation, and reprogramming. It is now well appreciated that biomaterials can alter epigenetic states of cells. In this study, we systematically reviewed the underlying epigenetic mechanisms of how different biomaterial cues, including material chemistry, topography, elasticity, and mechanical stimulus, influence cell functions, such as nuclear deformation, cell proliferation, differentiation, and reprogramming, to summarize the differences and similarities among each biomaterial cues and their mechanisms, and to find common and unique properties of different biomaterial cues. Moreover, this work aims to establish a mechanogenomic map facilitating highly functionalized biomaterial design, and renders new thoughts of epigenetic regulation in controlling cell fates in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Longwei Lv
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yiman Tang
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Ping Zhang
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yunsong Liu
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Xiangsong Bai
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yongsheng Zhou
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
- 2 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing, People's Republic of China
| |
Collapse
|
24
|
Wei J, Antony J, Meng F, MacLean P, Rhind R, Laible G, Oback B. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci Rep 2017; 7:7514. [PMID: 28790329 PMCID: PMC5548918 DOI: 10.1038/s41598-017-06569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 06/14/2017] [Indexed: 02/03/2023] Open
Abstract
Correct reprogramming of epigenetic marks is essential for somatic cells to regain pluripotency. Repressive histone (H) lysine (K) methylation marks are known to be stable and difficult to reprogram. In this study, we generated transgenic mice and mouse embryonic fibroblasts (MEFs) for the inducible expression of KDM4B, a demethylase that removes H3 K9 and H3K36 trimethylation (me3) marks (H3K9/36me3). Upon inducing Kdm4b, H3K9/36me3 levels significantly decreased compared to non-induced controls. Concurrently, H3K9me1 levels significantly increased, while H3K9me2 and H3K27me3 remained unchanged. The global transcriptional impact of Kdm4b-mediated reduction in H3K9/36me3 levels was examined by comparative microarray analysis and mRNA-sequencing of three independent transgenic MEF lines. We identified several commonly up-regulated targets, including the heterochromatin-associated zinc finger protein 37 and full-length endogenous retrovirus repeat elements. Following optimized zona-free somatic nuclear transfer, reduced H3K9/36me3 levels were restored within hours. Nevertheless, hypo-methylated Kdm4b MEF donors reprogrammed six-fold better into cloned blastocysts than non-induced donors. They also reprogrammed nine-fold better into induced pluripotent stem cells that gave rise to teratomas and chimeras. In summary, we firmly established H3K9/36me3 as a major roadblock to somatic cell reprogramming and identified transcriptional targets of derestricted chromatin that could contribute towards improving this process in mouse.
Collapse
Affiliation(s)
- Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, P.R. China
| | - Jisha Antony
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,University of Otago, Department of Pathology, Dunedin, 9016, New Zealand
| | - Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Paul MacLean
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Rebekah Rhind
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Götz Laible
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|
25
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
26
|
Cell Fate Maintenance and Reprogramming During the Oocyte-to-Embryo Transition. Results Probl Cell Differ 2017; 59:269-286. [PMID: 28247053 DOI: 10.1007/978-3-319-44820-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This chapter reviews our current understanding of the mechanisms that regulate reprogramming during the oocyte-to-embryo transition (OET). There are two major events reshaping the transcriptome during OET. One is the clearance of maternal transcripts in the early embryo, extensively reviewed by others. The other event, which is the focus of this chapter, is the embryonic (or zygotic) genome activation (EGA). The mechanisms controlling EGA can be broadly divided into transcriptional and posttranscriptional. The former includes the regulation of the basal transcription machinery, the regulation by specific transcription factors and chromatin modifications. The latter is performed mostly via specific RNA-binding proteins (RBPs). Different animal models have been used to decipher the regulation of EGA. These models are often biased for the specific type of regulation, which is why we discuss the models ranging from invertebrates to mammals. Whether these biases stem from incomplete understanding of EGA in these models, or reflect evolutionarily distinct solutions to EGA regulation, is a key unresolved problem in developmental biology. As the mechanisms controlling developmental reprogramming can, and in some cases have been shown to, function in differentiated cells subjected to induced reprogramming, our understanding of EGA regulation may have implications for the efficiency of induced reprogramming and, thus, for regenerative medicine.
