1
|
Gómez-Felipe A, Branchini E, Wang B, Marconi M, Bertrand-Rakusová H, Stan T, Burkiewicz J, de Folter S, Routier-Kierzkowska AL, Wabnik K, Kierzkowski D. Two orthogonal differentiation gradients locally coordinate fruit morphogenesis. Nat Commun 2024; 15:2912. [PMID: 38575617 PMCID: PMC10995178 DOI: 10.1038/s41467-024-47325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.
Collapse
Affiliation(s)
- Andrea Gómez-Felipe
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Elvis Branchini
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Binghan Wang
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Marco Marconi
- centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Hana Bertrand-Rakusová
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Teodora Stan
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Jérôme Burkiewicz
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP, 36824, Irapuato, Mexico
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Krzysztof Wabnik
- centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
2
|
Feng H, Tan J, Deng Z. Decoding plant adaptation: deubiquitinating enzymes UBP12 and UBP13 in hormone signaling, light response, and developmental processes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:721-732. [PMID: 37904584 DOI: 10.1093/jxb/erad429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Abstract
Ubiquitination, a vital post-translational modification in plants, plays a significant role in regulating protein activity, localization, and stability. This process occurs through a complex enzyme cascade that involves E1, E2, and E3 enzymes, leading to the covalent attachment of ubiquitin molecules to substrate proteins. Conversely, deubiquitinating enzymes (DUBs) work in opposition to this process by removing ubiquitin moieties. Despite extensive research on ubiquitination in plants, our understanding of the function of DUBs is still emerging. UBP12 and UBP13, two plant DUBs, have received much attention recently and are shown to play pivotal roles in hormone signaling, light perception, photoperiod responses, leaf development, senescence, and epigenetic transcriptional regulation. This review summarizes current knowledge of these two enzymes, highlighting the central role of deubiquitination in regulating the abundance and activity of critical regulators such as receptor kinases and transcription factors during phytohormone and developmental signaling.
Collapse
Affiliation(s)
- Hanqian Feng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
3
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|
4
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Wang X, Zhang J, Chai M, Han L, Cao X, Zhang J, Kong Y, Fu C, Wang ZY, Mysore KS, Wen J, Zhou C. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2279-2291. [PMID: 37526388 DOI: 10.1111/jipb.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaohua Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yiming Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Li P, Wu Y, Han X, Li H, Wang L, Chen B, Yu S, Wang Z. BrrA02.LMI1 Encodes a Homeobox Protein That Affects Leaf Margin Development in Brassica rapa. Int J Mol Sci 2023; 24:14205. [PMID: 37762508 PMCID: PMC10532282 DOI: 10.3390/ijms241814205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf margin morphology is an important quality trait affecting the commodity and environmental adaptability of crops. Brassica rapa is an ideal research material for exploring the molecular mechanisms underlying leaf lobe development. Here, we identified BrrA02.LMI1 to be a promising gene underlying the QTL qBrrLLA02 controlling leaf lobe formation in B. rapa, which was detected in our previous study. Sequence comparison analysis showed that the promoter divergences were the most obvious variations of BrrA02.LMI1 between parental lines. The higher expression level and promoter activity of BrrA02.LMI1 in the lobe-leafed parent indicated that promoter variations of BrrA02.LMI1 were responsible for elevating expression and ultimately causing different allele effects. Histochemical GUS staining indicated that BrrA02.LMI1 is mainly expressed at the leaf margin, with the highest expression at the tip of each lobe. Subcellular localization results showed that BrrA02.LMI1 was in the nucleus. The ectopic expression of BrrA02.LMI1 in A. thaliana resulted in a deep leaf lobe in the wild-type plants, and lobed leaf formation was disturbed in BrrA02.LMI11-downregulated plants. Our findings revealed that BrrA02.LMI1 plays a vital role in regulating the formation of lobed leaves, providing a theoretical basis for the selection and breeding of leaf-shape-diverse varieties of B. rapa.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yudi Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiangyang Han
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Hui Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Limin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Bin Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| |
Collapse
|
7
|
Sharma V, Ankita, Karnwal A, Sharma S, Kamal B, Jadon VS, Gupta S, Sivanasen I. A Comprehensive Review Uncovering the Challenges and Advancements in the In Vitro Propagation of Eucalyptus Plantations. PLANTS (BASEL, SWITZERLAND) 2023; 12:3018. [PMID: 37687265 PMCID: PMC10490407 DOI: 10.3390/plants12173018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The genus Eucalyptus is a globally captivated source of hardwood and is well known for its medicinal uses. The hybrid and wild species of Eucalyptus are widely used as exotic plantations due to their renowned potential of adapting to various systems and sites, and rapid large-scale propagation of genetically similar plantlets, which further leads to the extensive propagation of this species. Tissue culture plays a crucial role in the preservation, propagation, and genetic improvement of Eucalyptus species. Despite unquestionable progression in biotechnological and tissue culture approaches, the productivity of plantations is still limited, often due to the low efficiency of clonal propagation from cuttings. The obtained F1 hybrids yield high biomass and high-quality low-cost raw material for large-scale production; however, the development of hybrid, clonal multiplication, proliferation, and post-developmental studies are still major concerns. This riveting review describes the problems concerning the in vitro and clonal propagation of Eucalyptus plantation and recent advances in biotechnological and tissue culture practices for massive and rapid micropropagation of Eucalyptus, and it highlights the Eucalyptus germplasm preservation techniques.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Ankita
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Arun Karnwal
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Shivika Sharma
- School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India; (V.S.); (A.); (A.K.); (S.S.)
| | - Barkha Kamal
- DBS (PG) College, Dehradun 248001, Uttarakhand, India;
| | - Vikash S. Jadon
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant Dehradun 248016, Uttarakhand, India; (V.S.J.); (S.G.)
