1
|
Chen R, Chai X, Zhang Y, Zhou T, Xia Y, Jiang X, Lv B, Zhang J, Zhou L, Tian X, Wang R, Mao L, Zhao F, Zhang H, Hu J, Qiu J, Zou Z, Chen C. Novel role of FTO in regulation of gut-brain communication via Desulfovibrio fairfieldensis-produced hydrogen sulfide under arsenic exposure. Gut Microbes 2025; 17:2438471. [PMID: 39852343 PMCID: PMC11776478 DOI: 10.1080/19490976.2024.2438471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms. We previously revealed that exposure to arsenic increased the level of m6A via down-regulation of FTO, which might serve as a potential target for intervention against arsenic-related disorders. In this study, our results demonstrated that chronic exposure to arsenic significantly disrupted the intestinal barrier and microenvironment. Also, this administration resulted in the enhancement of m6A modification and the reduction of FTO expression in the intestine. By using both CRISPR/Cas9-based FTO knock-in strategy and adeno-associated virus (AAV)-mediated overexpression of FTO in the intestine, we established for the first time that up-regulation of FTO remarkably ameliorated arsenic-induced disruption of intestinal barriers and altered microenvironment of mice. We also firstly identified a dominant gut microbial species, Desulfovibrio fairfieldensis, which was sharply reduced in arsenic-exposed mice, was able to proceed arsenic-induced neurobehavioral impairments by declining the levels of its major metabolite hydrogen sulfide. Administration of Desulfovibrio fairfieldensis could significantly alleviate the neurotoxicity of arsenic. Intriguingly, the beneficial effects of FTO against arsenic neurotoxicity possibly occurred through a novel gut-brain communication via Desulfovibrio fairfieldensis and its produced hydrogen sulfide. Collectively, these findings will provide new ideas for understanding the mechanisms of arsenic-induced toxic effects from a gut-brain communication perspective, and will assist the development of explicit intervention strategy via regulation of a new potential target FTO for prevention and treatment against arsenic-related both intestinal and neurological disorders.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Chai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tianxiu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Bi SZ, Sun WD, Zhu XJ, Lai SY, An-Liu, Zhang CY, Li JH. Nicotinamide N-methyltransferase in cardiovascular Diseases: Mechanistic insights and therapeutic potential. Eur J Med Chem 2025; 295:117790. [PMID: 40412299 DOI: 10.1016/j.ejmech.2025.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/13/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Cardiovascular diseases (CVDs), including conditions like ischemic heart disease, heart failure (HF), and atherosclerosis (AS), have complex pathogenesis that involves both behavioral and metabolic factors. Nicotinamide N-methyltransferase (NNMT) is an enzyme involved in the methylation of nicotinamide (NAM), and its increased activity is associated with disruptions in the NAD+ and methionine cycles. These disruptions are considered significant risk factors for cardiovascular diseases, though the specific mechanisms of NNMT remain unclear. This review discusses the role of NNMT in cardiovascular diseases by modulating NAD+ and methionine metabolism, including mechanisms such as NAD+ depletion, mitochondrial energy crisis, SIRTs deactivation, PARP hyperactivation, as well as hyperhomocysteinemia and epigenetic dysregulation. NNMT is linked to diseases such as atherosclerosis, pulmonary arterial hypertension, heart failure, and coronary heart disease, playing a critical role in their progression. Moreover, the potential of NNMT as a therapeutic target for cardiovascular diseases is explored. RNAi therapies, NNMT small-molecule inhibitors, and exercise therapies are promising treatment approaches, but there are limitations in current research, including discrepancies between animal models and human tissue expression, the dual role of NNMT, and the dose-dependent effects of NNMT inhibitors. Future studies should further clarify NNMT's mechanisms and assess its feasibility as a therapeutic target, aiming to develop more effective treatments and enhance prevention and treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuang-Zhou Bi
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - Wei-Dong Sun
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - Shi-Yan Lai
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - An-Liu
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - Chen-Ying Zhang
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi Province, China.
| |
Collapse
|
3
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
4
|
Li G, Chen W, Liu D, Tang S. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors. Eur J Med Chem 2025; 290:117560. [PMID: 40147343 DOI: 10.1016/j.ejmech.2025.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotic cells, exerts a critical influence on RNA function and gene expression. It has attracted considerable attention within the rapidly evolving field of epitranscriptomics. METTL3 is a key enzyme for m6A modification and is essential for maintaining normal m6A levels. High expression of METTL3 is closely associated with various cancers, including gastric cancer, liver cancer, and leukemia. Inhibiting METTL3 has shown potential in slowing cancer progression, thereby driving the development of METTL3 inhibitors. In this work, we summarize recent advancements in the development of METTL3 inhibitor, with a focus on medicinal chemistry strategies employed during discovery and optimization phases. We explore the application of structure-activity relationship (SAR) studies and protein-targeted degradation techniques, while addressing key challenges associated with their characterization and clinical translation. This review underscores the therapeutic potential of METTL3 inhibitors in modulating epitranscriptomic pathways and aims to offer perspectives for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Gengwu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shibing Tang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
5
|
Han Y, Sun J, Yao M, Miao L, Li M. Biological roles of enhancer RNA m6A modification and its implications in cancer. Cell Commun Signal 2025; 23:254. [PMID: 40448182 DOI: 10.1186/s12964-025-02254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
Enhancers, as distal cis-regulatory elements in the genome, have a pivotal influence on orchestrating precise gene expression. Enhancer RNAs (eRNAs), transcribed from active enhancer regions, are increasingly recognized as key regulators of transcription. N6-methyladenosine (m6A), the most plentiful internal modification in eukaryotic mRNAs, has garnered significant research interest in recent years. With advancements in high-throughput sequencing technologies, it has been established that m6A modifications are also present on eRNAs. An accumulative body of evidence demonstrates that aberrant enhancers, eRNAs, and m6A modifications are intimately connected with carcinoma onset, progression, invasion, metastasis, treatment response, drug resistance, and prognosis. However, the underlying molecular mechanisms governing m6A modification of eRNAs in cancer remain elusive. Here, we review and synthesize current understanding of the regulatory roles of enhancers, eRNAs, and m6A modifications in cancer. Furthermore, we investigate the possible roles of eRNAs m6A modification in tumorigenesis based on existing literature, offering novel perspectives and directions for future research on epigenetic regulatory mechanisms in cancer cells.
Collapse
Affiliation(s)
- Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China
| | - Jingqi Sun
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Mengjia Li
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
6
|
Song Z, Yang Q, Dong B, Wang S, Xue J, Liu N, Zhou X, Li N, Dandekar AM, Cheng L, Meng D, Fu Y. Nanopore RNA direct sequencing identifies that m 6A modification is essential for sorbitol-controlled resistance to Alternaria alternata in apple. Dev Cell 2025; 60:1439-1453.e5. [PMID: 39809280 DOI: 10.1016/j.devcel.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Sorbitol, a main photosynthate and transport carbohydrate in all tree fruit species in Rosaceae, acts as a signal controlling resistance against Alternaria (A.) alternata in apple by altering the expression of the MdNLR16 resistance gene via the MdWRKY79 transcription factor. However, it is not known if N6-methyladenosine (m6A) methylation of the mRNAs of these genes participates in the process. Here, we found that decreased sorbitol synthesis in apple leaves leads to a transcriptome-wide reduction in the m6A modification, with fewer transcripts containing two or more methylation sites. We identified two methyltransferases, MdVIR1 and MdVIR2, that respond to sorbitol and A. alternata inoculation and positively control resistance to A. alternata. MdVIR1 and MdVIR2 act on MdWRKY79 and MdNLR16 mRNAs, and the resulting m6A modification stabilizes their mRNAs and improves translation efficiency. These data identify that m6A modification through MdVIR1 and MdVIR2 methyltransferases is essential for sorbitol-controlled resistance to A. alternata.
