1
|
Liu S, Wang P, Wang C, Chen J, Wang X, Hu B, Shan X. Disparate toxicity mechanisms of parabens with different alkyl chain length in freshwater biofilms: Ecological hazards associated with antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163168. [PMID: 37003345 DOI: 10.1016/j.scitotenv.2023.163168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
As emerging organic pollutants, parabens are of global concern because of their ubiquitous presence and adverse effects. However, few researchers have addressed the relationship between parabens' structural features and toxicity mechanisms. This study conducted theoretical calculations and laboratory exposure experiments to uncover the toxic effects and mechanisms of parabens with different alkyl chains in freshwater biofilms. The result demonstrated that parabens' hydrophobicity and lethality increased with their alkyl-chain length, whereas the possibility of chemical reactions and reactive sites were unchanged despite the alkyl-chain length alteration. Due to the hydrophobicity variation, parabens with different alkyl-chain presented different distribution patterns in cells of freshwater biofilms and consequently induced distinct toxic effects and led to diverse cell death modes. The butylparaben with longer alkyl-chain preferred to stay in the membrane and altered membrane permeability by non-covalent interaction with phospholipid, which caused cell necrosis. The methylparaben with shorter alkyl-chain preferred to enter into the cytoplasm and influence mazE gene expression by chemically reacting with biomacromolecules, thereby triggering apoptosis. The different cell death patterns induced by parabens contributed to different ecological hazards associated with antibiotic resistome. Compared with butylparaben, methylparaben was more likely to spread ARGs among microbial communities despite its lower lethality.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; School of Civil Engineering, Shandong University, Jinan 250061, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaorong Shan
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
2
|
Inoue S, Ikeda Y, Fujiyama S, Ueda T, Abe Y. Oligomeric state of the N-terminal domain of DnaT for replication restart in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023:140929. [PMID: 37328019 DOI: 10.1016/j.bbapap.2023.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89-179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1-88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified. In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.
Collapse
Affiliation(s)
- Shogo Inoue
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Ikeda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Saki Fujiyama
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan.
| |
Collapse
|
3
|
Nasehi R, Masjedian Jazi F, Pakzad P. Investigating the role of Bacillus subtilis type II toxin-antitoxin system in drought stress survival. J Basic Microbiol 2023. [PMID: 37247424 DOI: 10.1002/jobm.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Toxin-antitoxin (TA) systems, present in plasmids and bacterial chromosomes, are widespread in bacteria such as Bacillus subtilis and are known to be involved in growth regulation, bacterial tolerance to environmental stress conditions as well as biofilm formation. The aim of the current study was to investigate the role of TA systems in drought condition stress in B. subtilis isolates. The presence of TA systems including mazF/mazE and yobQ/yobR in B. subtilis (strain 168) was investigated using the polymerase chain reaction (PCR) method. TA system expression at 438 and 548 g/L of ethylene glycol concentrations was evaluated using real-time PCR method and sigB gene was used as internal control. The expression rate (fold change) of mazF toxin gene treated with 438 and 548 g/L of ethylene glycol was 6 and 8.4, respectively. This indicates an increase in the expression of this toxin in drought stress condition. Also, the fold change of mazE antitoxin in the treatment with 438 and 548 g/L of ethylene glycol was 8.6 and 5, respectively. While yobQ/yobR showed a decrease in expression in 438 and 548 g/L of ethylene glycol concentrations. So that the highest expression reduction (8.3) was observed for yobQ gene at the concentration of 548 g/L of ethylene glycol. Results of this study revealed the significant role of B. subtilis TA systems in drought stress which can be considered as the resistance mechanism of this bacterium under stress conditions.