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant Dehradun 248016, Uttarakhand, India; (V.S.J.); (S.G.)
| | - Iyyakkannu Sivanasen
- Department of Bioresource and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Adero M, Tripathi JN, Tripathi L. Advances in Somatic Embryogenesis of Banana. Int J Mol Sci 2023; 24:10999. [PMID: 37446177 DOI: 10.3390/ijms241310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The cultivation of bananas and plantains (Musa spp.) holds significant global economic importance, but faces numerous challenges, which may include diverse abiotic and biotic factors such as drought and various diseases caused by fungi, viruses, and bacteria. The genetic and asexual nature of cultivated banana cultivars makes them unattractive for improvement via traditional breeding. To overcome these constraints, modern biotechnological approaches like genetic modification and genome editing have become essential for banana improvement. However, these techniques rely on somatic embryogenesis, which has only been successfully achieved in a limited number of banana cultivars. Therefore, developing new strategies for improving somatic embryogenesis in banana is crucial. This review article focuses on advancements in banana somatic embryogenesis, highlighting the progress, the various stages of regeneration, cryopreservation techniques, and the molecular mechanisms underlying the process. Furthermore, this article discusses the factors that could influence somatic embryogenesis and explores the prospects for improving the process, especially in recalcitrant banana cultivars. By addressing these challenges and exploring potential solutions, researchers aim to unlock the full potential of somatic embryogenesis as a tool for banana improvement, ultimately benefiting the global banana industry.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| |
Collapse
|
9
|
Chen Y, Cai X, Tang B, Xie Q, Chen G, Chen X, Hu Z. SlERF.J2 reduces chlorophyll accumulation and inhibits chloroplast biogenesis and development in tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111578. [PMID: 36608875 DOI: 10.1016/j.plantsci.2022.111578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar. The slerf.j2 knockout mutant showed no apparent change. Further observation of tissue sections and transmission electron microscopy (TEM) showed that SlERF.J2 was involved in chlorophyll accumulation and chloroplast formation. RNA-seq of mature SlERF.J2-OE leaves showed that many genes involved in chlorophyll biosynthesis and chloroplast formation were significantly downregulated compared with those in WT leaves. Genome global scanning of the ERF TF binding site combined with RNA-seq differential gene expression and qRT-PCR detection analysis showed that COP1 was a potential target gene of SlERF.J2. Tobacco transient expression technology, a dual-luciferase reporter system and Y1H technology were employed to verify that SlERF.J2 could bind to the COP1 promoter. Notably, overexpression of SlERF.J2 in Nr mutants resulted in impaired chloroplast biogenesis and development. Taken together, our findings demonstrated that SlERF.J2 plays an essential role in chlorophyll accumulation and chloroplast formation, laying a foundation for enhancing plant photosynthesis.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xi Cai
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
10
|
Abraham‐Juárez MJ, Busche M, Anderson AA, Lunde C, Winders J, Christensen SA, Hunter CT, Hake S, Brunkard JO. Liguleless narrow and narrow odd dwarf act in overlapping pathways to regulate maize development and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:881-896. [PMID: 36164819 PMCID: PMC9827925 DOI: 10.1111/tpj.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.
Collapse
Affiliation(s)
- María Jazmín Abraham‐Juárez
- Laboratorio Nacional de Genómica para la BiodiversidadUnidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato36821Mexico
| | - Michael Busche
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
| | - Alyssa A. Anderson
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - China Lunde
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Jeremy Winders
- Genomics and Bioinformatics Research Unit, US Department of Agriculture‐Agricultural Research ServiceRaleighNorth CarolinaUSA
| | | | - Charles T. Hunter
- Chemistry Research Unit, USDA Agricultural Research ServiceGainesvilleFlorida32608USA
| | - Sarah Hake
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - Jacob O. Brunkard
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| |
Collapse
|
11
|
Zhang D, Lan S, Yin WL, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:901089. [PMID: 35712569 PMCID: PMC9197187 DOI: 10.3389/fpls.2022.901089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
The establishment of lateral organs and subsequent plant architecture involves factors intrinsic to the stem apical meristem (SAM) from which they are derived. KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors that especially act in determining stem cell fate in SAM. Although KNOXs have been studied in many land plants for decades, there is a dearth of knowledge on KNOX's role in Orchidaceae, the largest and most diverse lineage of flowering plants. In this study, a total of 32 putative KNOX genes were identified in the genomes of five orchid species and further designated into two classes (Class I and Class II) based on phylogenetic relationships. Sequence analysis showed that most orchid KNOX proteins retain four conserved domains (KNOX1, KNOX2, ELK, and Homeobox_KN). Comparative analysis of gene structure showed that the exon-intron structure is conserved in the same clade but most orchids exhibited longer intron, which may be a unique feature of Orchidaceae. Cis-elements identified in the promoter region of orchid KNOXs were found mostly enriched in a function of light responsiveness, followed by MeJA and ABA responsiveness, indicative of their roles in modulating light and phytohormones. Collinear analysis unraveled a one-to-one correspondence among KNOXs in orchids, and all KNOX genes experienced strong purifying selection, indicating the conservation of this gene family has been reinforced across the Orchidaceae lineage. Expression profiles based on transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) revealed a stem-specific expression of KNOX Class I genes and a broader expression pattern of Class II genes. Taken together, our results provided a comprehensive analysis to uncover the underlying function of KNOX genes in Orchidaceae.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Wei-Lun Yin,
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhong-Jian Liu,
| |
Collapse
|
12
|
Guyomarc'h S, Lucas M, Laplaze L. Postembryonic Organogenesis in Plants: Experimental Induction of New Shoot and Root Organs. Methods Mol Biol 2022; 2395:79-95. [PMID: 34822150 DOI: 10.1007/978-1-0716-1816-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postembryonic organogenesis is a critical component in plant root and shoot development and its adaptation to the environment. Decades of scientific analyses have yielded a wealth of experimental data about the cellular and molecular processes orchestrating the postembryonic formation of new shoot and root organs. Among these, distribution and signaling of the plant hormone auxin play a prominent role. Systems biology approaches are now particularly interesting to study the emerging properties of such complex and dynamic regulatory networks. To fully explore the precise kinetics of these organogenesis processes, efficient protocols for the synchronized induction of shoot and root organogenesis are extremely valuable. Two protocols for shoot and root organ induction are detailed.
Collapse
Affiliation(s)
| | - Mikaël Lucas
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France
| | | |
Collapse
|
13
|
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. HORTICULTURE RESEARCH 2021; 8:118. [PMID: 34059666 PMCID: PMC8167137 DOI: 10.1038/s41438-021-00558-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
14
|
Zhou S, Yang T, Mao Y, Liu Y, Guo S, Wang R, Fangyue G, He L, Zhao B, Bai Q, Li Y, Zhang X, Wang D, Wang C, Wu Q, Yang Y, Liu Y, Tadege M, Chen J. The F-box protein MIO1/SLB1 regulates organ size and leaf movement in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2995-3011. [PMID: 33506247 PMCID: PMC8023213 DOI: 10.1093/jxb/erab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size. We show that loss-of-function of MIO1/SLB1 severely reduced organ size. Conversely, plants overexpressing MIO1/SLB1 had enlarged organs. Cellular analysis revealed that MIO1/SLB1 controlled organ size mainly by modulating primary cell proliferation during the early stages of leaf development. Biochemical analysis revealed that MIO1/SLB1 could form part of SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex, to target BIG SEEDS1 (BS1), a repressor of primary cell division, for degradation. Interestingly, we found that MIO1/SLB1 also played a key role in pulvinus development and leaf movement by modulating cell proliferation of the pulvinus as leaves developed. Our study not only demonstrates a conserved role of MIO1/SLB1 in the control of organ size in legumes, but also sheds light on the novel function of MIO1/SLB1 in leaf movement.