Collapse
Affiliation(s)
- Zhihua Song
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Qing Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Biying Dong
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shengjie Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jingyi Xue
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Ni Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Xiaomiao Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Na Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Dong Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Yang W, Hu L, Tian Y, Yang Y, Guo W, Xiao K, Yang R, Yang H, Zhou Z, Cheng C. WTAP improves chondrocyte loss and dysfunctions to ameliorate osteoarthritis through mediating the mA methylation and mRNA stability of IL-33. Int J Biol Macromol 2025; 306:141330. [PMID: 39984079 DOI: 10.1016/j.ijbiomac.2025.141330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Osteoarthritis (OA) is a multifactorial degenerative disorder entailing cartilage loss and progressive joint failure. m6A RNA methylation could impact multiple disorders, including OA. In this study, m6A methylation regulator WTAP was down-regulated in OA cartilage, accompanied by significantly lower m6A methylation levels in OA tissues. In the DMM-induced mice OA model and IL-1β- or TNF-α-stimulated chondrocytes, WTAP and m6A methylation levels were decreased, but IL-1β, IL-6, and TNF-α cytokine expressions were elevated. In vivo and in vitro, WTAP overexpression increased m6A methylation levels but reduced proinflammatory cytokine contents. Furthermore, WTAP overexpression (OE) increased chondrocyte viability and proliferation, aggrecan and collagen II protein, and decreased cell apoptosis, MMP3, MMP13, and ADAMTS5. WTAP-mediated m6A methylation of IL-33 and impaired IL-33 mRNA stability. IL-33 OE caused no changes to WTAP expression; however, IL-33 OE partially attenuated WTAP OE-induced IL-33 downregulation. IL-33 overexpression inhibited chondrocyte viability and proliferation, decreased aggrecan and collagen II but elevated MMP3, MMP13, and ADAMTS5, and increased cell apoptosis and proinflammatory cytokine contents. More importantly, IL-33 eliminated the effects of WTAP OE on chondrocytes. Therefore, WTAP is down-regulated in OA; WTAP improves chondrocyte proliferation and function, thereby ameliorating OA through mediating m6A methylation of IL-33 and impairing IL-33 mRNA stability.
Collapse
Affiliation(s)
- Wenjian Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Lianghua Hu
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Ye Tian
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Yufan Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Wei Guo
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Kai Xiao
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Ruiqi Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Hua Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Zhihong Zhou
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China; Yiyang Medical College, Yiyang, Hunan 413000, China
| | - Chao Cheng
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China; The fourth people's hospital of Yiyang city, Yiyang, Hunan 413000, China.
| |
Collapse
|
8
|
Shan C, Dong K, Wen D, Cui Z, Cao J. A review of m 6A modification in plant development and potential quality improvement. Int J Biol Macromol 2025; 308:142597. [PMID: 40157682 DOI: 10.1016/j.ijbiomac.2025.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal modification observed in eukaryotic mRNAs. As a pivotal regulator of gene expression, m6A exerts influence over a number of processes, including splicing, transport, translation, degradation, and the stability of mRNAs. It thus plays a crucial role in plant development and resistance to biotic and abiotic stressors. The writers, erasers, and readers of m6A, which deposit, eliminate and decode this modification, are also of critical importance and have been identified and characterized in multiple plant species. The advent of next-generation sequencing (NGS) and m6A detection technologies has precipitated a surge in research on m6A in recent years. Extensive research has elucidated the specific roles of m6A in plants and its underlying molecular mechanisms, indicating significant potential for crop improvement. This review presents a comprehensive overview of recent studies on m6A and its regulatory proteins in plant development and stress tolerance. It highlights the potential applications of this modification and its writers, erasers, and readers for plant improvement, with a particular focus on leaf development, floral transition, trichome morphogenesis, fruit ripening, and resilience to pests, diseases and abiotic stresses.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zifan Cui
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
9
|
Lan J, Wang Y, Liu C, Chen H, Chen Q. Genome-wide analysis of m6A-modified circRNAs in the mouse model of myocardial injury induced by obstructive sleep apnea. BMC Pulm Med 2025; 25:158. [PMID: 40188043 PMCID: PMC11972507 DOI: 10.1186/s12890-025-03609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The peculiar expression of N6-methyladenosine (m6A) in Circular RNAs (circRNAs) is closely linked to the occurrence of many diseases. However, roles of m6A-modified circRNAs in OSA-induced cardiovascular disease are unknown. Here, we use bioinformatics analysis to investigate the expression profiles of m6A-modified circRNAs and reveal their potential functional roles in the mouse models of chronic intermittent hypoxia (CIH). METHODS Firstly, the expression profiles of m6A-modified circRNA in left ventricular tissue of the CIH mouse model were examined using circRNA microarray analysis. Then, the expression level of selected circrRNA was compared by folding change filtration, and the consistency between them and microarray results was verified by MeRIP-qPCR. GO analyses and KEGG analyses were conducted to predict the potential functions of these m6A-modified circRNAs. Finally, we conducted a ceRNA analysis, and a network was constructed to clarify the relationship between the selected circRNAs and miRNAs as well as the targeted genes. RESULTS In total, 255 circRNAs with m6A peaks in CIH-treated cardiac tissues were identified. 250 were up-regulated, 5 were down-regulated. The results of MeRIP-qPCR were consistent with the microarray results. 73 pathways were detected in the up-regulated transcripts and no relevant pathways were detected in the down-regulated transcripts. Finally, three circRNAs (mmu_circRNAs_22543, mmu_circRNAs_29768, and mmu_circRNAs_34841) were selected for ceRNA analysis, and the circRNA-miRNA-mRNA network was constructed. CONCLUSION Our findings are the first to show that m6A-modified circRNAs play a key role in OSA-induced cardiovascular disease. This study highlights the pivotal role of m6A-modified circRNAs in regulating gene expression and their potential implications in understanding the molecular pathogenesis of OSA-induced cardiac injury.
Collapse
Affiliation(s)
- Jiuhuang Lan
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China.
- The Second Affiliated Hospital of Fujian Medical University, No.950 Donghai Street, Fengze District, Quanzhou, 362000, China.
| | - Yuhui Wang
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, No.950 Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Chang Liu
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, No.950 Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Hongli Chen
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, No.950 Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, No.950 Donghai Street, Fengze District, Quanzhou, 362000, China.
| |
Collapse
|
10
|
Chen F, Zhou M, Chen W, Geng W, Lu L, Shen G, Lin P, Xia Q, Zhao P, Li Z. N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori. Int J Biol Macromol 2025; 298:139869. [PMID: 39814281 DOI: 10.1016/j.ijbiomac.2025.139869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm. We reported significant changes of m6A methyltransferases METTL3 and METTL14 upon BmNPV treatment. Knockdown of METTL3 and METTL14 enhanced BmNPV infection and promoted viral proliferation, whereas overexpression of these enzymes could prevent viral replication. Further study revealed that host heat shock cognate 70 (Hsc70) as a target gene of m6A would contribute to BmNPV proliferation. CRISPR-dCas9-targeted methylation of Hsc70 by METTL3/METTL14 decreased its expression and further attenuated BmNPV infection. Consistently, knockout of METTL3 in silkworm individuals by CRISPR-Cas9 reduced overall m6A levels, which led to rapid death of silkworms and increase of BmNPV upon virus infection likely due to upregulated expression of Hsc70. Collectively, these findings provided a novel insight into antiviral activity of m6A and demonstrated a distinct immune response via attenuating host Hsc70 expression to counteract BmNPV replication in lepidopteran silkworm.
Collapse
Affiliation(s)
- Feng Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Mingyi Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wei Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wenjing Geng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Liang Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhiqing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China.
| |
Collapse
|
11
|
Sun T, Geng S, Ru Q, Zheng Y. METTL3 and HERC4: Elevated Expression and Impact on Hepatocellular Carcinoma Progression. Cancer Biother Radiopharm 2025; 40:173-184. [PMID: 39611657 DOI: 10.1089/cbr.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Methyltransferase-like 3 (METTL3) and HECT and RLD domain containing E3 ubiquitin protein ligase 4 (HERC4) have been studied in the field of oncology; however, their roles and interaction in hepatocellular carcinoma (HCC) await elucidation. Methods: Initially, METTL3 and HERC4 expressions in normal and HCC samples were predicted employing the UALCAN database, and the targeting relationship between these two was explored via coimmunoprecipitation assay. Following the quantification on N6-methyladenosine (m6A) enrichment, the localization of METTL3 and HERC4 on HCC cells was visualized via immunofluorescence assay. The effects of METTL3 and HERC4 on HCC cells proliferation and migration were determined in vitro assays. METTL3 and HERC4 expressions were quantified via quantitative polymerase chain reaction, and those of metastasis-related proteins N-cadherin and vimentin were calculated with immunoblotting assay. Furthermore, the levels of angiogenic factors such as vascular endothelial growth factor and basic fibroblast growth factor were measured by enzyme-linked immunosorbent assay. Results: METTL3 and HERC4 expressed highly in HCC and their expressions were positively correlated with tumor grade. METTL3 overexpression enhanced the expression of HERC4 and promoted the proliferation and migration abilities of HCC cells. Specifically, METTL3 overexpression increased vimentin and N-cadherin expressions, while its silencing did conversely. Besides, HERC4 overexpression reversed the effects of METTL3 silencing on the proliferation and migration as well as the levels of angiogenic factors in HCC cells. Conclusion: This study reveals the upregulation of METTL3 and HERC4 expression in HCC and their role in HCC by enhancing the proliferation, migration, and angiogenesis potential of HCC cells.