Collapse
Affiliation(s)
- Rozhin Nasehi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
ArsR Family Regulator MSMEG_6762 Mediates the Programmed Cell Death by Regulating the Expression of HNH Nuclease in Mycobacteria. Microorganisms 2022; 10:microorganisms10081535. [PMID: 36013953 PMCID: PMC9416677 DOI: 10.3390/microorganisms10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed cell death (PCD) is the result of an intracellular program and is accomplished by a regulated process in both prokaryotic and eukaryotic organisms. Here, we report a programed cell death process in Mycobacterium smegmatis, an Actinobacteria species which involves a transcription factor and a DNase of the HNH family. We found that over-expression of an ArsR family member of the transcription factor, MSMEG_6762, leads to cell death. Transcriptome analysis revealed an increase in the genes' transcripts involved in DNA repair and homologous recombination, and in three members of HNH family DNases. Knockout of one of the DNase genes, MSMEG_1275, alleviated cell death and its over-expression of programmed cell death. Purified MSMEG_1275 cleaved the M. smegmatis DNA at multiple sites. Overall, our results indicate that the MSMEG_6762 affects cell death and is mediated, at least partially, by activation of the HNH nuclease expression under a stress condition.
Collapse
|
5
|
Ni M, Lin J, Gu J, Lin S, He M, Guo Y. Antitoxin CrlA of CrlTA Toxin-Antitoxin System in a Clinical Isolate Pseudomonas aeruginosa Inhibits Lytic Phage Infection. Front Microbiol 2022; 13:892021. [PMID: 35620101 PMCID: PMC9127804 DOI: 10.3389/fmicb.2022.892021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen in cystic fibrosis patients and immunocompromised individuals, and the toxin–antitoxin (TA) system is involved in bacterial virulence and phage resistance. However, the roles of TA systems in P. aeruginosa are relatively less studied and no phage Cro-like regulators were identified as TA components. Here, we identified and characterized a chromosome-encoded prophage Cro-like antitoxin (CrlA) in the clinical isolate P. aeruginosa WK172. CrlA neutralized the toxicity of the toxin CrlA (CrlT) which cleaves mRNA, and they formed a type II TA system. Specifically, crlA and crlT are co-transcribed and their protein products interact with each other directly. The autorepression of CrlA is abolished by CrlT through the formation of the CrlTA complex. Furthermore, crlTA is induced in the stationary phase, and crlA is expressed at higher levels than crlT. The excess CrlA inhibits the infection of lytic Pseudomonas phages. CrlA is widely distributed among Pseudomonas and in other bacterial strains and may provide antiphage activities.
Collapse
Affiliation(s)
- Muyang Ni
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei He
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
6
|
Bright R, Fernandes D, Wood J, Palms D, Burzava A, Ninan N, Brown T, Barker D, Vasilev K. Long-term antibacterial properties of a nanostructured titanium alloy surface: An in vitro study. Mater Today Bio 2021; 13:100176. [PMID: 34938990 DOI: 10.1016/j.mtbio.2021.100176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The demand for joint replacement and other orthopedic surgeries involving titanium implants is continuously increasing; however, 1%-2% of surgeries result in costly and devastating implant associated infections (IAIs). Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens known to colonise implants, leading to serious complications. Bioinspired surfaces with spike-like nanotopography have previously been shown to kill bacteria upon contact; however, the longer-term potential of such surfaces to prevent or delay biofilm formation is unclear. Hence, we monitored biofilm formation on control and nanostructured titanium disc surfaces over 21 days following inoculation with Pseudomonas aeruginosa and Staphylococcus aureus. We found a consistent 2-log or higher reduction in live bacteria throughout the time course for both bacteria. The biovolume on nanostructured discs was also significantly lower than control discs at all time points for both bacteria. Analysis of the biovolume revealed that for the nanostructured surface, bacteria was killed not just on the surface, but at locations above the surface. Interestingly, pockets of bacterial regrowth on top of the biomass occurred in both bacterial species, however this was more pronounced for S. aureus cultures after 21 days. We found that the nanostructured surface showed antibacterial properties throughout this longitudinal study. To our knowledge this is the first in vitro study to show reduction in the viability of bacterial colonisation on a nanostructured surface over a clinically relevant time frame, providing potential to reduce the likelihood of implant associated infections.