Collapse
|
27
|
Menendez JA, Alarcón T. Senescence-Inflammatory Regulation of Reparative Cellular Reprogramming in Aging and Cancer. Front Cell Dev Biol 2017; 5:49. [PMID: 28529938 PMCID: PMC5418360 DOI: 10.3389/fcell.2017.00049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The inability of adult tissues to transitorily generate cells with functional stem cell-like properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like phenomena that induce a transient acquisition of epigenetic plasticity and phenotype malleability may constitute a reparative route through which human tissues respond to injury, stress, and disease. However, tissue rejuvenation should involve not only the transient epigenetic reprogramming of differentiated cells, but also the committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained epigenetic plasticity would drive aging phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena of in vivo reprogramming might also generate cancer-like cellular states. We herein propose that the ability of senescence-associated inflammatory signaling to regulate in vivo reprogramming cycles of tissue repair outlines a threshold model of aging and cancer. The degree of senescence/inflammation-associated deviation from the homeostatic state may delineate a type of thresholding algorithm distinguishing beneficial from deleterious effects of in vivo reprogramming. First, transient activation of NF-κB-related innate immunity and senescence-associated inflammatory components (e.g., IL-6) might facilitate reparative cellular reprogramming in response to acute inflammatory events. Second, para-inflammation switches might promote long-lasting but reversible refractoriness to reparative cellular reprogramming. Third, chronic senescence-associated inflammatory signaling might lock cells in highly plastic epigenetic states disabled for reparative differentiation. The consideration of a cellular reprogramming-centered view of epigenetic plasticity as a fundamental element of a tissue's capacity to undergo successful repair, aging degeneration or malignant transformation should provide challenging stochastic insights into the current deterministic genetic paradigm for most chronic diseases, thereby increasing the spectrum of therapeutic approaches for physiological aging and cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of OncologyGirona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI)Girona, Spain.,METABOSTEMBarcelona, Spain
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain.,Computational and Mathematical Biology Research Group, Centre de Recerca MatemàticaBarcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de BarcelonaBarcelona, Spain.,Barcelona Graduate School of MathematicsBarcelona, Spain
| |
Collapse
|
28
|
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 2017; 18:299-314. [DOI: 10.1038/nrm.2016.166] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Huang Y, Jiang X, Yu M, Huang R, Yao J, Li M, Zheng F, Yang X. Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos. Reprod Fertil Dev 2017; 29:1260-1269. [DOI: 10.1071/rd15463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 06/04/2016] [Indexed: 12/19/2022] Open
Abstract
Somatic cell nuclear transfer is frequently associated with abnormal epigenetic modifications that may lead to the developmental failure of cloned embryos. BIX-01294 (a diazepine–quinazoline–amine derivative) is a specific inhibitor of the histone methyltransferase G9a. The aim of the present study was to investigate the effects of BIX-01294 on development, dimethylation of histone H3 at lysine 9 (H3K9), DNA methylation and the expression of imprinted genes in cloned mouse preimplantation embryos. There were no significant differences in blastocyst rates of cloned embryos treated with or without 0.1 μM BIX-01294. Relative to clone embryos treated without 0.1 μM BIX-01294, exposure of embryos to BIX-01294 decreased histone H3K9 dimethylation and DNA methylation in cloned embryos to levels that were similar to those of in vivo-fertilised embryos at the 2-cell and blastocyst stages. Cloned embryos had lower expression of octamer-binding transcription factor 4 (Oct4) and small nuclear ribonucleoprotein N (Snrpn), but higher expression of imprinted maternally expressed transcript (non-protein coding) (H19) and growth factor receptor-bound protein 10 (Grb10) compared with in vivo-fertilised counterparts. The addition of 0.1 μM BIX-01294 to the activation and culture medium resulted in lower H19 expression and higher cyclin dependent kinase inhibitor 1C (Cdkn1c) and delta-like 1 homolog (Dlk1) expression, but had no effect on the expression of Oct4, Snrpn and Grb10. The loss of methylation at the Grb10 cytosine–phosphorous–guanine (CpG) islands in cloned embryos was partially corrected by BIX-01294. These results indicate that BIX-01294 treatment of cloned embryos has beneficial effects in terms of correcting abnormal epigenetic modifications, but not on preimplantation development.