Collapse
Affiliation(s)
- Tao Sun
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyu Geng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingjing Ru
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zheng
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Zhou H, Shu R, Wu J, Zhou J, Yu Z, Cheng Q, Peng Z, Zhao M. Review of the role and potential clinical value of m6A methylation modifications in the biological process of osteosarcoma. Front Genet 2025; 16:1522622. [PMID: 40176793 PMCID: PMC11961878 DOI: 10.3389/fgene.2025.1522622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
Osteosarcoma (OS), an aggressive bone tumor, is a substantial threat to the quality of life and survival of affected individuals. Despite recent improvements in OS therapies, the considerable variability and chemotherapy resistance of this cancer necessitate continuous research to discover new treatment targets and biomarkers. Recent epigenetic advances highlight the crucial role of N6-methyladenosine (m6A) methylation in cancer. In OS, m6A methylation has been demonstrated to be a pivotal component in the pathogenesis. This review introduces new findings regarding the association between m6A methylation regulators and OS, and summarizes the potential clinical applications of OS and m6A methylation regulators, including the role of m6A methylation in OS proliferation, growth, apoptosis, and cell migration, invasion, and metastasis; relationship between m6A methylation and OS chemotherapy resistance; and relationship between m6A methylation and OS prognosis. Our review had certain limitations. The interaction between m6A methylation regulators and other oncogenic factors, such as lncRNAs and ncRNAs, is not fully understood. We hope that these potential methods will be translated into clinical applications and effective treatment.
Collapse
Affiliation(s)
- Huaqiang Zhou
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Rongbing Shu
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Jianming Wu
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Jiangjun Zhou
- Department of Orthopedic, The 908Th Hospital of Joint Logistic Support Force of PLA, Nanchang, China
| | - Zhuanyi Yu
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Qiuxin Cheng
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Zhihao Peng
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| | - Min Zhao
- Department of orthopaedic surgery, Yingtan People’s Hospital, YingTan, China
| |
Collapse
|
13
|
Zhong Y, Zhang R, Lu L, Tan H, You Y, Mao Y, Yuan Y. Specific sDMA modifications on the RGG/RG motif of METTL14 regulate its function in AML. Cell Commun Signal 2025; 23:126. [PMID: 40057764 PMCID: PMC11889898 DOI: 10.1186/s12964-025-02130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Protein arginine methylations are crucial post-translational modifications (PTMs) in eukaryotes, playing a significant regulatory role in diverse biological processes. Here, we present our investigation into the detailed arginine methylation pattern of the C-terminal RG-rich region of METTL14, a key component of the m6A RNA methylation machinery, and its functional implications in biology and disease. METHODS Using ETD-based mass spectrometry and in vitro enzyme reactions, we uncover a specific arginine methylation pattern on METTL14. RNA methyltransferase activity assays were used to assess the impact of sDMA on METTL3:METTL14 complex activity. RNA immunoprecipitation was used to evaluate mRNA-m6A reader interactions. MeRIP-seq analysis was used to study the genome-wide effect of METTL14 sDMA on m6A modification in acute myeloid leukemia cells. RESULTS We demonstrate that PRMT5 catalyzes the site-specific symmetric dimethylation at R425 and R445 within the extensively methylated RGG/RG motifs of METTL14. We show a positive regulatory role of symmetric dimethylarginines (sDMA) in the catalytic efficiency of the METTL3:METTL14 complex and m6A-specific gene expression in HEK293T and acute myeloid leukemia cells, potentially through the action of m6A reader protein YTHDF1. In addition, the combined inhibition of METTL3 and PRMT5 further reduces the expression of several m6A substrate genes essential for AML proliferation, suggesting a potential therapeutic strategy for AML treatment. CONCLUSIONS The study confirms the coexistence of sDMA and aDMA modifications on METTL14's RGG/RG motifs, with sDMA at R425 and R445 enhancing METTL3:METTL14's catalytic efficacy and regulating gene expression through m6A deposition in cancer cells.
Collapse
Affiliation(s)
- Yulun Zhong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rou Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lingzi Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huijian Tan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Sheng Q, Yu Q, Lu S, Yang M, Fan X, Su H, Kong Z, Gao Y, Wang R, Lv Z. The inhibition of ZC3H13 attenuates G2/M arrest and apoptosis by alleviating NABP1 m6A modification in cisplatin-induced acute kidney injury. Cell Mol Life Sci 2025; 82:86. [PMID: 39985591 PMCID: PMC11846817 DOI: 10.1007/s00018-025-05596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome caused by various etiologies and causes a rapid decline in renal function in a short period of time. The most common internal modification of mRNAs is the N6-methyladenosine (m6A) modification, which is important for controlling gene expressions. However, the role of m6A modification in AKI is largely unknown. Here, we characterized the role of zinc finger CCCH-type containing 13 (ZC3H13), which is a type of m6A methyltransferases, in cisplatin-induced AKI mouse model and a cisplatin-treated human proximal tubular epithelial cell line (HK2 cells). The ZC3H13 knockdown attenuated the G2/M cell cycle arrest and apoptosis in HK2 cells. In the ZC3H13-overexpressed HK2 cells, the opposite was true. In the presence of cisplatin, mice with the AAV9-mediated silencing of ZC3H13 exhibited milder cell cycle arrest, apoptosis, and renal injury. In addition, we identified nucleic acid binding protein 1 (NABP1) as a target of ZC3H13, which was verified by knocking down and overexpressing ZC3H13 in HK2 cells. Moreover, we confirmed that the ZC3H13-mediated m6A modification stabilized NABP1 mRNA and was discriminated by insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). In conclusion, ZC3H13 promoted the m6A modification of NABP1 and enhanced its mRNA stability through an IGF2BP1-dependent mechanism. The inhibition of ZC3H13 alleviated the G2/M cell cycle arrest, apoptosis and kidney injury by affecting the expression of NABP1. These results show that the ZC3H13/NABP1 axis is a promising AKI treatment target.