Collapse
Affiliation(s)
- Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Daniel Fernandes
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Anouck Burzava
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Neethu Ninan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Toby Brown
- Corin Australia, Pymble, NSW 2073, Australia
| | - Dan Barker
- Corin Australia, Pymble, NSW 2073, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| |
Collapse
|
7
|
Apura P, Gonçalves LG, Viegas SC, Arraiano CM. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol 2021; 14:2316-2333. [PMID: 34427985 PMCID: PMC8601179 DOI: 10.1111/1751-7915.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
The development of synthetic biology has brought an unprecedented increase in the number molecular tools applicable into a microbial chassis. The exploration of such tools into different bacteria revealed not only the challenges of context dependency of biological functions but also the complexity and diversity of regulatory layers in bacterial cells. Most of the standardized genetic tools and principles/functions have been mostly based on model microorganisms, namely Escherichia coli. In contrast, the non-model pseudomonads lack a deeper understanding of their regulatory layers and have limited molecular tools. They are resistant pathogens and promising alternative bacterial chassis, making them attractive targets for further studies. Ribonucleases (RNases) are key players in the post-transcriptional control of gene expression by degrading or processing the RNA molecules in the cell. These enzymes act according to the cellular requirements and can also be seen as the recyclers of ribonucleotides, allowing a continuous input of these cellular resources. This makes these post-transcriptional regulators perfect candidates to regulate microbial physiology. This review summarizes the current knowledge and unique properties of ribonucleases in the world of pseudomonads, taking into account genomic context analysis, biological function and strategies to use ribonucleases to improve biotechnological processes.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Luis G. Gonçalves
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| |
Collapse
|
8
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
9
|
Av Sá LGD, Silva CRD, de A Neto JB, Cândido TM, de Oliveira LC, do Nascimento FB, Barroso FD, da Silva LJ, de Mesquita JR, de Moraes MO, Cavalcanti BC, Júnior HV. Etomidate inhibits the growth of MRSA and exhibits synergism with oxacillin. Future Microbiol 2020; 15:1611-1619. [PMID: 33215536 DOI: 10.2217/fmb-2020-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The purpose of this study was to evaluate the antimicrobial activity of the anesthetic etomidate against strains of MRSA and biofilms. Materials & methods: The antibacterial effect of etomidate was assessed by the broth microdilution method. To investigate the probable action mechanism of the compound flow cytometry techniques were used. Results: MRSA strains showed MIC equal to 500 and 1000 μg/ml of etomidate. Four-fifths (80%) of the tested MRSA strains demonstrated synergistic effect with oxacillin. Etomidate also showed activity against MRSA biofilm at concentration of 250 μg/ml. Cytometric analysis revealed that the cells treated with etomidate leading to cell death, probably by apoptosis. Conclusion: Etomidate showed antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Lívia G do Av Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília R da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João B de A Neto
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,University Center Christus, Fortaleza, CE, Brazil
| | - Thiago M Cândido
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Leilson C de Oliveira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Bsa do Nascimento
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Dd Barroso
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra J da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Manoel O de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vn Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Evaluation of Putative Type II Toxin-Antitoxin Systems and Lon Protease Expression in Shigella flexneri Following Infection of Caco-2 Cells. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.98625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
: Shigella flexneri causes bacillary dysentery in developing countries. Due to recent reports regarding antimicrobial resistance in human S. flexneri, finding alternative therapeutics is of vital importance. Toxin-antitoxin (TA) systems have recently been introduced as antimicrobial targets owing to their involvement in bacterial survival in stress conditions and “persister” cell formation. In this study, the presence of four TA loci were studied in S. flexneri ATCC 12022. The presence of genes coding for the identified TA loci and Lon protease were confirmed by the PCR method using specific primers. Caco-2 cell lines were then infected with this standard strain, and 8 and 24 h post-infection, expression levels of genes coding for the studied TA loci, and Lon protease were evaluated using a real-time PCR method. Expression of mazF, GNAT (Gcn5-related N-acetyltransferase), yeeU, pfam13975, and Lon genes showed 5.4, 9.8, 2.3, 2.7, and 13.8-fold increase, respectively, 8 h after bacterial invasion of the Caco-2 cell line. In addition, the expression of the aforementioned genes showed 4.8, 10.8, 2.3, 3.7, and 16.8-fold increase after 24 h. The GNAT and lon genes showed significantly higher expression levels compared to the control (P value < 0.05). However, the increase in the expression level of yeeU was the same at 8 h and 24 h post-infection. In addition, mazF expression level showed a slight decrease at 24 h compared to 8h post-infection. Genes coding for GNAT and Lon protease showed a significantly higher expression after invading the Caco-2 cell line. Therefore, targeting GNAT or Lon protease can be taken into consideration for finding novel antimicrobial drug strategies. The exact functions and mechanisms of TA systems in S. flexneri isolates are suggested to be experimentally determined.