Collapse
Affiliation(s)
- Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoruo Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Genwang Fangyue
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chaoqun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
15
|
Yu H, Zhang L, Wang W, Tian P, Wang W, Wang K, Gao Z, Liu S, Zhang Y, Irish VF, Huang T. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1809-1821. [PMID: 33258902 DOI: 10.1093/jxb/eraa569] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 05/14/2023]
Abstract
Development of leaf margins is an important process in leaf morphogenesis. CIN-clade TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PCF) transcription factors are known to have redundant roles in specifying leaf margins, but the specific mechanisms through which individual TCP genes function remain elusive. In this study, we report that the CIN-TCP gene TCP5 is involved in repressing the initiation and outgrowth of leaf serrations by activating two key regulators of margin development, the Class II KNOX factor KNAT3 and BEL-like SAW1. Specifically, TCP5 directly promotes the transcription of KNAT3 and indirectly activates the expression of SAW1. We also show that TCP5 regulates KNAT3 and SAW1 in a temporal- and spatial- specific manner that is largely in accordance with the progress of formation of serrations. This regulation might serve as a key mechanism in patterning margin morphogenesis and in sculpting the final form of the leaf.
Collapse
Affiliation(s)
- Hongyang Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Weiyao Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Peng Tian
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Wei Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Keyi Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Zhong Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, PR China
| |
Collapse
|
16
|
Variation and Genetic Parameters of Leaf Morphological Traits of Eight Families from Populus simonii × P. nigra. FORESTS 2020. [DOI: 10.3390/f11121319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaf morphology in Populus L. varies extensively among sections, species and clones under strong genetic control. P. nigra L. (section Aigeiros), with large and triangular leaves, is a commercial forest tree of economic importance for fast growth and high yield in Europe. P. simonii Carr. (section Tacamahaca) with small land rhomboid ovate leaves performs cold and dry resistance/tolerance in the semi-arid region of Northern China. Leaf morphological traits could be used as early indicators to improve the efficiency of selection. In order to investigate the genetic variation pattern of leaf morphology traits, estimate breeding values (combining ability), as well as evaluate crossing combinations of parents, 1872 intersectional progenies from eight families (P. simonii × P. nigra) and their parents were planted with cuttings for the clonal replicate field trial in Northern China. Four leaf size traits (area, perimeter, length, width) and roundness were measured with leaf samples from the 1-year-old clonal plantation. Significant differences regarding leaf traits were found between and among three female clones of P. simonii from Inner Mongolia, China and six male clones of P. nigra from Casale Monferrato, Italy. The genetic variation coefficient, heritability and genetic variance component of most traits in male parents were greater than these of female parents. Heritability estimates of male and female parents were above 0.56 and 0.17, respectively. Plentiful leaf variations with normal and continuous distributions exited in the hybrid progenies among and within families with the genetic variation coefficient and heritability above 28.49 and 0.24, respectively. Heritability estimates showed that leaf area was the most heritable trait, followed by leaf width. The breeding value ranking of parents allowed us to select the parental clones for new crosses and extend the mating design. Two male parental clones (N430 and N429) had greater breeding values (general combining ability, GCA) of leaf size traits than other clones. The special combining ability (SCA) of the crossing combination between P. simonii cl. ZL-3 and P. nigra cl. N430 was greater than that of others. Eight putatively superior genotypes, most combined with the female parental clone ZL-3, can be selected for future testing under near-commercial conditions. Significant genetic and phenotypic correlations were found between five leaf morphology traits with the coefficients above 0.9, except for leaf roundness. The results showed that leaf morphology traits were under strong genetic control and the parental clones with high GCA and SCA effects could be utilized in heterosis breeding, which will provide a starting point for devising a new selection strategy of parents and progenies.
Collapse
|
17
|
Mähler N, Schiffthaler B, Robinson KM, Terebieniec BK, Vučak M, Mannapperuma C, Bailey MES, Jansson S, Hvidsten TR, Street NR. Leaf shape in Populus tremula is a complex, omnigenic trait. Ecol Evol 2020; 10:11922-11940. [PMID: 33209260 PMCID: PMC7663049 DOI: 10.1002/ece3.6691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
Leaf shape is a defining feature of how we recognize and classify plant species. Although there is extensive variation in leaf shape within many species, few studies have disentangled the underlying genetic architecture. We characterized the genetic architecture of leaf shape variation in Eurasian aspen (Populus tremula L.) by performing genome-wide association study (GWAS) for physiognomy traits. To ascertain the roles of identified GWAS candidate genes within the leaf development transcriptional program, we generated RNA-Seq data that we used to perform gene co-expression network analyses from a developmental series, which is publicly available within the PlantGenIE resource. We additionally used existing gene expression measurements across the population to analyze GWAS candidate genes in the context of a population-wide co-expression network and to identify genes that were differentially expressed between groups of individuals with contrasting leaf shapes. These data were integrated with expression GWAS (eQTL) results to define a set of candidate genes associated with leaf shape variation. Our results identified no clear adaptive link to leaf shape variation and indicate that leaf shape traits are genetically complex, likely determined by numerous small-effect variations in gene expression. Genes associated with shape variation were peripheral within the population-wide co-expression network, were not highly connected within the leaf development co-expression network, and exhibited signatures of relaxed selection. As such, our results are consistent with the omnigenic model.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Bastian Schiffthaler
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Kathryn M. Robinson
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | | | - Matej Vučak
- School of Life SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Mark E. S. Bailey
- School of Life SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Stefan Jansson
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| |
Collapse
|
18
|
McGarry RC, Rao X, Li Q, van der Knaap E, Ayre BG. SINGLE FLOWER TRUSS and SELF-PRUNING signal developmental and metabolic networks to guide cotton architectures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5911-5923. [PMID: 32744621 DOI: 10.1093/jxb/eraa338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Patterns of indeterminate and determinate growth specify plant architecture and influence crop productivity. In cotton (Gossypium hirsutum), SINGLE FLOWER TRUSS (SFT) stimulates the transition to flowering and determinate growth, while its closely related antagonist SELF-PRUNING (SP) maintains meristems in indeterminate states to favor vegetative growth. Overexpressing GhSFT while simultaneously silencing GhSP produces highly determinate cotton with reduced foliage and synchronous fruiting. These findings suggest that GhSFT, GhSP, and genes in these signaling networks hold promise for enhancing 'annualized' growth patterns and improving cotton productivity and management. To identify the molecular programs underlying cotton growth habits, we used comparative co-expression networks, differential gene expression, and phenotypic analyses in cotton varieties expressing altered levels of GhSFT or GhSP. Using multiple cotton and tomato datasets, we identified diverse genetic modules highly correlated with SFT or SP orthologs which shared related Gene Ontologies in different crop species. Notably, altering GhSFT or GhSP levels in cotton affected the expression of genes regulating meristem fate and metabolic pathways. Further phenotypic analyses of gene products involved in photosynthesis, secondary metabolism, and cell wall biosynthesis showed that early changes in GhSFT and GhSP levels profoundly impacted later development in distal tissues. Identifying the molecular underpinnings of GhSFT and GhSP activities emphasizes their broad actions in regulating cotton architecture.