Collapse
Affiliation(s)
- Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
15
|
Zhang Y, Wang Y, Peng J, Zhao K, Li L, Zhang Y, Zhai Z, Yuan S, Li S, Ye F, Wang L. Expression and prognostic significance of the m6A RNA methylation regulator HNRNPC in HNSCC. Front Oncol 2025; 15:1516867. [PMID: 39990687 PMCID: PMC11842334 DOI: 10.3389/fonc.2025.1516867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Background N6-methyladenosine (m6A) RNA modification is crucial for tumor development and progression; however, which m6A regulators play a pivotal role in head and neck squamous cell carcinoma (HNSCC) remains ambiguous. Methods Utilizing the Cancer Genome Atlas (TCGA) database, the expression levels of m6A regulators in HNSCC were examined, which led to the identification of heterogeneous nuclear ribonucleoprotein C (HNRNPC) as a key gene. Further experiments were performed in patient samples, stable cell lines, and a murine xenograft tumor model. Results A reliable survival risk model of m6A was constructed based on the TCGA database. Gene Expression Omnibus (GEO), normal and tumor tissue microarrays (TMA), and tumor tissue samples from patients with HNSCC were observed that a high level of HNRNPC expression was closely linked to a poor prognosis among patients. Knockdown of HNRNPC in the HNSCC cell lines HSC-3 and CAL-27 resulted in a significant decrease in proliferation, invasion, and malignant transformation abilities. RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation and sequencing (MeRIP-seq) data revealed that HNRNPC is involved in cell differentiation, cell migration and apoptosis. The mouse xenograft model elucidated that HNRNPC can promote tumorigenesis and progression of HNSCC. Conclusions HNRNPC can serve as a valuable predictor of tumor progression and prognosis in patients with HNSCC.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixu Wang
- Department of Otolaryngology, Head and Neck Surgery, People’s Hospital, Peking University, Beijing, China
| | - Jilin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Zhao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyu Zhai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijie Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Li
- Department of Otolaryngology Head and Neck Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Otolaryngology Head and Neck Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Otolaryngology Head and Neck Surgery, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Fanglei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Yang Q, Falahati A, Khosh A, Vafaei S, Al-Hendy A. Targeting Bromodomain-Containing Protein 9 in Human Uterine Fibroid Cells. Reprod Sci 2025; 32:103-115. [PMID: 38858328 DOI: 10.1007/s43032-024-01608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis. Previously, we reported the critical role of BRD-containing protein 9 (BRD9) in the pathogenesis of UFs. The present study aimed to extend our previous finding and further understand the role of the BRD9 in UFs. Our studies demonstrated that targeted inhibition of BRD9 with its potent inhibitor TP-472 inhibited the pathogenesis of UF through increased apoptosis and proliferation arrest and decreased extracellular matrix deposition in UF cells. High-throughput transcriptomic analysis further and extensively demonstrated that targeted inhibition of BRD9 by TP-472 impacted the biological pathways, including cell cycle progression, inflammatory response, E2F targets, ECM deposition, and m6A reprogramming. Compared with the previous study, we identified common enriched pathways induced by two BRD9 inhibitors, I-BRD9 and TP-472. Taken together, our studies further revealed the critical role of BRD9 in UF cells. We characterized the link between BRD9 and other vital pathways, as well as the connection between epigenetic and epitranscriptome involved in UF progression. Targeted inhibition of BRD proteins might provide a non-hormonal treatment strategy for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai, 505262, UAE
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Bao J, Sun R, Pan Z, Wei S. UBE2D3 regulated by WTAP-mediated m6A modification inhibits temozolomide chemosensitivity in glioblastoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:919-931. [PMID: 39085511 DOI: 10.1007/s00210-024-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
To explore how the ubiquitin-conjugating enzyme E2D3 (UBE2D3) influences temozolomide (TMZ) resistance in glioblastoma (GBM), and to clarify the association between UBE2D3 and WTAP. The UBE2D3 protein expression in GBM tissues were detected using immunohistochemistry (IHC) through tissue microarrays. The potential pathways of UBE2D3 in TCGA-GBM were predicted via Gene Set Enrichment Analysis (GSEA). To investigate UBE2D3's role in TMZ resistance, GBM cells were transduced with UBE2D3 shRNA or overexpression lentivirus, followed by assessments of CCK-8, flow cytometry, comet assay, and western blot analysis. Furthermore, a subcutaneous tumor model was established in nude mice using U87 cells transduced with interfering lentivirus to observe tumor growth and assess cell apoptosis using TUNEL staining. Mechanically, m6A content analysis, m6A methylated RNA immunoprecipitation quantitative PCR, reporter gene assay, mRNA stability measurements, RNA immunoprecipitation, quantitative Real-Time PCR, and Western blot assays were carried out to verify the role of WTAP/IGF2BP1 in regulating UBE2D3 expression. UBE2D3 exhibited elevated expression levels in GBM tissues compared with normal brain tissues and was associated with the DNA repair signaling pathway. In both in vitro and in vivo studies, it was demonstrated that TMZ treatment combined with reduced UBE2D3 expression further suppressed U87 cell viability and tumor growth, with a notable increase in apoptosis rate and DNA damage. Conversely, the overexpression of UBE2D3 had the opposite impact. Furthermore, our findings revealed that WTAP promotes the m6A modification of UBE2D3 via an IGF2BP1-dependent mechanism. The WTAP-IGF2BP1 axis regulates UBE2D3 stability in an m6A-dependent manner, influencing tumor malignancy and TMZ chemosensitivity in GBM via the DNA repair signaling pathway.
Collapse
Affiliation(s)
- Jing Bao
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Rui Sun
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
19
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
20
|
Zhang B, Li H, Qi F, Yu Q, Jiang H, Lin B, Dong H, Li H, Yu J. T-2 toxin induces chondrocyte extracellular matrix degradation by regulating the METTL3-mediated Ctsk m6A modification. Int Immunopharmacol 2024; 143:113390. [PMID: 39426235 DOI: 10.1016/j.intimp.2024.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
T-2 toxin is a major cause of Kashin-Beck disease (KBD), which is characterised by cartilage damage. N6-adenosine-methyltransferase-like 3 (METTL3) regulates cartilage injury; however, its role in T-2 toxin-induced cartilage injury remains elusive. Herein, we investigated the involvement of METTL3-mediated m6A modification in T-2 toxin-induced cartilage damage. METTL3-mediated m6A methylation levels were correlated with cartilage extracellular matrix (ECM) degradation, which was exacerbated following METTL3 silencing. Cathepsin K (Ctsk) was identified as a downstream target of METTL3 using m6A-methylated RNA immunoprecipitation(MeRIP)sequencing and RNA sequencing. Silencing Ctsk aggravated HT-2 toxin-induced ECM degradation. Increasing the m6A methylation levels in vivo via dietary methionine supplementation mitigated cartilage damage. In summary, HT-2 toxin induced cartilage ECM degradation by regulating the METTL3-mediated m6A modification of Ctsk. These findings highlight the METTL3/m6A/Ctsk axis as a potential therapeutic target for the treatment of KBD and other cartilage-associated diseases.
Collapse
Affiliation(s)
- Bing Zhang
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China; School of Public Health, Beihua University, Jilin 132013, Jilin, China
| | - Haonan Li
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Fang Qi
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qian Yu
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hong Jiang
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Buyi Lin
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hexuan Dong
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hongzhi Li
- School of Basic Medicine, Beihua University, Jilin 132013, Jilin, China.
| | - Jun Yu
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
21
|
Liu S. The RNA N 6-Methyladenosine MethylomeCoordinates Long Non-Coding RNAs to MediateCancer Drug Resistance by Activating PI3KSignaling. RESEARCH SQUARE 2024:rs.3.rs-5663230. [PMID: 39764125 PMCID: PMC11702776 DOI: 10.21203/rs.3.rs-5663230/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Long non-coding RNAs (lncRNAs) and RNA N6-methyladenosine (m6A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m6A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m6A, and more lncRNAs tend to have higher m6A content in CML cells resistant to tyrosine kinase inhibitors (TKIs). We demonstrate broad clinical relevance of our findings, showing that upregulation of top-ranked lncRNAs (e.g., SENCR, PROX1-AS1, LN892) in TKI resistant cell lines occurs in CML patients at the diagnostic stage, blast crisis phase or not-responding to TKIs compared to chronic phase or TKI responders, respectively. Higher lncRNAs predict drug resistance and shorter survival duration. Knockdown of SENCR, PROX1-AS1 or LN892 restores TKI sensitivity. Mechanistically, upregulation of PROX1-AS1, SENCR and LN892 results from FTO-dependent m6A hypomethylation that stabilizes lncRNA transcripts, and empowers resistant cell growth through overexpression of PI3K signaling mediators (e.g., ITGA2, F2R, COL6A1). Treatment with PI3K inhibitor alpelisib eradicates resistant cells in vitro and in vivo with prolonged survival of leukemic mice through downregulation of F2R, ITGA2 and COL6A1. Thus, the lncRNA-m6A-PI3K cascade represents a new non-genetic predictor for drug resistance and poorer prognosis in cancer, and a pan-cancer mechanism underlying TKI resistance.