Collapse
|
30
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
31
|
Becker JS, Nicetto D, Zaret KS. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends Genet 2015; 32:29-41. [PMID: 26675384 DOI: 10.1016/j.tig.2015.11.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining cell identity depends on the proper regulation of gene expression, as specified by transcription factors and reinforced by epigenetic mechanisms. Among the epigenetic mechanisms, heterochromatin formation is crucial for the preservation of genome stability and the cell type-specific silencing of genes. The heterochromatin-associated histone mark H3K9me3, although traditionally associated with the noncoding portions of the genome, has emerged as a key player in repressing lineage-inappropriate genes and shielding them from activation by transcription factors. Here we describe the role of H3K9me3 heterochromatin in impeding the reprogramming of cell identity and the mechanisms by which H3K9me3 is reorganized during development and cell fate determination.
Collapse
Affiliation(s)
- Justin S Becker
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Wan Y, Deng M, Zhang G, Ren C, Zhang H, Zhang Y, Wang L, Wang F. Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts. Cell Biol Int 2015; 40:74-82. [DOI: 10.1002/cbin.10540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/16/2015] [Accepted: 08/22/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Hao Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Lizhong Wang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
33
|
Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials 2015; 70:94-104. [PMID: 26302234 PMCID: PMC4823279 DOI: 10.1016/j.biomaterials.2015.07.063] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Generation of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has been proven possible both in vitro and in vivo, the efficiency of the process remains extremely low. Here, we report a chemical-free technique in which topographical cues, more specifically parallel microgrooves, enhance the directed differentiation of cardiac progenitors into cardiomyocyte-like cells. Using a lentivirus-mediated direct reprogramming strategy for expression of Myocardin, Tbx5, and Mef2c, we showed that the microgrooved substrate provokes an increase in histone H3 acetylation (AcH3), known to be a permissive environment for reprogramming by “stemness” factors, as well as stimulation of myocardin sumoylation, a post-translational modification essential to the transcriptional function of this key co-activator. These biochemical effects mimicked those of a pharmacological histone deacetylase inhibitor, valproic acid (VPA), and like VPA markedly augmented the expression of cardiomyocyte-specific proteins by the genetically engineered cells. No instructive effect was seen in cells unresponsive to VPA. In addition, the anisotropy resulting from parallel microgrooves induced cellular alignment, mimicking the native ventricular myocardium and augmenting sarcomere organization.
Collapse
|
34
|
Abstract
This brief introduction is followed by a published version of my Nobel Laureate lecture, re-published herein with the kind permission of the Nobel Foundation. Much has happened since my original research, for which that prize was awarded. Hence, I am pleased to offer a few thoughts about the future of my research and its possible impact on humankind.Although the original work on nuclear transfer and reprogramming was done over half a century ago, advances continue to be made. In particular the Takahashi and Yamanaka induced pluripotent stem cells (iPS) procedure has opened up the field of cell replacement to a great extent. Now, more recently, further advances make this whole field come closer to actual usefulness for humans. Recently, in the UK, the government approved the use of mitochondrial replacement therapy to avoid the problems associated with genetically defective mitochondria in certain women. Although the House of Commons (members of Parliament) and the House of Lords had to debate and discuss whether to allow this kind of human therapy, I was very pleased to find that both bodies approved this procedure. This means that a patient can choose to make use of the procedure; it does not in any way force an individual to have a procedure that they are not comfortable with. In my view, this is a great advance in respect to giving patients a choice about the treatment they receive. I am told that the UK is the first country in the world to approve mitochondrial replacement therapy.Now that the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPr) technology is being widely used and works well, one can foresee that there will be those who wish to use this technology to make genetic changes to humans. For example, if a human has a gene that makes it susceptible to infection or any other disorder, the removal of that gene might give such a person immunity from that disease. If this gene deletion is done within the germ line, the genetic change will be inherited. However, one can imagine that various people will strongly object and say that this technology should not be allowed. I would very much hope that various regulatory bodies, governments, etc. will allow the choice to remain with the individual. I can see no argument for such bodies to make a law that removes any choice whatsoever by an individual.