Collapse
|
11
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
12
|
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance. Toxins (Basel) 2019; 11:toxins11120706. [PMID: 31817272 PMCID: PMC6950475 DOI: 10.3390/toxins11120706] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022] Open
Abstract
Microcystis is the most common freshwater bloom-forming cyanobacteria. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when cell-bound MCs are significantly released from the dying Microcystis into the water column. Managing Microcystis blooms thus requires sufficient knowledge regarding both the cell death modes and the release of toxins. Recently, more and more studies have demonstrated the occurrence of programmed cell death-like (or apoptosis-like) events in laboratory and field samples of Microcystis. Apoptosis is a genetically controlled process that is essential for the development and survival of metazoa; however, it has been gradually realized to be an existing phenomenon playing important ecological roles in unicellular microorganisms. Here, we review the current progress and the existing knowledge gap regarding apoptosis-like death in Microcystis. Specifically, we focus first on the tools utilized to characterize the apoptosis-related biochemical and morphological features in Microcystis. We further outline various stressful stimuli that trigger the occurrence of apoptosis and discuss the potential mechanisms of apoptosis in Microcystis. We then propose a conceptual model to describe the functional coupling of apoptosis and MC in Microcystis. This model could be useful for understanding both roles of MC and apoptosis in this species. Lastly, we conclude the review by highlighting the current knowledge gap and considering the direction of future research. Overall, this review provides a recent update with respect to the knowledge of apoptosis in Microcystis and also offers a guide for future investigations of its ecology and survival strategies.
Collapse
|
13
|
Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Shaku M, Park JH, Inouye M, Yamaguchi Y. Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence. J Mol Microbiol Biotechnol 2019; 28:269-280. [PMID: 30893701 DOI: 10.1159/000497146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022] Open
Abstract
MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.
Collapse
Affiliation(s)
- Mao Shaku
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan, .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,
| |
Collapse
|
15
|
Coskun USS, Cicek AC, Kilinc C, Guckan R, Dagcioglu Y, Demir O, Sandalli C. Effect of mazEF, higBA and relBE toxin-antitoxin systems on antibiotic resistance in Pseudomonas aeruginosa and Staphylococcus isolates. Malawi Med J 2019; 30:67-72. [PMID: 30627331 PMCID: PMC6307074 DOI: 10.4314/mmj.v30i2.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background A toxin-antitoxin (TA) system is a set of two or more closely linked genes that are encoded as a poison and a corresponding antidote on a protein. In typical bacterial physiology, an antitoxin binds to a toxin and neutralizes it, which prevents the bacterium from killing itself. We aimed to determine whether P.aeruginosa and Staphylococcus isolates have TA genes and to investigate whether there is a relationship between the expression levels of TA genes and resistance to antibiotics. Methods This study included 92 P. aeruginosa and 148 Staphylococcus isolates. RelBE, higBA genes were investigated in P.aeruginosa by multiplex polymerase chain reaction (PCR). The mazEF gene and the all TA genes expression were detected by real time PCR. Results RelBE and higBA genes were detected in 100% of P. aeruginosa. It was found that the level of relBE TA gene expression is increased in isolates sensitive to aztreonam compared to resistant isolates (p<0.05). The mazEF gene was detected in 89.1% of Staphylococcus isolates. In terms of MazEF gene expression level there was no significant difference between methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates (p>0.05) whereas there was a significant difference between MSSA and coagulase-negative Staphylococcus (CNS) isolates, MRSA and CNS isolates (p<0.05). The levels of mazEF gene expression were found to be higher in isolates sensitive to gentamicin, ciprofloxacin, levofloxacin, clindamycin, phosphomycine, nitrofurantoin, fusidic acid, cefoxitin compared to resistant isolates (p<0.05). Conclusion Studies on the prevalence and functionality of TA systems emphasize that it may be possible to have new sensitive regions in bacteria by activating TA systems. The results of this study lead to the idea that resistance to antibiotics can be reduced by increasing TA gene expression levels. But there is need for further studies to support and develop this issue.