Collapse
Affiliation(s)
- Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
- College of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Li
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
19
|
Li J, Chen G, Zhang J, Shen H, Kang J, Feng P, Xie Q, Hu Z. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110544. [PMID: 32771157 DOI: 10.1016/j.plantsci.2020.110544] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
20
|
Arribas-Hernández L, Simonini S, Hansen MH, Paredes EB, Bressendorff S, Dong Y, Østergaard L, Brodersen P. Recurrent requirement for the m 6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development 2020; 147:dev189134. [PMID: 32611605 PMCID: PMC7390628 DOI: 10.1242/dev.189134] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.
Collapse
Affiliation(s)
- Laura Arribas-Hernández
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | - Mathias Henning Hansen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Esther Botterweg Paredes
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simon Bressendorff
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yang Dong
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Peter Brodersen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Zhao B, He L, Jiang C, Liu Y, He H, Bai Q, Zhou S, Zheng X, Wen J, Mysore KS, Tadege M, Liu Y, Liu R, Chen J. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula. THE NEW PHYTOLOGIST 2020; 227:613-628. [PMID: 32170762 DOI: 10.1111/nph.16539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown. Using genome resequencing approaches, we identified insertion sites at four alleles of the LATERAL LEAFLET SUPPRESSION1 (LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 in Medicago truncatula. Linkage analysis and complementation tests showed that the lls1 mutant phenotypes were caused by the Tnt1 insertions that disrupted the LLS1 gene. The transcripts of LLS1 can be detected in primordia at early stages of leaf initiation and later in the basal regions of leaflets, and finally in vein tissues at late leaf developmental stages. Vein numbers and auxin content are reduced in the lls1-1 mutant. Analysis of the lls1 sgl1 and lls1 palm1 double mutants revealed that SGL1 is epistatic to LLS1, and LLS1 works with PALM1 in an independent pathway to regulate the growth of lateral leaflets. Our work demonstrates that the YUCCA1/YUCCA4 subgroup plays very important roles in the outgrowth of lateral leaflets during compound leaf development of M. truncatula, in addition to leaf venation.
Collapse
Affiliation(s)
- Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Jiang
- College of Life Science, Hebei Normal University, 20 East 2nd Ring South, Shijiazhuang, 050024, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- School of life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hua He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| |
Collapse
|
22
|
Vercruysse J, Baekelandt A, Gonzalez N, Inzé D. Molecular networks regulating cell division during Arabidopsis leaf growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2365-2378. [PMID: 31748815 PMCID: PMC7178401 DOI: 10.1093/jxb/erz522] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 05/02/2023]
Abstract
Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1-ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)-GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)-DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.
Collapse
Affiliation(s)
- Jasmien Vercruysse
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alexandra Baekelandt
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, INRA Bordeaux Aquitaine, Villenave d’Ornon cedex, France
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Correspondence:
| |
Collapse
|
23
|
Hur YS, Kim J, Kim S, Son O, Kim WY, Kim GT, Ohme-Takagi M, Cheon CI. Identification of TCP13 as an Upstream Regulator of ATHB12 during Leaf Development. Genes (Basel) 2019; 10:E644. [PMID: 31455029 PMCID: PMC6770448 DOI: 10.3390/genes10090644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Leaves grow by distinct phases controlled by gene regulatory networks including many transcription factors. Arabidopsis thaliana homeobox 12 (ATHB12) promotes leaf growth especially during the cell expansion phase. In this study, we identify TCP13, a member of the TCP transcription factor family, as an upstream inhibitor of ATHB12. Yeast one-hybrid screening using a 1.2-kb upstream region of ATHB12 resulted in the isolation of TCP13 as well as other transcription factors. Transgenic plants constitutively expressing TCP13 displays a significant reduction in leaf cell size especially during the cell expansion period, while repression of TCP13 and its paralogs (TCP5 and TCP17) result in enlarged leaf cells, indicating that TCP13 and its paralogs inhibit leaf development, mainly at the cell expansion phase. Its expression pattern during leaf expansion phase is opposite to ATHB12 expression. Consistently, the expression of ATHB12 and its downstream genes decreases when TCP13 was overexpressed, and increases when the expression of TCP13 and its paralogs is repressed. In chromatin immunoprecipitation assays using TCP13-GFP plants, a fragment of the ATHB12 upstream region that contains the consensus sequence for TCP binding is strongly enriched. Taken together, these findings indicate that TCP13 and its paralogs inhibit leaf growth by repressing ATHB12 expression.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Jiyoung Kim
- Department of Biological Science and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Sunghan Kim
- Department of Biological Science and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Ora Son
- Department of Biological Science and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Gyung-Tae Kim
- Bioproduction Department of Molecular Biotechnology, Dong-A University, Busan 49315, Korea
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Institute for Environmental Science and Technology (IEST), Saitama University, Saitama 338-8570, Japan
| | - Choong-Ill Cheon
- Department of Biological Science and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
24
|
Yang M, Huang C, Wang M, Fan H, Wan S, Wang Y, He J, Guan R. Fine mapping of an up-curling leaf locus (BnUC1) in Brassica napus. BMC PLANT BIOLOGY 2019; 19:324. [PMID: 31324149 PMCID: PMC6642557 DOI: 10.1186/s12870-019-1938-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Leaf shape development research is important because leaf shapes such as moderate curling can help to improve light energy utilization efficiency. Leaf growth and development includes initiation of the leaf primordia and polar differentiation of the proximal-distal, adaxial-abaxial, and centrolateral axes. Changes in leaf adaxial-abaxial polarity formation, auxin synthesis and signaling pathways, and development of sclerenchyma and cuticle can cause abnormal leaf shapes such as up-curling leaf. Although many genes related to leaf shape development have been reported, the detailed mechanism of leaf development is still unclear. Here, we report an up-curling leaf mutant plant from our Brassica napus germplasm. We studied its inheritance, mapped the up-curling leaf locus BnUC1, built near-isogenic lines for the Bnuc1 mutant, and evaluated the effect of the dominant leaf curl locus on leaf photosynthetic efficiency and agronomic traits. RESULTS The up-curling trait was controlled by one dominant locus in a progeny population derived from NJAU5734 and Zhongshuang 11 (ZS11). This BnUC1 locus was mapped in an interval of 2732.549 kb on the A05 chromosome of B. napus using Illumina Brassica 60 K Bead Chip Array. To fine map BnUC1, we designed 201 simple sequence repeat (SSR) primers covering the mapping interval. Among them, 16 polymorphic primers that narrowed the mapping interval to 54.8 kb were detected using a BC6F2 family population with 654 individuals. We found six annotated genes in the mapping interval using the B. napus reference genome, including BnaA05g18250D and BnaA05g18290D, which bioinformatics and gene expression analyses predicted may be responsible for leaf up-curling. The up-curling leaf trait had negative effects on the agronomic traits of 30 randomly selected individuals from the BC6F2 population. The near-isogenic line of the up-curling leaf (ZS11-UC1) was constructed to evaluate the effect of BnUC1 on photosynthetic efficiency. The results indicated that the up-curling leaf trait locus was beneficial to improve the photosynthetic efficiency. CONCLUSIONS An up-curling leaf mutant Bnuc1 was controlled by one dominant locus BnUC1. This locus had positive effects on photosynthetic efficiency, negative effects on some agronomic traits, and may help to increase planting density in B. napus.