Collapse
|
35
|
Dang-Nguyen TQ, Torres-Padilla ME. How cells build totipotency and pluripotency: nuclear, chromatin and transcriptional architecture. Curr Opin Cell Biol 2015; 34:9-15. [PMID: 25935759 DOI: 10.1016/j.ceb.2015.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 01/15/2023]
Abstract
Totipotent and pluripotent cells display different degrees of cellular plasticity. After fertilization, embryonic cells transit naturally from a totipotent to a pluripotent state. Major changes in nuclear architecture, chromatin mobility and gene expression occur during this transition. In particular, nuclear architecture has recently emerged as a potential regulator of heterochromatin formation in the early embryo. Future research should address whether a causal, functional link between nuclear organization and gene regulation is a general theme during reprogramming and the formation of pluripotent cells.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 Illkirch, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 Illkirch, France.
| |
Collapse
|
36
|
Alexanian AR. Epigenetic modulators promote mesenchymal stem cell phenotype switches. Int J Biochem Cell Biol 2015; 64:190-4. [PMID: 25936755 DOI: 10.1016/j.biocel.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
Discoveries in recent years have suggested that some tissue specific adult stem cells in mammals might have the ability to differentiate into cell types from different germ layers. This phenomenon has been referred to as stem cell transdifferentiation or plasticity. Despite controversy, the current consensus holds that transdifferentiation does occur in mammals, but only within a limited range. Understanding the mechanisms that underlie the switches in phenotype and development of the methods that will promote such type of conversions can open up endless possibilities for regenerative medicine. Epigenetic control contributes to various processes that lead to cellular plasticity and DNA and histone covalent modifications play a key role in these processes. Recently, we have been able to convert human mesenchymal stem cells (hMSCs) into neural-like cells by exposing cells to epigenetic modifiers and neural inducing factors. The goal of this study was to investigate the stability and plasticity of these transdifferentiated cells. To this end, neurally induced MSCs (NI-hMSCs) were exposed to adipocyte inducing factors. Grown for 24-48 h in fat induction media NI-hMSCs reversed their morphology into fibroblast-like cells and regained their proliferative properties. After 3 weeks approximately 6% of hMSCs differentiated into multilocular or plurivacuolar adipocyte cells that demonstrated by Oil Red O staining. Re-exposure of these cultures or the purified adipocytes to neural induction medium induced the cells to re-differentiate into neuronal-like cells. These data suggest that cell plasticity can be manipulated by the combination of small molecule modulators of chromatin modifying enzymes and specific cell signaling pathways.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, W229 N1870 Westwood Drive, Waukesha, WI 53186 United States.
| |
Collapse
|
37
|
Abstract
The inheritance of epigenetic marks, in particular DNA methylation, provides a molecular memory that ensures faithful commitment to transcriptional programs during mammalian development. Epigenetic reprogramming results in global hypomethylation of the genome together with a profound loss of memory, which underlies naive pluripotency. Such global reprogramming occurs in primordial germ cells, early embryos, and embryonic stem cells where reciprocal molecular links connect the methylation machinery to pluripotency. Priming for differentiation is initiated upon exit from pluripotency, and we propose that epigenetic mechanisms create diversity of transcriptional states, which help with symmetry breaking during cell fate decisions and lineage commitment.