Collapse
Affiliation(s)
- Umut Safiye Say Coskun
- Gaziosmanpasa University Faculty of Medicine, Department of Medical Microbiology, Turkey
| | - Aysegul Copur Cicek
- Recep Tayyip Erdoğan University Faculty of Medicine, Department of Medical Microbiology, Turkey
| | - Cetin Kilinc
- Amasya University Sabuncuoglu Serafeddin Training and Research Hospital, Department of Microbiology, Turkey
| | - Ridvan Guckan
- Amasya University Sabuncuoglu Serafeddin Training and Research Hospital, Department of Microbiology, Turkey
| | - Yelda Dagcioglu
- Gaziosmanpasa Universirty Training And Research Hospital, Microbiology Laboratory, Turkey
| | - Osman Demir
- Gaziosmanpasa University School of Medicine, Department of Biostatistics, Turkey
| | - Cemal Sandalli
- Recep Tayyip Erdoğan University Faculty of Medicine, Department of Medical Microbiology, Turkey
| |
Collapse
|
16
|
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins (Basel) 2018; 10:toxins10120515. [PMID: 30518070 PMCID: PMC6315513 DOI: 10.3390/toxins10120515] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Collapse
|
17
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Noor Mohammadi T, Maung A, Sato J, Sonoda T, Masuda Y, Honjoh K, Miyamoto T. Mechanism for antibacterial action of epigallocatechin gallate and theaflavin-3,3′-digallate on Clostridium perfringens. J Appl Microbiol 2018; 126:633-640. [DOI: 10.1111/jam.14134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- T. Noor Mohammadi
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - A.T. Maung
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - J. Sato
- Safety Science Research; R&D; Kao Corporation; Ichikai-Machi Tochigi Japan
| | - T. Sonoda
- Safety Science Research; R&D; Kao Corporation; Ichikai-Machi Tochigi Japan
| | - Y. Masuda
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - K. Honjoh
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - T. Miyamoto
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| |
Collapse
|
19
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
20
|
Ramisetty BCM, Santhosh RS. Endoribonuclease type II toxin-antitoxin systems: functional or selfish? MICROBIOLOGY-SGM 2017; 163:931-939. [PMID: 28691660 DOI: 10.1099/mic.0.000487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most bacterial genomes have multiple type II toxin-antitoxin systems (TAs) that encode two proteins which are referred to as a toxin and an antitoxin. Toxins inhibit a cellular process, while the interaction of the antitoxin with the toxin attenuates the toxin's activity. Endoribonuclease-encoding TAs cleave RNA in a sequence-dependent fashion, resulting in translational inhibition. To account for their prevalence and retention by bacterial genomes, TAs are credited with clinically significant phenomena, such as bacterial programmed cell death, persistence, biofilms and anti-addiction to plasmids. However, the programmed cell death and persistence hypotheses have been challenged because of conceptual, methodological and/or strain issues. In an alternative view, chromosomal TAs seem to be retained by virtue of addiction at two levels: via a poison-antidote combination (TA proteins) and via transcriptional reprogramming of the downstream core gene (due to integration). Any perturbation in the chromosomal TA operons could cause fitness loss due to polar effects on the downstream genes and hence be detrimental under natural conditions. The endoribonucleases encoding chromosomal TAs are most likely selfish DNA as they are retained by bacterial genomes, even though TAs do not confer a direct advantage via the TA proteins. TAs are likely used by various replicons as 'genetic arms' that allow the maintenance of themselves and associated genetic elements. TAs seem to be the 'selfish arms' that make the best use of the 'arms race' between bacterial genomes and plasmids.