Collapse
Affiliation(s)
- Shujun Liu
- The Metrohealth System, Case Western Reser
| |
Collapse
|
22
|
Wu JW, Zheng GM, Zhang L, Zhao YJ, Yan RY, Ren RC, Wei YM, Li K, Zhang XS, Zhao XY. N6-methyladenosine transcriptome-wide profiles of maize kernel development. PLANT PHYSIOLOGY 2024; 196:2476-2489. [PMID: 39222356 DOI: 10.1093/plphys/kiae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Maize (Zea mays L.) kernel development is a complex and dynamic process involving cell division and differentiation, into a variety of cell types. Epigenetic modifications, including DNA methylation, play a pivotal role in regulating this process. N6-methyladenosine modification is a universal and dynamic posttranscriptional epigenetic modification that is involved in the regulation of plant development. However, the role of N6-methyladenosine in maize kernel development remains unknown. In this study, we have constructed transcriptome-wide profiles for maize kernels at various stages of early development. Utilizing a combination of MeRIP-seq and RNA-seq analyses, we identified a total of 11,170, 10,973, 11,094, 11,990, 12,203, and 10,893 N6-methyladenosine peaks in maize kernels at 0, 2, 4, 6, 8, and 12 days after pollination, respectively. These N6-methyladenosine modifications were primarily deposited at the 3'-UTRs and were associated with the conserved motif-UGUACA. Additionally, we found that conserved N6-methyladenosine modification is involved in the regulation of genes that are ubiquitously expressed during kernel development. Further analysis revealed that N6-methyladenosine peak intensity was negatively correlated with the mRNA abundance of these ubiquitously expressed genes. Meanwhile, we employed phylogenetic analysis to predict potential regulatory proteins involved in maize kernel development and identified several that participate in the regulation of N6-methyladenosine modifications. Collectively, our results suggest the existence of a novel posttranscriptional epigenetic modification mechanism involved in the regulation of maize kernel development, thereby providing a novel perspective for maize molecular breeding.
Collapse
Affiliation(s)
- Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong 250100, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
23
|
Xu XF, Chen J, Long LH, Zhang AM, Yang JW, Li YJ, Chen L, Zhong XL, Xu Y, Cao WY. Chronic social isolation leads to abnormal behavior in male mice through the hippocampal METTL14 mediated epitranscriptomic RNA m6A modifications. J Affect Disord 2024; 366:262-272. [PMID: 39209273 DOI: 10.1016/j.jad.2024.08.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Social isolation not only increases the risk of mortality in later life but also causes depressive symptoms, cognitive and physical disabilities. Although RNA m6A modifications are suggested to play key roles in brain development, neuronal signaling and neurological disorders, both the roles of m6A and the enzymes that regulate RNA m6A modification in social isolation induced abnormal behavior is unknown. The present study aims to explore the possible epitranscriptomic role of RNA m6A modifications and its enzymes in social isolation induced impaired behavior. METHODS 3-4 weeks mice experiencing 8 weeks social isolation stress (SI) were used in the present study. We quantified m6A levels in brain regions related to mood and cognitive behavior. And the expression of hippocampal m6A enzymes was also determined. The role of hippocampal m6A and its enzymes in SI induced abnormal behavior was further verified by the virus tool. RESULTS SI led to not only depressive and anxiety-like behaviors but also cognitive impairment, with corresponding decreases in hippocampal m6A and METTL14. Hippocampal over-expression METTL14 with lentivirus not only rescued these behaviors but also enhanced the hippocampal m6A level. Hippocampal over-expression METTL14 resulted in increased synaptic related genes. CONCLUSIONS We provide the first evidence that post-weaning social isolation reduces hippocampal m6A level and causes altered expression of m6A enzyme in mice. Importantly, hippocampal METTL14 over-expression alleviated the SI-induced depression/anxiety-like and impaired cognitive behaviors and enhanced m6A level and synaptic related genes expression.
Collapse
Affiliation(s)
- Xiao Fan Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Jie Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu Hong Long
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ao Mei Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Wen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Jia Li
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Wen Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Gao Z, Yang Q, Shen H, Guo P, Xie Q, Chen G, Hu Z. The knockout of SlMTC impacts tomato seed size and reduces resistance to salt stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112228. [PMID: 39218307 DOI: 10.1016/j.plantsci.2024.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Members of the MT-A70 family are key catalytic proteins involved in m6A methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology. Compared with the wild-type (WT), the CR-slmtc mutants exhibited decreased seed size and slower growth rates during the seedling stage, along with weaker salt tolerance and significant downregulation of stress-related genes, such as PR1, PR5, and P5CS. The qRT-PCR results revealed that the expression levels of genes involved in auxin biosynthesis (FZY1, FZY3, and FZY4) and polar transport (PIN1, PIN4, and PIN8) were lower in CR-slmtc plants than in the WT plants. In addition, yeast two-hybrid assays showed that SlMTC could interact with SlMTA, a Class A member of the MT-A70 family, providing insights into the potential mode of action of SlMTC in tomatoes. Overall, our findings indicate the critical role of SlMTC in plant growth and development as well as in response to salt stress.
Collapse
Affiliation(s)
- Zihan Gao
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qingling Yang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Hui Shen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Pengyu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
25
|
Feng ZW, Yang CF, Xiao HF, Yuan F, Chen F, Zhang B, Zhang J, Tan M, Guo MG. YTHDC1 Regulates the Migration, Invasion, Proliferation, and Apoptosis of Rheumatoid Fibroblast-Like Synoviocytes. Front Immunol 2024; 15:1440398. [PMID: 39534605 PMCID: PMC11554466 DOI: 10.3389/fimmu.2024.1440398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Rheumatoid arthritis (RA), a chronic autoimmune condition, is characterized by persistent synovial inflammation, bone degradation, and progressive joint deterioration. Despite considerable research efforts, the precise molecular mechanism underlying RA remains elusive. This investigation aims to elucidate the potential role and molecular mechanism of N6-methyladenosine (m6A) methylation regulators in the pathogenesis of RA. Methods In this study, we employed bioinformatics tools to elucidate the association between RA and m6A modifications, aiming to identify potential biological markers. We extracted datasets GSE12021, GSE55235, and GSE55457 from the Gene Expression Omnibus (GEO) database for comprehensive analysis. Utilizing differential expression analysis, protein-protein interaction (PPI) analysis, and single-cell sequencing techniques, we identified pivotal hub genes implicated in the pathogenesis of RA. Subsequently, we assessed the correlation between these hub genes and the pathogenesis of RA using Gene Set Enrichment Analysis (GSEA). Both in vivo and in vitro experiments were performed to confirm the expression and functional roles of the identified key hub gene in RA. Results Differential expression analysis, PPI analysis, and single-cell analysis identified three key hub genes (YTHDC1, YTHDC2, and YTHDF2) associated with RA. GSEA results further revealed that these genes are enriched in pathways associated with inflammatory responses. Subsequent correlation analysis demonstrated a significant negative correlation between YTHDC1 expression and CD8+ T cell levels. Notably, the gene and protein expression levels of YTHDC1 and YTHDF2 were significantly reduced in the synovial tissue of RA patients. Furthermore, silencing YTHDC1 in fibroblast-like synoviocytes (FLSs) significantly inhibited their migration, invasion, proliferation, and induced apoptosis. Conclusion YTHDC1 may potentially be involved in the pathogenesis of RA through its regulation of migration, invasion, proliferation, and apoptosis in FLSs.
Collapse
Affiliation(s)
- Zhi-wei Feng
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen-fei Yang
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - He-fang Xiao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Fa Yuan
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Feng Chen
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Bo Zhang
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Jun Zhang
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ming-gang Guo
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
26
|
Wang Y, Yang C, Sun H, Jiang H, Zhang P, Huang Y, Liu Z, Yu Y, Xu Z, Xiang H, Yi C. The Role of N6-methyladenosine Modification in Gametogenesis and Embryogenesis: Impact on Fertility. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae050. [PMID: 38937660 PMCID: PMC11514847 DOI: 10.1093/gpbjnl/qzae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The most common epigenetic modification of messenger RNAs (mRNAs) is N6-methyladenosine (m6A), which is mainly located near the 3' untranslated region of mRNAs, near the stop codons, and within internal exons. The biological effect of m6A is dynamically modulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). By controlling post-transcriptional gene expression, m6A has a significant impact on numerous biological functions, including RNA transcription, translation, splicing, transport, and degradation. Hence, m6A influences various physiological and pathological processes, such as spermatogenesis, oogenesis, embryogenesis, placental function, and human reproductive system diseases. During gametogenesis and embryogenesis, genetic material undergoes significant changes, including epigenomic modifications such as m6A. From spermatogenesis and oogenesis to the formation of an oosperm and early embryogenesis, m6A changes occur at every step. m6A abnormalities can lead to gamete abnormalities, developmental delays, impaired fertilization, and maternal-to-zygotic transition blockage. Both mice and humans with abnormal m6A modifications exhibit impaired fertility. In this review, we discuss the dynamic biological effects of m6A and its regulators on gamete and embryonic development and review the possible mechanisms of infertility caused by m6A changes. We also discuss the drugs currently used to manipulate m6A and provide prospects for the prevention and treatment of infertility at the epigenetic level.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Jiang
- Department of Interventional Therapy, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zhenran Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zuying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Huang J, Jia Y, Pan Y, Lin H, Lv S, Nawaz M, Song B, Nie X. Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat. PLANT CELL REPORTS 2024; 43:254. [PMID: 39373738 DOI: 10.1007/s00299-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.