Collapse
Affiliation(s)
- Heather J Lee
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Timothy A Hore
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
38
|
Kyriakakis E, Markaki M, Tavernarakis N. Caenorhabditis elegans as a model for cancer research. Mol Cell Oncol 2015; 2:e975027. [PMID: 27308424 PMCID: PMC4905018 DOI: 10.4161/23723556.2014.975027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 04/21/2023]
Abstract
The term cancer describes a group of multifaceted diseases characterized by an intricate pathophysiology. Despite significant advances in the fight against cancer, it remains a key public health concern and burden on societies worldwide. Elucidation of key molecular and cellular mechanisms of oncogenic diseases will facilitate the development of better intervention strategies to counter or prevent tumor development. In vivo and in vitro models have long been used to delineate distinct biological processes involved in cancer such as apoptosis, proliferation, angiogenesis, invasion, metastasis, genome instability, and metabolism. In this review, we introduce Caenorhabditis elegans as an emerging animal model for systematic dissection of the molecular basis of tumorigenesis, focusing on the well-established processes of apoptosis and autophagy. Additionally, we propose that C. elegans can be used to advance our understanding of cancer progression, such as deregulation of energy metabolism, stem cell reprogramming, and host-microflora interactions.
Collapse
Affiliation(s)
- Emmanouil Kyriakakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas
- Department of Basic Sciences; Faculty of Medicine; University of Crete Heraklion; Crete, Greece
- Correspondence to: N. Tavernarakis;
| |
Collapse
|
39
|
No JG, Choi MK, Kwon DJ, Yoo JG, Yang BC, Park JK, Kim DH. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev 2015; 61:90-8. [PMID: 25736622 PMCID: PMC4410095 DOI: 10.1262/jrd.2014-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Collapse
Affiliation(s)
- Jin-Gu No
- Animal Biotechnology Division; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Vig N, Mackenzie IC, Biddle A. Phenotypic plasticity and epithelial-to-mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma. J Oral Pathol Med 2015; 44:649-55. [DOI: 10.1111/jop.12306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Navin Vig
- Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Ian C. Mackenzie
- Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Adrian Biddle
- Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| |
Collapse
|
41
|
Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014; 15:723-34. [PMID: 25303116 DOI: 10.1038/nrm3885] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Following fertilization, gametes undergo epigenetic reprogramming in order to revert to a totipotent state. How embryonic cells subsequently acquire their fate and the role of chromatin dynamics in this process are unknown. Genetic and experimental embryology approaches have identified some of the players and morphological changes that are involved in early mammalian development, but the exact events underlying cell fate allocation in single embryonic cells have remained elusive. Experimental and technological advances have recently provided novel insights into chromatin dynamics and nuclear architecture in single cells; these insights have reshaped our understanding of the mechanisms underlying cell fate allocation and plasticity in early mammalian development.
Collapse
Affiliation(s)
- Adam Burton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| |
Collapse
|
42
|
Perspective for special Gurdon issue for differentiation: can cell fusion inform nuclear reprogramming? Differentiation 2014; 88:27-28. [PMID: 25150886 DOI: 10.1016/j.diff.2014.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically.
Collapse
|
43
|
Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, Ying W, Xu D, Zuo B, Ren Z, Xiong Y. Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:253-65. [PMID: 24960409 PMCID: PMC4116115 DOI: 10.1089/cell.2013.0058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro.
Collapse
Affiliation(s)
- Liming Hou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Hasan Riaz
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoliang Xia
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqin Ying
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dequan Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zuo
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhu Xiong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
44
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
- * E-mail:
| | - Marcos Roberto Chiaratti
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Reno Roldi de Araújo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence Charles Smith
- Centre de recherche em reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Willian Allan King
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
45
|