Collapse
|
21
|
Tsang J. Bacterial plasmid addiction systems and their implications for antibiotic drug development. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2017; 5:3-9. [PMID: 28781980 PMCID: PMC5542005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria frequently carry mobile genetic elements capable of being passed to other bacterial cells. An example of this is the transfer of plasmids (small, circular DNA molecules) that often contain antibiotic resistance genes from one bacterium to another. Plasmids have evolved mechanisms to ensure their survival through generations by employing plasmids segregation and replication machinery and plasmid addiction systems. Plasmid addiction systems utilize a post-segregational killing of cells that have not received a plasmid. In this review, the types of plasmid addiction systems are described as well as their prevalence in antibiotic resistant bacteria. Lastly, the possibility of targeting these plasmid addiction systems for the treatment of antibiotic resistant bacterial infections is explored.
Collapse
Affiliation(s)
- Jennifer Tsang
- Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| |
Collapse
|
22
|
Burbank LP, Stenger DC. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine. PHYTOPATHOLOGY 2017; 107:388-394. [PMID: 27938243 DOI: 10.1094/phyto-10-16-0374-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| |
Collapse
|
23
|
Chan WT, Espinosa M. The Streptococcus pneumoniae pezAT Toxin-Antitoxin System Reduces β-Lactam Resistance and Genetic Competence. Front Microbiol 2016; 7:1322. [PMID: 27610103 PMCID: PMC4997998 DOI: 10.3389/fmicb.2016.01322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Chromosomally encoded Type II Toxin–Antitoxin operons are ubiquitous in bacteria and archaea. Antitoxins neutralize the toxic effect of cognate Toxins by protein–protein interactions and sequestering the active residues of the Toxin. Toxins target essential bacterial processes, mostly translation and replication. However, one class apart is constituted by the PezAT pair because the PezT toxin target cell wall biosynthesis. Here, we have examined the role of the pezAT toxin–antitoxin genes in its natural host, the pathogenic bacterium Streptococcus pneumoniae. The pezAT operon on Pneumococcal Pathogenicity Island 1 was deleted from strain R6 and its phenotypic traits were compared with those of the wild type. The mutant cells formed shorter chains during exponential phase, leading to increased colony-forming units. At stationary phase, the mutant was more resilient to lysis. Importantly, the mutant exhibited higher resistance to antibiotics targeting cell walls (β-lactams), but not to antibiotics acting at other levels. In addition, the mutants also showed enhanced genetic competence. We suggest that PezAT participates in a subtle equilibrium between loss of functions (resistance to β-lactams and genetic competence) and gain of other traits (virulence).
Collapse
Affiliation(s)
- Wai T Chan
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
24
|
Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways. Toxins (Basel) 2016; 8:toxins8070214. [PMID: 27409636 PMCID: PMC4963847 DOI: 10.3390/toxins8070214] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation. An understanding of these processes can answer long-standing questions regarding stochastic versus specific activation of TA modules and provide insight into the potential for manipulation of TA modules to alter bacterial growth.