Collapse
Affiliation(s)
- Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mingming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
25
|
Wang L, Cheng Y, Ma Q, Mu Y, Huang Z, Xia Q, Zhang G, Nian H. QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics 2019; 20:260. [PMID: 30940069 PMCID: PMC6444683 DOI: 10.1186/s12864-019-5610-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The different leaf type associated traits of soybean (Glycine max L.) including leaf area, leaf length, leaf width, leaf shape and petiole length are considered to be associated with seed yield. In order to identify quantitative trait loci (QTLs) affecting leaf type traits, two advanced recombinant inbred line (RIL, ZH, Zhonghuang 24 × Huaxia 3; GB, Guizao 1 × Brazil 13) populations were introduced to score phenotypic values in plants across nine different environments (years, seasons, locations and soybean growth stages). Two restriction site-associated DNA sequencing (RAD-seq) based high-density genetic linkage maps with an average distance of 1.00 centimorgan (cM) between adjacent bin markers were utilized for QTL fine mapping. RESULTS Correlation analysis showed that most of the traits were correlated with each other and regulated both by hereditary and environmental factors. A total of 190 QTLs were identified for leaf type associated traits in the two populations, of which 14 loci were found to be environmentally stable. Moreover, these detected QTLs were categorized into 34 QTL hotspots, and four important QTL hotspots with phenotypic variance ranging from 3.89-23.13% were highlighted. Furthermore, Glyma04g05840, Glyma19g37820, Glyma14g07140 and Glyma19g39340 were predicted in the intervals of the stable loci and important QTL hotspots for leaf type traits by adopting Gene Ontology (GO) enrichment analysis. CONCLUSIONS Our findings of the QTLs and the putative genes will be beneficial to gain new insights into the genetic basis for soybean leaf type traits and may further accelerate the breeding process for reasonable leaf type soybean.
Collapse
Affiliation(s)
- Liang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zhifeng Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
26
|
Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:186-205. [PMID: 30824051 DOI: 10.1016/j.plantsci.2019.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 05/21/2023]
Abstract
The combination of advanced genomics, genome editing and plant transformation biology presents a powerful platform for basic plant research and crop improvement. Together these advances provide the tools to identify genes as targets for direct editing as single base pair changes, deletions, insertions and site specific homologous recombination. Recent breakthrough technologies using morphogenic regulators in plant transformation creates the ability to introduce reagents specific toward their identified targets and recover stably transformed and/or edited plants which are genotype independent. These technologies enable the possibility to alter a trait in any variety, without genetic disruption which would require subsequent extensive breeding, but rather to deliver the same variety with one trait changed. Regulatory issues regarding this technology will predicate how broadly these technologies will be implemented. In addition, education will play a crucial role for positive public acceptance. Taken together these technologies comprise a platform for advanced breeding which is an imperative for future world food security.
Collapse
Affiliation(s)
- Albert P Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA.
| | | | - Joel Hague
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA
| | - Muruganantham Mookkan
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Stephen Dellaporta
- Yale University, New Haven, CT 06520, USA; Verinomics Inc., New Haven, CT 06520, USA
| | | | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
28
|
Chang L, Mei G, Hu Y, Deng J, Zhang T. LMI1-like and KNOX1 genes coordinately regulate plant leaf development in dicotyledons. PLANT MOLECULAR BIOLOGY 2019; 99:449-460. [PMID: 30689141 DOI: 10.1007/s11103-019-00829-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/21/2019] [Indexed: 05/28/2023]
Abstract
This report reveals that the LMI1-like and KNOX1 genes coordinately control the leaf development and different combinations of those genes which produce diverse leaf shapes including broad, lobed and compound leaves. Class I KNOTTED1-like homeobox (KNOX1) genes are involved in compound leaf development and are repressed by the ASYMMETRIC LEAVES1 (AS1)-AS2 complex. Cotton plants have a variety of leaf shapes, including broad leaves and lobed leaves. GhOKRA, a LATE MERISTEM IDENTITY 1 (LMI1)-like gene, controls the development of an okra leaf shape. We cloned the corresponding cotton homologs of Arabidopsis thaliana AS1 and AS2 and seven KNOX1 genes. Through virus-induced gene silencing technology, we found that either GhAS1 or GhAS2-silenced cotton plants showed a great change in leaf shape from okra leaves to trifoliolate dissected leaves. In the shoot tips of these plants, the expression of the cotton ortholog of Knotted in A. thaliana 1 (KNAT1), GhKNOTTED1-LIKE2/3/4 (GhKNL2/3/4), was increased. However, GhKNOX1s-silenced plants maintained the wild-type okra leaves. A novel dissected-like leaf in A. thaliana was further generated by crossing plants constitutively expressing GhOKRA with either as1-101 or as2-101 mutant plants. The dissected-like leaves showed two different leaf vein patterns. This report reveals that the LMI1-like and KNOX1 genes coordinately control leaf development, and different combinations of these genes produce diverse leaf shapes including broad leaves, lobed leaves and compound leaves. This is the first report on the artificial generation of compound leaves from simple leaves in cotton.