Collapse
Affiliation(s)
- Jiaqian Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Yanze Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuzuo Lv
- Luoyang Academy of Agriculture and Forestry Science, Luoyang Key Laboratory of Crop Molecular Biology and Germplasm Enhancement, Luoyang, 471000, Henan, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Zhang J, Wu L, Mu L, Wang Y, Zhao M, Wang H, Li X, Zhao L, Lin C, Zhang H, Gu L. Evolution and post-transcriptional regulation insights of m 6A writers, erasers, and readers in plant epitranscriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:505-525. [PMID: 39167634 DOI: 10.1111/tpj.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
As a dynamic and reversible post-transcriptional marker, N6-methyladenosine (m6A) plays an important role in the regulation of biological functions, which are mediated by m6A pathway components including writers (MT-A70, FIP37, VIR and HAKAI family), erasers (ALKBH family) and readers (YTH family). There is an urgent need for a comprehensive analysis of m6A pathway components across species at evolutionary levels. In this study, we identified 4062 m6A pathway components from 154 plant species including green algae, utilizing large-scale phylogenetic to explore their origin and evolution. We discovered that the copy number of writers was conserved among different plant lineages, with notable expansions in the ALKBH and YTH families. Synteny network analysis revealed conserved genomic contexts and lineage-specific transpositions. Furthermore, we used Direct RNA Sequencing (DRS) to reveal the Poly(A) length (PAL) and m6A ratio profiles in six angiosperms species, with a particular focus on the m6A pathway components. The ECT1/2-Poeaece4 sub-branches (YTH family) with unique genomic contexts exhibited significantly higher expression level than genes of other ECT1/2 poeaece sub-branches (ECT1/2-Poeaece1-3), accompanied by lower m6A modification and PAL. Besides, conserved m6A sites distributed in CDS and 3'UTR were detected in the ECT1/2-Poaceae4, and the dual-luciferase assay further demonstrated that these conserved m6A sites in the 3'UTR negatively regulated the expression of Firefly luciferase (LUC) gene. Finally, we developed transcription factor regulatory networks for m6A pathway components, using yeast one-hybrid assay demonstrated that PheBPC1 could interact with the PheECT1/2-5 promoter. Overall, this study presents a comprehensive evolutionary and functional analysis of m6A pathway components and their modifications in plants, providing a valuable resource for future functional analysis in this field.
Collapse
Affiliation(s)
- Jun Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lele Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhua Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengna Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangrong Li
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
Zhang S, Sun S, Zhang Y, Liu J, Wu Y, Zhang X. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators in the Diagnosis and Subtype Classification of Rheumatoid Arthritis. Biochem Genet 2024; 62:3467-3484. [PMID: 38112894 DOI: 10.1007/s10528-023-10610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
m6A modification is the most abundant mRNA modifications and plays an integral role in various biological processes in eukaryotes. However, the role of m6A regulators in rheumatoid arthritis remains unknown. To determine the expression of m6A RNA methylation regulators in rheumatoid arthritis and their possible functional and prognostic value. In this study, we performed differential analysis in the comprehensive gene expression database GSE93272 dataset between non-rheumatoid arthritis patients and rheumatoid arthritis patients to obtain 15 important m6A regulators. A random forest model and lasso regression were used to screen the five most important m6A regulators to predict the risk of developing rheumatoid arthritis. After further validation using in vitro qPCR experiments, a nomogram model was developed based on the four most important m6A regulators (ELAVL1, WTAP, YTHDF1, and ALKBH5). Immuno-infiltration analysis and consensus clustering analysis were then performed. An analysis of the decision curve showed that the nomogram model could be beneficial to patients. According to selected important m6A regulators, patients with rheumatoid arthritis were classified into two m6A models (ClusterA and ClusterB) via consensus approach. Activated B cells, CD56dim natural killer cells, immature B cells, monocytes, natural killer T cells, and T lymphocytes were associated with ClusterA in immune infiltration analysis. Importantly, immune infiltration in patients with high ELAVL1 expression was strikingly similar to ClusterA. m6A regulators play a non-negligible role in the development of rheumatoid arthritis. A study of m6A patterns may provide future therapeutic options for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Shuo Sun
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | | | - Jianping Liu
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Yuhuai Wu
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China.
| | - Xiguang Zhang
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China.
| |
Collapse
|
30
|
Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, Du X, Zhang X, Wang R, Li H, Zeng Y, Li D, Xie Y, Li M, Hong Y, Liu K, Liu M. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. THE NEW PHYTOLOGIST 2024; 243:2265-2278. [PMID: 39056285 DOI: 10.1111/nph.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yuan Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xumeng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Huajia Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan, 430074, Hubei, China
| | - Yue Xie
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Mingzhang Li
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Yiguo Hong
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
31
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
32
|
Zhou Y, Liu Z, Gong C, Zhang J, Zhao J, Zhang X, Liu X, Li B, Li R, Shi Z, Xie Y, Bao L. Targeting treatment resistance: unveiling the potential of RNA methylation regulators and TG-101,209 in pan-cancer neoadjuvant therapy. J Exp Clin Cancer Res 2024; 43:232. [PMID: 39160604 PMCID: PMC11331809 DOI: 10.1186/s13046-024-03111-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Tumor recurrence and mortality rates remain challenging in cancer patients despite comprehensive treatment. Neoadjuvant chemotherapy and immunotherapy aim to eliminate residual tumor cells, reducing the risk of recurrence. However, drug resistance during neoadjuvant therapy is a significant hurdle. Recent studies suggest a correlation between RNA methylation regulators (RMRs) and response to neoadjuvant therapy. METHODS Using a multi-center approach, we integrated advanced techniques such as single-cell transcriptomics, whole-genome sequencing, RNA sequencing, proteomics, machine learning, and in vivo/in vitro experiments. Analyzing pan-cancer cohorts, the association between neoadjuvant chemotherapy/immunotherapy effectiveness and RNA methylation using single-cell sequencing was investigated. Multi-omics analysis and machine learning algorithms identified genomic variations, transcriptional dysregulation, and prognostic relevance of RMRs, revealing distinct molecular subtypes guiding pan-cancer neoadjuvant therapy stratification. RESULTS Our analysis unveiled a strong link between neoadjuvant therapy efficacy and RNA methylation dynamics, supported by pan-cancer single-cell sequencing data. Integration of omics data and machine learning algorithms identified RMR genomic variations, transcriptional dysregulation, and prognostic implications in pan-cancer. High-RMR-expressing tumors displayed increased genomic alterations, an immunosuppressive microenvironment, poorer prognosis, and resistance to neoadjuvant therapy. Molecular investigations and in vivo/in vitro experiments have substantiated that the JAK inhibitor TG-101,209 exerts notable effects on the immune microenvironment of tumors, rendering high-RMR-expressing pan-cancer tumors, particularly in pancreatic cancer, more susceptible to chemotherapy and immunotherapy. CONCLUSIONS This study emphasizes the pivotal role of RMRs in pan-cancer neoadjuvant therapy, serving as predictive biomarkers for monitoring the tumor microenvironment, patient prognosis, and therapeutic response. Distinct molecular subtypes of RMRs aid individualized stratification in neoadjuvant therapy. Combining TG-101,209 adjuvant therapy presents a promising strategy to enhance the sensitivity of high-RMR-expressing tumors to chemotherapy and immunotherapy. However, further validation studies are necessary to fully understand the clinical utility of RNA methylation regulators and their impact on patient outcomes.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ziyun Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Cheng Gong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Zhao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xia Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Gastric Surgery, Key Laboratory of Digestive Cancer, Tianjin, China
| | - Rui Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Li Bao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China.