Wei X, Chen Y, Xu Y, Zhan Y, Zhang R, Wang M, Hua Q, Gu H, Nan F, Xie X. Small molecule compound induces chromatin de-condensation and facilitates induced pluripotent stem cell generation. J Mol Cell Biol 2014; 6:409-20. [PMID: 24838272 DOI: 10.1093/jmcb/mju024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The revolutionary induced pluripotent stem cell (iPSC) technology provides a new means for cell replacement therapies and drug screening. Small molecule compounds have been found extremely useful to improve the generation of iPSCs and understand the reprogramming mechanism. Here we report the identification of a novel chemical, CYT296, which improves OSKM-mediated induction of iPSCs for >10 folds and enables efficient reprogramming with only Oct4 in combination with other small molecules. The derived iPSCs are genuinely pluripotent and support the development of two 'All-iPSC' mice by tetraploid complementation. CYT296 profoundly impacts heterochromatin formation without affecting cell viability. MEFs treated with CYT296 exhibit de-condensed chromatin structure with markedly reduced loci containing heterochromatin protein 1α (HP1α) and H3K9me3, which is very similar to the chromatin configuration in embryonic stem cells (ESCs). Given that an open chromatin structure serves as a hallmark of pluripotency and has to be acquired to fulfill reprogramming, we propose that CYT296 might facilitate this process by disrupting condensed chromatin, thereby creating a more favorable environment for reprogramming. In agreement of this idea, shRNA targeting HP1α also promotes the generation of iPSCs. Thus current findings not only provide a novel chemical for efficient iPSC induction, but also suggest a new approach to regulate somatic cell reprogramming by targeting chromatin de-condensation with small molecules.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yueting Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongyu Xu
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Zhan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuhong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haifeng Gu
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
46
|
Xiong XR, Lan DL, Li J, Zi XD, Ma L, Wang Y. Cellular extract facilitates nuclear reprogramming by altering DNA methylation and pluripotency gene expression. Cell Reprogram 2014; 16:215-22. [PMID: 24738992 DOI: 10.1089/cell.2013.0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The functional reprogramming of a differentiated cell to a pluripotent state presents potential beneficial applications in disease mechanisms and regenerative medicine. Epigenetic modifications enable differentiated cells to perpetuate molecular memory to retain their identity. Therefore, the aim of this study was to investigate the reprogramming modification of yak fibroblast cells that were permeabilized and incubated in the extracts of mesenchymal stem cells derived from mice adipose tissue [adipose-derived stem cells (ADSCs)]. According to the results, the treatment of ADSC extracts promoted colony formation. Moreover, pluripotent gene expression was associated with the loss of repressive histone modifications and increased global demethylation. The genes Col1a1 and Col1a2, which are typically found in differentiated cells only, demonstrated decreased expression and increased methylation in the 5'-flanking regulatory regions. Moreover, yak fibroblast cells that were exposed to ADSC extracts resulted in significantly different eight-cell and blastocyst formation rates of cloned embryos compared with their untreated counterparts. This investigation provides the first evidence that nuclear reprogramming of yak fibroblast cells is modified after the ADSC extract treatment. This research also presents a methodology for studying the dedifferentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells toward a pluripotent state without genetic alteration.
Collapse
Affiliation(s)
- Xian-Rong Xiong
- 1 College of Life Science and Technology, Southwest University for Nationalities , Chengdu, Sichuan, 610041, China
| | | | | | | | | | | |
Collapse
|
47
|
David L, Polo JM. Phases of reprogramming. Stem Cell Res 2014; 12:754-61. [PMID: 24735951 DOI: 10.1016/j.scr.2014.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022] Open
Abstract
Despite advances in the field of somatic cell reprogramming, an understanding and exploration of the underlying mechanisms governing this process are only recently emerging. It is now increasingly apparent that key sequential events correlate with the reprogramming process; a process previously thought to be random and unpredictable is now looking, to a greater extent, defined and controlled. Herein, we will review the key cellular and molecular events associated with the reprogramming process, giving an integrative and conciliatory view of the different studies addressing the mechanism of nuclear reprogramming.
Collapse
Affiliation(s)
- Laurent David
- INSERM, UMR 1064, Nantes, France; Faculté de Médecine, Université de Nantes, France; iPSC Facility, SFR F. Bonamy, Université de Nantes, France.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Australia; Australian Regenerative Medicine Institute, Monash University, Australia.
| |
Collapse
|
48
|
Dedifferentiation of neurons precedes tumor formation in Lola mutants. Dev Cell 2014; 28:685-96. [PMID: 24631403 PMCID: PMC3978655 DOI: 10.1016/j.devcel.2014.01.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 12/30/2022]
Abstract
The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.
Collapse
|
49
|
Gurdon JB. Ei und Kern: ein Kampf um die Vormacht (Nobel-Aufsatz). Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Gurdon JB. The egg and the nucleus: a battle for supremacy (Nobel Lecture). Angew Chem Int Ed Engl 2013; 52:13890-9. [PMID: 24311340 DOI: 10.1002/anie.201306722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/09/2022]
|