Collapse
Affiliation(s)
- Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Crop Science Institute, Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310029, China
| | - Jieqiong Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Crop Science Institute, Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310029, China.
| |
Collapse
|
29
|
Shaaf S, Bretani G, Biswas A, Fontana IM, Rossini L. Genetics of barley tiller and leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:226-256. [PMID: 30548413 DOI: 10.1111/jipb.12757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture, focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2D and 3D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development, highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.
Collapse
Affiliation(s)
- Salar Shaaf
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Abhisek Biswas
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Laura Rossini
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
30
|
Dissecting the pathways coordinating patterning and growth by plant boundary domains. PLoS Genet 2019; 15:e1007913. [PMID: 30677017 PMCID: PMC6363235 DOI: 10.1371/journal.pgen.1007913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/05/2019] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Boundary domains play important roles during morphogenesis in plants and animals, but how they contribute to patterning and growth coordination in plants is not understood. The CUC genes determine the boundary domains in the aerial part of the plants and, in particular, they have a conserved role in regulating leaf complexity across Angiosperms. Here, we used tooth formation at the Arabidopsis leaf margin controlled by the CUC2 transcription factor to untangle intertwined events during boundary-controlled morphogenesis in plants. Combining conditional restoration of CUC2 function with morphometrics as well as quantification of gene expression and hormone signaling, we first established that tooth morphogenesis involves a patterning phase and a growth phase. These phases can be separated, as patterning requires CUC2 while growth can occur independently of CUC2. Next, we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth. Together, we reveal a genetic and molecular network that allows coordination of patterning and growth by CUC2-defined boundaries during morphogenesis at the leaf margin. During organogenesis, patterning, the definition of functional subdomains, has to be strictly coordinated with growth. How this is achieved is still an open question. In plants, boundary domains are established between neighboring outgrowing structures and play a role not only in the separation of these structures but also in their formation. To further understand how these boundary domains control morphogenesis, we used as a model system the formation of small teeth along the leaf margin of Arabidopsis, which is controlled by the CUP-SHAPED COTYLEDON2 (CUC2) boundary gene. The CUC genes determine the boundary domains in the aerial part of the plants and in particular they have been shown to have a conserved role in regulating serration and leaflet formation across Angiosperms and thus are at the root of patterning in diverse leaf types. We manipulated the expression of this gene using an inducible gene expression that allowed restoration of CUC2 expression in its own domain at different developmental stages and for different durations, and followed the effects on patterning and growth. Thus, we showed that while CUC2 is required for patterning it is dispensable for sustained growth of the teeth, acting as a trigger for growth by the activation of several functional relays. We further showed that these findings are not specific to the inducible restoration of CUC2 function by analyzing multiple mutants.
Collapse
|
31
|
|
32
|
Koyama T. A hidden link between leaf development and senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:105-110. [PMID: 30348308 DOI: 10.1016/j.plantsci.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Leaf senescence is the final step of leaf development and is usually accompanied by visible color changes from green to yellow or brown. Unlike the senescence of the whole body of animals and unicellular organisms, which is often associated with death, leaf senescence in plants requires highly integrative processes towards cell death with nutrient recycling and storage. Since leaf senescence plays pivotal roles in the production of plant biomass and grain yield, the mechanisms of degradation and relocation of macromolecules as well as the regulation of signaling and biosynthetic pathways have received much attention. The importance of the plant hormone ethylene in the onset of leaf senescence has been clearly documented. However, research has increasingly demonstrated that the function of ethylene in the regulation of leaf senescence is dependent on leaf development. This review raises the issue of how ethylene requires developmental regulators and focuses on the developmental aspect of leaf senescence. It also emphasizes the remarkable impact that developmental regulators have on regulating the onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Bioorganic Research Institute Suntory Foundation for Life Sciences, Japan.
| |
Collapse
|
33
|
A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLoS Genet 2018; 14:e1007455. [PMID: 29897949 PMCID: PMC6016943 DOI: 10.1371/journal.pgen.1007455] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth. The plant hormone auxin is a major regulator of cell expansion, which is a fundamental cellular process essential for plant growth and development. The acid growth theory was proposed in the 1970s to explain auxin-induced cell expansion. However, the mechanistic basis of auxin-induced cell expansion via acid growth is poorly understood. Here, we investigated the functions of the D-clade PP2C (PP2C.D) family phosphatases in auxin-induced cell expansion as well as plant growth and development. The PP2C.D protein family is composed of nine members. Our findings demonstrate that the plasma membrane-localized PP2C.D2, PP2C.D5, and PP2C.D6 family members are the major regulators in auxin-induced cell expansion. These proteins physically associate with SAUR proteins and plasma membrane H+-ATPases to negatively regulate cell expansion. PP2C.D genes are broadly expressed and are crucial for a variety of plant growth and developmental processes, particularly elongation growth, such as hypocotyl and stamen filament growth. The results of our studies provide novel insights into auxin-induced cell expansion via an acid growth mechanism.
Collapse
|
34
|
Izhaki A, Alvarez JP, Cinnamon Y, Genin O, Liberman-Aloni R, Eyal Y. The Tomato BLADE ON PETIOLE and TERMINATING FLOWER Regulate Leaf Axil Patterning Along the Proximal-Distal Axes. FRONTIERS IN PLANT SCIENCE 2018; 9:1126. [PMID: 30127796 PMCID: PMC6087763 DOI: 10.3389/fpls.2018.01126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/12/2018] [Indexed: 05/22/2023]
Abstract
Leaf axil patterning occurs concomitantly with leaf development and takes place at the boundary zone which demarcates the initiating leaf primordium from the shoot apical meristem. Subsequent growth and differentiation result in establishment of the axillary meristem and abscission zone (AZ) along the proximal-distal axis of the leaf axil, yet the molecular mechanisms that regulate these events are poorly understood. We studied the role of the tomato BLADE ON PETIOLE (SlBOP) boundary gene family on the development of the leaf axil using BOP-silenced plants as well as BOP-mutated lines. We show that silencing of the tomato SlBOP gene family affects patterning of the leaf axil along the proximal-distal axis, manifested by dispositioning of the AM and abnormal development of the adjacent tissue resulting in lack of a functional leaf AZ. Dissection of the role of each of the three tomato SlBOPs by analysis of single, double and triple null-mutants demonstrated that SlBOP2 is the dominant gene in leaf axil patterning, but does not rule out involvement of SlBOP1 and SlBOP3 in correct AM positioning. We further studied the potential role of TERMINATING FLOWER (TMF), a transcription factor which was previously shown to interact with SlBOPs, in leaf axil patterning using TMF mutant tomato lines. The results suggest that similar to SlBOP2, TMF is involved in leaf axil proximal-distal patterning and AZ development.