| |
Collapse
|
33
|
Liu D, Ren L, Liu J. METTL14 promotes chondrocyte ferroptosis in osteoarthritis via m6A modification of GPX4. Int J Rheum Dis 2024; 27:e15297. [PMID: 39175261 DOI: 10.1111/1756-185x.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ferroptosis is caused by iron-dependent peroxidation of membrane phospholipids and chondrocyte ferroptosis contributes to osteoarthritis (OA) progression. Glutathione peroxidase 4 (GPX4) plays a master role in blocking ferroptosis. N6-methyladenosine (m6A) is an epigenetic modification among mRNA post-transcriptional modifications. This study investigated the effect of methyltransferase-like 14 (METTL14), the key component of the m6A methyltransferase, on chondrocyte ferroptosis via m6A modification. METHODS An OA rat model was established through an intra-articular injection of monosodium iodoacetate in the right knee. OA cartilages in rat models were used for gene expression analysis. Primary mouse chondrocytes or ADTC5 cells were stimulated with IL-1β or erastin. The m6A RNA methylation quantification kit was used to measure m6A level. The effect of METTL14 and GPX4 on ECM degradation and ferroptosis was investigated through western blotting, fluorescence immunostaining, propidium iodide staining, and commercially available kits. The mechanism of METTL14 action was explored through MeRIP-qPCR assays. RESULTS METTL14 and m6A expression was upregulated in osteoarthritic cartilages and IL-1β-induced chondrocytes. METTL14 depletion repressed the IL-1β or erastin-stimulated ECM degradation and ferroptosis in mouse chondrocytes. METTL14 inhibited GPX4 gene through m6A methylation modification. GPX4 knockdown reversed the si-METTL14-mediated protection in IL-1β-induced chondrocytes. CONCLUSION METTL14 depletion inhibits ferroptosis and ECM degradation by suppressing GPX4 mRNA m6A modification in injured chondrocytes.
Collapse
Affiliation(s)
- Dawei Liu
- Tianjin University, Tianjin, China
- Specialized Orthopedics Construction Office, Tianjin Nankai Hospital, Tianjin, China
| | - Liang Ren
- Department of Ultrasound medicine, Yichang Yiling People's Hospital, Yichang, China
| | - Jun Liu
- Knee-joint Department, Tianjin Hospital, Tianjin, China
| |
Collapse
|
34
|
Liu P, Liu H, Zhao J, Yang T, Guo S, Chang L, Xiao T, Xu A, Liu X, Zhu C, Gan L, Chen M. Genome-wide identification and functional analysis of mRNA m 6A writers in soybean under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1446591. [PMID: 39055358 PMCID: PMC11269220 DOI: 10.3389/fpls.2024.1446591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A), a well-characterized RNA modification, is involved in regulating multiple biological processes; however, genome-wide identification and functional characterization of the m6A modification in legume plants, including soybean (Glycine max (L.) Merr.), remains lacking. In this study, we utilized bioinformatics tools to perform comprehensive analyses of molecular writer candidates associated with the RNA m6A modification in soybean, characterizing their conserved domains, motifs, gene structures, promoters, and spatial expression patterns. Thirteen m6A writer complex genes in soybean were identified, which were assigned to four families: MT-A70, WTAP, VIR, and HAKAI. It also can be identified that multiple cis elements in the promoters of these genes, which were classified into five distinct groups, including elements responsive to light, phytohormone regulation, environmental stress, development, and others, suggesting that these genes may modulate various cellular and physiological processes in plants. Importantly, the enzymatic activities of two identified m6A writers, GmMTA1 and GmMTA2, were confirmed in vitro. Furthermore, we analyzed the expression patterns of the GmMTAs and GmMTBs under different abiotic stresses, revealing their potential involvement in stress tolerance, especially in the response to alkalinity or darkness. Overexpressing GmMTA2 and GmMTB1 in soybean altered the tolerance of the plants to alkalinity and long-term darkness, further confirming their effect on the stress response. Collectively, our findings identified the RNA m6A writer candidates in leguminous plants and highlighted the potential roles of GmMTAs and GmMTBs in the response to abiotic stress in soybean.
Collapse
Affiliation(s)
- Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Luo Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianyun Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anjie Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
36
|
Hu H, Li Z, Xie X, Liao Q, Hu Y, Gong C, Gao N, Yang H, Xiao Y, Chen Y. Insights into the role of RNA m 6A modification in the metabolic process and related diseases. Genes Dis 2024; 11:101011. [PMID: 38560499 PMCID: PMC10978549 DOI: 10.1016/j.gendis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
According to the latest consensus, many traditional diseases are considered metabolic diseases, such as cancer, type 2 diabetes, obesity, and cardiovascular disease. Currently, metabolic diseases are increasingly prevalent because of the ever-improving living standards and have become the leading threat to human health. Multiple therapy methods have been applied to treat these diseases, which improves the quality of life of many patients, but the overall effect is still unsatisfactory. Therefore, intensive research on the metabolic process and the pathogenesis of metabolic diseases is imperative. N6-methyladenosine (m6A) is an important modification of eukaryotic RNAs. It is a critical regulator of gene expression that is involved in different cellular functions and physiological processes. Many studies have indicated that m6A modification regulates the development of many metabolic processes and metabolic diseases. In this review, we summarized recent studies on the role of m6A modification in different metabolic processes and metabolic diseases. Additionally, we highlighted the potential m6A-targeted therapy for metabolic diseases, expecting to facilitate m6A-targeted strategies in the treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | | | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
37
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
38
|
Liu X, Chen W, Li K, Sheng J. RNA N6-methyladenosine methylation in influenza A virus infection. Front Microbiol 2024; 15:1401997. [PMID: 38957616 PMCID: PMC11217485 DOI: 10.3389/fmicb.2024.1401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
39
|
Wang G, Li H, Ye C, He K, Liu S, Jiang B, Ge R, Gao B, Wei J, Zhao Y, Li A, Zhang D, Zhang J, He C. Quantitative profiling of m 6A at single base resolution across the life cycle of rice and Arabidopsis. Nat Commun 2024; 15:4881. [PMID: 38849358 PMCID: PMC11161662 DOI: 10.1038/s41467-024-48941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Haoxuan Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Kayla He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Bochen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boyang Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Aixuan Li
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
40
|
Feng Z, Xiao H, Wang X, Niu Y, Zhao D, Tian C, Wang S, Peng B, Yang F, Geng B, Guo M, Sheng X, Xia Y. Unraveling Key m 6A Modification Regulators Signatures in Postmenopausal Osteoporosis through Bioinformatics and Experimental Verification. Orthop Surg 2024; 16:1418-1433. [PMID: 38658320 PMCID: PMC11144519 DOI: 10.1111/os.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.
Collapse
Affiliation(s)
- Zhi‐wei Feng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - He‐fang Xiao
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Xing‐wen Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Yong‐kang Niu
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Da‐cheng Zhao
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Cong Tian
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Sheng‐hong Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Bo Peng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Fei Yang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Bin Geng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Ming‐gang Guo
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
| | - Xiao‐yun Sheng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Ya‐yi Xia
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| |
Collapse
|
41
|
Dai Z, Yang X. The regulation of liquid-liquid phase separated condensates containing nucleic acids. FEBS J 2024; 291:2320-2331. [PMID: 37735903 DOI: 10.1111/febs.16959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Liquid-liquid phase separation (LLPS) has been recognized as a universal biological phenomenon. It plays an important role in life activities. LLPS is induced by weak interactions between intrinsically disordered regions or low complex domains. Nucleic acids are widely present in cells, and shown to be closely related to LLPS. Their structure and electronegativity provide the excellent platforms for the formation of phase-separated condensates. In this review, we summarize the interconnected regulation between nucleic acids and LLPS demonstrated in in vivo and in vitro studies. Beside homogeneous and single-phase condensates, complicated and multicompartment LLPS induced by nucleic acids is discussed as well. Recent advances about nucleic-acid-induced LLPS as a new pathogenic mechanism and drug design direction are highlighted, especially virus-mediated disease treatment and prevention.