Collapse
Affiliation(s)
- Anat Izhaki
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- *Correspondence: Anat Izhaki,
| | - John P. Alvarez
- School of Biological Sciences, Clayton Campus, Monash University, Melbourne, VIC, Australia
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Raya Liberman-Aloni
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
35
|
Zhao J, Chen L, Zhao T, Gai J. Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5565-5581. [PMID: 29077868 DOI: 10.1093/jxb/erx358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A soybean mutant displaying chicken toes-like leaves and petalody flowers was identified as being caused by a single recessive gene, termed ctp. Using heterozygous-inbred recombinants, this gene was fine-mapped to a 37-kb region harbouring three predicted genes on chromosome 5. The gene Glyma05g022400.1 was detected to have a 33-bp deletion in its first exon that was responsible for ctp. Validation for this gene was provided by the fact that the 33-bp deletion-derived marker I2 completely co-segregated with the phenotypes of 96 F10-derived residual heterozygous lines and 2200 fine-mapping individuals, and by the fact that the orthologue NbCTP in Nicotiana benthamiana also influenced leaf and flower development under virus-induced gene silencing. In terms of characterization, the CTPs shared highly conserved domains specifically in higher plants, GmCTP was alternatively spliced, and it was expressed in multiple organs, especially in lateral meristems. GmCTP was localized to the nucleus and other regions and performed transcriptional activity. In ctp, the expression levels and splicing patterns were dramatically disrupted, and many key regulators in leaf and/or floral developmental pathways were interrupted. Thus, CTP is a novel and critical pleiotropic regulator of leaf and flower development that participates in multiple regulation pathways, and may play key roles in lateral organ differentiation as a putative novel transcription regulator.
Collapse
Affiliation(s)
- Jing Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Chen
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Schnablová R, Herben T, Klimešová J. Shoot apical meristem and plant body organization: a cross-species comparative study. ANNALS OF BOTANY 2017; 120:833-843. [PMID: 29136411 PMCID: PMC5737494 DOI: 10.1093/aob/mcx116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS The shoot apical meristem (SAM) is the key organizing element in the plant body and is responsible for the core of plant body organization and shape. Surprisingly, there are almost no comparative data that would show links between parameters of the SAM and whole-plant traits as drivers of the plant's response to the environment. METHODS Interspecific differences in SAM anatomy were examined in 104 perennial herbaceous angiosperms. KEY RESULTS There were differences in SAM parameters among individual species, their phylogenetic patterns, and how their variation is linked to variation in plant above-ground organs and hence species' environmental niches. SAM parameters were correlated with the size-related traits of leaf area, seed mass and stem diameter. Of the two key SAM parameters (cell size and number), variation in all organ traits was linked more strongly to cell number, with cell size being important only for seed mass. Some of these correlations were due to shared phylogenetic history (e.g. SAM diameter versus stem diameter), whereas others were due to parallel evolution (e.g. SAM cell size and seed mass). CONCLUSION These findings show that SAM parameters provide a functional link among sizes and numbers of plant organs, constituting species' environmental responses.
Collapse
Affiliation(s)
- Renáta Schnablová
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
| | - Tomáš Herben
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University,
Benátská 2, CZ-128 01 Praha 2, Czech Republic
and
| | - Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, CZ-379
82 Třeboň, Czech Republic
| |
Collapse
|
37
|
van der Knaap E, Østergaard L. Shaping a fruit: Developmental pathways that impact growth patterns. Semin Cell Dev Biol 2017; 79:27-36. [PMID: 29092788 DOI: 10.1016/j.semcdb.2017.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Angiosperms produce seeds as their progeny enclosed in maternally-derived structures called fruits. Evolutionarily, fruits have contributed enormously to the success of the Angiosperms phylum by providing protection and nutrition to the developing seeds, while ensuring the efficient dispersal upon maturity. Fruits vary massively in both size and shape and certain species have been targeted for domestication due to their nutritional value and delicious taste. Among the vast array of 3D fruit shapes that exist in nature, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. In this review, we discuss the latest results in identifying components that control fruit morphology and their effect on isotropic and anisotropic growth. Moreover, we will compare the current knowledge on the mechanisms that control fruit growth, size and shape between the domesticated Solanaceae species, tomato and members of the large family of Brassicaceae.
Collapse
Affiliation(s)
- Esther van der Knaap
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
38
|
Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS One 2017; 12:e0180741. [PMID: 28704497 PMCID: PMC5509165 DOI: 10.1371/journal.pone.0180741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.
Collapse
Affiliation(s)
- Chunhua Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiner Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhongyuan Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Qiyan Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianqiang Yang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Zhang M, Hu X, Zhu M, Xu M, Wang L. Transcription factors NF-YA2 and NF-YA10 regulate leaf growth via auxin signaling in Arabidopsis. Sci Rep 2017; 7:1395. [PMID: 28469131 PMCID: PMC5431230 DOI: 10.1038/s41598-017-01475-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
In plants, leaf is crucial for photosynthesis and respiration. Leaf area and quantity are important for leaf vegetables to increase biomass. The process of leaf development involves coordinated regulation among small RNAs, transcription factors and hormones. Here, we found leaf size were regulated by transcription factors NF-YA2 and NF-YA10 in Arabidopsis. NF-YA2 and NF-YA10 overexpression increased biomass accumulation through promoting leaf growth and cell expansion. NF-YA2 and NF-YA10 were expressed in SAM and leaf vasculature. Endogenous IAA content reduced by 20% and 24% in transgenic Arabidopsis plants overexpressing NF-YA2 and NF-YA10 compared to wild-type plants. Chromatin immunoprecipitation assays revealed that NF-YA2 and NF-YA10 bound directly to the cis-element CCAAT in the promoter of the YUC2, and decreased the expression of YUC2, a YUCCA family gene. The auxin transporter gene PIN1 and auxin response factor1 and 2 (ARF1 and ARF2) genes, transcriptional repressors, were downregulated. These findings showed leaf development was regulated by NF-YA2 and NF-YA10 through the auxin-signaling pathway and may provide a new insight into the genetic engineering of vegetables biomass and crop productivity.
Collapse
Affiliation(s)
- Min Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolong Hu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Zhu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Miaoyun Xu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lei Wang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
40
|
Muñoz-Nortes T, Pérez-Pérez JM, Ponce MR, Candela H, Micol JL. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:870-884. [PMID: 28008672 DOI: 10.1111/tpj.13466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.
Collapse
Affiliation(s)
- Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| |
Collapse
|
41
|
Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev 2017; 31:197-208. [PMID: 28167503 PMCID: PMC5322733 DOI: 10.1101/gad.292235.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.
Collapse
Affiliation(s)
- Hui Dong
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Jack Dumenil
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Fu-Hao Lu
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Li Na
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Maria Klecker
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Rachel Prior
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | | | | | | | - Liangliang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nathalie Gonzalez
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | | | - Dirk Inze
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
42
|
Rodriguez RE, Schommer C, Palatnik JF. Control of cell proliferation by microRNAs in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:68-76. [PMID: 27794260 DOI: 10.1016/j.pbi.2016.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 05/04/2023]
Abstract
Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina
| | - Carla Schommer
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina; CEI (Centro de Estudios Interdisciplinarios), Maipu 1062, 2000 Rosario, Argentina.
| |
Collapse
|
43
|
Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 2016; 17:946. [PMID: 27871222 PMCID: PMC5117540 DOI: 10.1186/s12864-016-3229-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Maize (Zea mays) husk referring to the leafy outer enclosing the ear, plays an important role in grain production by directly contributing photosynthate and protecting ear from pathogen infection. Although the physiological functions related to husk have been extensively studied, little is known about its morphological variation and genetic basis in natural population. Results Here we utilized a maize association panel including 508 inbred lines with tropical, subtropical and temperate backgrounds to decipher the genetic architecture attributed to four husk traits, i.e. number of layers, length, width and thickness. Evaluating the phenotypic diversity at two different environments showed that four traits exhibit broadly natural variations and moderate levels of heritability with 0.64, 0.74, 0.49 and 0.75 for number, length, width and thickness, respectively. Diversity analysis indicated that different traits have dissimilar responses to subpopulation effects. A series of significantly positive or negative correlations between husk phenotypes and other agronomic traits were identified, indicating that husk growth is coordinated with other developmental processes. Combining husk traits with about half of a million of single nucleotide polymorphisms (SNPs) via genome-wide association study revealed a total of 9 variants significantly associated with traits at P < 1.04 × 10-5, which are implicated in multiple functional categories, such as cellular trafficking, transcriptional regulation and metabolism. Conclusions These results provide instrumental information for understanding the genetic basis of husk development, and further studies on identified candidate genes facilitate to illuminate molecular pathways regulating maize husk growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinhong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Chuangye Qi
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Yanye Ruan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Ao Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
44
|
Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, Sicard A, Southam P, Kennaway R, Lenhard M, Coen ES, Østergaard L. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 2016; 143:3394-406. [PMID: 27624834 PMCID: PMC5047655 DOI: 10.1242/dev.135327] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 01/21/2023]
Abstract
Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.
Collapse
Affiliation(s)
- Tilly Eldridge
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Nicola Stacey
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Paul Southam
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Enrico S Coen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lars Østergaard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
45
|
Biot E, Cortizo M, Burguet J, Kiss A, Oughou M, Maugarny-Calès A, Gonçalves B, Adroher B, Andrey P, Boudaoud A, Laufs P. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis. Development 2016; 143:3417-28. [PMID: 27387872 DOI: 10.1242/dev.134619] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
Abstract
A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.
Collapse
Affiliation(s)
- Eric Biot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Millán Cortizo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et de Développement des Plantes, INRA, CNRS, ENS de Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France
| | - Mohamed Oughou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Beatriz Gonçalves
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Bernard Adroher
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France Sorbonne Universités, UPMC Univ. Paris 06 UFR 927, 75252 Paris, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et de Développement des Plantes, INRA, CNRS, ENS de Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| |
Collapse
|
46
|
Ben-Gera H, Dafna A, Alvarez JP, Bar M, Mauerer M, Ori N. Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:443-57. [PMID: 27121172 DOI: 10.1111/tpj.13188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 05/04/2023]
Abstract
In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild-type leaf primordia, the miR160-targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160-targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160-targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.
Collapse
Affiliation(s)
- Hadas Ben-Gera
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot, 76100, Israel
| | - Asaf Dafna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot, 76100, Israel
| | - John Paul Alvarez
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Vic., 3800, Australia
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot, 76100, Israel
| | - Mareike Mauerer
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot, 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot, 76100, Israel
| |
Collapse
|
47
|
Lewis MW, Hake S. Keep on growing: building and patterning leaves in the grasses. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:80-6. [PMID: 26751036 DOI: 10.1016/j.pbi.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/08/2023]
Abstract
Monocot leaves have unique features that arise early in their development. Maturing leaves protectively enclose younger leaves and the meristem, the pool of founder cells from which a leaf emerges. Through the maturation process, proximal sheath and distal blade tissues differentiate and are separated by the ligule and auricle structures. Here we review current research focusing on the contribution of gene regulatory factors and phytohormones on the patterning and differentiation of monocot leaves primarily focusing on research in the grasses (Poaceae). The 10000 members of the grasses include the true grain cereals (wheat, rice, maize, etc.), biofuel crops such as sugarcane, pasture grasses, and bamboo. They are the most studied of the monocots due to their tremendous agricultural and agronomic importance.
Collapse
Affiliation(s)
- Michael W Lewis
- Plant Gene Expression Center, USDA-ARS and University of California, Berkeley, United States.
| | - Sarah Hake
- Plant Gene Expression Center, USDA-ARS and University of California, Berkeley, United States
| |
Collapse
|
48
|
Abstract
The detailed analysis of leaf growth dynamics, when coupled with transcriptomic research, can facilitate the discovery of genes required for leaf elongation. Please see related Research article: http://www.genomebiology.com/2015/16/1/168
Collapse
Affiliation(s)
- Michael J Scanlon
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
49
|
Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus. FRONTIERS IN PLANT SCIENCE 2015; 6:989. [PMID: 26734012 PMCID: PMC4681841 DOI: 10.3389/fpls.2015.00989] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/29/2015] [Indexed: 05/19/2023]
Abstract
To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).
Collapse
Affiliation(s)
- Glenn T. Howe
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
| | - David P. Horvath
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research ServiceFargo, ND, USA
| | - Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Henry D. Priest
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA
| | - Todd C. Mockler
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Steven H. Strauss,
| |
Collapse
|