Collapse
Affiliation(s)
- Zhuojun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaorong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
42
|
Mansfield KD. RNA Binding by the m6A Methyltransferases METTL16 and METTL3. BIOLOGY 2024; 13:391. [PMID: 38927271 PMCID: PMC11200852 DOI: 10.3390/biology13060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Methyltransferases are a wide-ranging, yet well-conserved, class of molecules that have been found to modify a wide variety of substrates. Interest in RNA methylation has surged in recent years with the identification of the major eukaryotic mRNA m6A methyltransferase METTL3. METTL16 has also been identified as an RNA m6A methyltransferase; however, much less is known about its targets and actions. Interestingly, in addition to their catalytic activities, both METTL3 and METTL16 also have "methylation-independent" functions, including translational regulation, which have been discovered. However, evidence suggests that METTL16's role as an RNA-binding protein may be more significant than is currently recognized. In this review, we will introduce RNA methylation, specifically m6A, and the enzymes responsible for its deposition. We will discuss the varying roles that these enzymes perform and delve deeper into their RNA targets and possible roles as methylation-independent RNA binding proteins. Finally, we will touch upon the many open questions still remaining.
Collapse
Affiliation(s)
- Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
43
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
44
|
Han Y, Sun K, Yu S, Qin Y, Zhang Z, Luo J, Hu H, Dai L, Cui M, Jiang C, Liu F, Huang Y, Gao P, Chen X, Xin T, Ren X, Wu X, Song J, Wang Q, Tang Z, Chen J, Zhang H, Zhang X, Liu M, Luo D. A Mettl16/m 6A/mybl2b/Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells. EMBO J 2024; 43:1990-2014. [PMID: 38605226 PMCID: PMC11099167 DOI: 10.1038/s44318-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.
Collapse
Affiliation(s)
- Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Manman Cui
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaolin Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianqing Xin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
45
|
Levintov L, Vashisth H. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. J Phys Chem B 2024; 128:3157-3166. [PMID: 38535997 PMCID: PMC11000223 DOI: 10.1021/acs.jpcb.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The N6-methyladenosine modification is one of the most abundant post-transcriptional modifications in ribonucleic acid (RNA) molecules. Using molecular dynamics simulations and alchemical free-energy calculations, we studied the structural and energetic implications of incorporating this modification in an adenine mononucleotide and an RNA hairpin structure. At the mononucleotide level, we found that the syn configuration is more favorable than the anti configuration by 2.05 ± 0.15 kcal/mol. The unfavorable effect of methylation was due to the steric overlap between the methyl group and a nitrogen atom in the purine ring. We then probed the effect of methylation in an RNA hairpin structure containing an AUCG tetraloop, which is recognized by a "reader" protein (YTHDC1) to promote transcriptional silencing of long noncoding RNAs. While methylation had no significant conformational effect on the hairpin stem, the methylated tetraloop showed enhanced conformational flexibility compared to the unmethylated tetraloop. The increased flexibility was associated with the outward flipping of two bases (A6 and U7) which formed stacking interactions with each other and with the C8 and G9 bases in the tetraloop, leading to a conformation similar to that in the RNA/reader protein complex. Therefore, methylation-induced conformational flexibility likely facilitates RNA recognition by the reader protein.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
46
|
Cheng T, Zhou C, Bian S, Sobeck K, Liu Y. Coordinated activation of DNMT3a and TET2 in cancer stem cell-like cells initiates and sustains drug resistance in hepatocellular carcinoma. Cancer Cell Int 2024; 24:110. [PMID: 38528605 PMCID: PMC10962188 DOI: 10.1186/s12935-024-03288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Resistance to targeted therapies represents a significant hurdle to successfully treating hepatocellular carcinoma (HCC). While epigenetic abnormalities are critical determinants of HCC relapse and therapeutic resistance, the underlying mechanisms are poorly understood. We aimed to address whether and how dysregulated epigenetic regulators have regulatory and functional communications in establishing and maintaining drug resistance. METHODS HCC-resistant cells were characterized by CCK-8, IncuCyte Live-Cell analysis, flow cytometry and wound-healing assays. Target expression was assessed by qPCR and Western blotting. Global and promoter DNA methylation was measured by dotblotting, methylated-DNA immunoprecipitation and enzymatic digestion. Protein interaction and promoter binding of DNMT3a-TET2 were investigated by co-immunoprecipitation, ChIP-qPCR. The regulatory and functional roles of DNMT3a and TET2 were studied by lentivirus infection and puromycin selection. The association of DNMT and TET expression with drug response and survival of HCC patients was assessed by public datasets, spearman correlation coefficients and online tools. RESULTS We identified the coordination of DNMT3a and TET2 as an actionable mechanism of drug resistance in HCC. The faster growth and migration of resistant HCC cells were attributed to DNMT3a and TET2 upregulation followed by increased 5mC and 5hmC production. HCC patients with higher DNMT3a and TET2 had a shorter survival time with a less favorable response to sorafenib therapy than those with lower expression. Cancer stem cell-like cells (CSCs) displayed DNMT3a and TET2 overexpression, which were insensitive to sorafenib. Either genetic or pharmacological suppression of DNMT3a or/and TET2 impaired resistant cell growth and oncosphere formation, and restored sorafenib sensitivity. Mechanistically, DNMT3a did not establish a regulatory circuit with TET2, but formed a complex with TET2 and HDAC2. This complex bound the promoters of oncogenes (i.e., CDK1, CCNA2, RASEF), and upregulated them without involving promoter DNA methylation. In contrast, DNMT3a-TET2 crosstalk silences tumor suppressors (i.e., P15, SOCS2) through a corepressor complex with HDAC2 along with increased promoter DNA methylation. CONCLUSIONS We demonstrate that DNMT3a and TET2 act coordinately to regulate HCC cell fate in DNA methylation-dependent and -independent manners, representing strong predictors for drug resistance and poor prognosis, and thus are promising therapeutic targets for refractory HCC.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Hepatobiliary and Pancreas Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Changli Zhou
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- MetroHealth Research Institute, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Sicheng Bian
- MetroHealth Research Institute, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Kelsey Sobeck
- The Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yahui Liu
- Department of Hepatobiliary and Pancreas Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
47
|
Zhang QC, Qian YM, Ren YH, Chen MM, Cao LM, Zheng SJ, Li BB, Wang M, Wu X, Xu K. Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m 6A modification. Acta Pharmacol Sin 2024; 45:619-632. [PMID: 37848553 PMCID: PMC10834501 DOI: 10.1038/s41401-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 μM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.
Collapse
Affiliation(s)
- Qi-Cheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Mei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying-Hui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Meng-Meng Chen
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Si-Jia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing-Bing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
48
|
Foucault L, Capeliez T, Angonin D, Lentini C, Bezin L, Heinrich C, Parras C, Donega V, Marcy G, Raineteau O. Neonatal brain injury unravels transcriptional and signaling changes underlying the reactivation of cortical progenitors. Cell Rep 2024; 43:113734. [PMID: 38349790 DOI: 10.1016/j.celrep.2024.113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.
Collapse
Affiliation(s)
- Louis Foucault
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Timothy Capeliez
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Celia Lentini
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Laurent Bezin
- University Lyon, Université Claude Bernard Lyon 1, INSERM, Centre de Recherche en Neuroscience de Lyon U1028 - CNRS UMR5292, 69500 Bron, France
| | - Christophe Heinrich
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vanessa Donega
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
| | - Guillaume Marcy
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
49
|
Gao L, Qiao L, Li Y, Jia L, Cui W, Yang J, Wu C, Wang L. ALKBH5 regulates paclitaxel resistance in NSCLC via inhibiting CEMIP-mediated EMT. Toxicol Appl Pharmacol 2024; 483:116807. [PMID: 38199493 DOI: 10.1016/j.taap.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Li Qiao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
50
|
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, Yang X, Meng J, Li Y, Hu Y, Sun Y, Wen L, Huang F, Sheng Y, Wan C, Yang K. FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res 2024; 43:34. [PMID: 38281999 PMCID: PMC10823633 DOI: 10.1186/s13046-024-02959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3β on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3β kinase to recognize and degrade IGF2BP2. CONCLUSIONS Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|