Collapse
|
25
|
Ramisetty BCM, Raj S, Ghosh D. Escherichia coli MazEF toxin-antitoxin system does not mediate programmed cell death. J Basic Microbiol 2016; 56:1398-1402. [PMID: 27259116 DOI: 10.1002/jobm.201600247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022]
Abstract
Toxin-antitoxins systems (TAS) are prokaryotic operons containing two small overlapping genes which encode two components referred to as toxin and antitoxin. Involvement of TAS in bacterial programmed cell death (PCD) is highly controversial. MazEF, a typical type II TAS, is particularly implicated in mediating PCD in Escherichia coli. Hence, we compared the metabolic fitness and stress tolerance of E. coli strains (MC4100 and its mazEF-derivative) which were extensively used by proponents of mazEF-mediated PCD. We found that both the strains are deficient in relA gene and that the ΔmazEF strain has lower fitness and stress tolerance compared to wild type MC4100. We could not reproduce mazEF mediated PCD which emphasizes the need for skeptic approach to the PCD hypothesis.
Collapse
Affiliation(s)
| | - Swati Raj
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Dimpy Ghosh
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, India
| |
Collapse
|
26
|
Müller C, Sokol L, Vesper O, Sauert M, Moll I. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Antibiotics (Basel) 2016; 5:E19. [PMID: 27258317 PMCID: PMC4929434 DOI: 10.3390/antibiotics5020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The bacteriostatic aminoglycoside antibiotic kasugamycin inhibits protein synthesis at an initial step without affecting translation elongation. It binds to the mRNA track of the ribosome and prevents formation of the translation initiation complex on canonical mRNAs. In contrast, translation of leaderless mRNAs continues in the presence of the drug in vivo. Previously, we have shown that kasugamycin treatment in E. coli stimulates the formation of protein-depleted ribosomes that are selective for leaderless mRNAs. Here, we provide evidence that prolonged kasugamycin treatment leads to selective synthesis of specific proteins. Our studies indicate that leaderless and short-leadered mRNAs are generated by different molecular mechanisms including alternative transcription and RNA processing. Moreover, we provide evidence for ribosome heterogeneity in response to kasugamycin treatment by alteration of the modification status of the stalk proteins bL7/L12.
Collapse
Affiliation(s)
- Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Lena Sokol
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
27
|
Jia H, Sun X, Sun H, Li C, Wang Y, Feng X, Li C. Intelligent Microbial Heat-Regulating Engine (IMHeRE) for Improved Thermo-Robustness and Efficiency of Bioconversion. ACS Synth Biol 2016; 5:312-20. [PMID: 26793993 DOI: 10.1021/acssynbio.5b00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth and production of microorganisms in bioconversion are often hampered by heat stress. In this study, an intelligent microbial heat-regulating engine (IMHeRE) was developed and customized to improve the thermo-robustness of Escherichia coli via the integration of a thermotolerant system and a quorum-regulating system. At the cell level, the thermotolerant system composed of different heat shock proteins and RNA thermometers hierarchically expands the optimum temperature by sensing heat changes. At the community level, the quorum-regulating system dynamically programs the altruistic sacrifice of individuals to reduce metabolic heat release by sensing the temperature and cell density. Using this hierarchical, dynamical, and multilevel regulation, the IMHeRE is able to significantly improve cell growth and production. In a real application, the production of lysine was increased 5-fold at 40 °C using the IMHeRE. Our work provides new potential for the development of bioconversion by conserving energy and increasing productivity.
Collapse
Affiliation(s)
- Haiyang Jia
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangying Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huan Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chenyi Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yunqian Wang
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xudong Feng
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chun Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- State
Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
28
|
Kim S, Corvaglia AR, Léo S, Cheung A, Francois P. Characterization of RNA Helicase CshA and Its Role in Protecting mRNAs and Small RNAs of Staphylococcus aureus Strain Newman. Infect Immun 2016; 84:833-44. [PMID: 26755161 PMCID: PMC4771345 DOI: 10.1128/iai.01042-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
The toxin MazFsa in Staphylococcus aureus is a sequence-specific endoribonuclease that cleaves the majority of the mRNAs in vivo but spares many essential mRNAs (e.g., secY mRNA) and, surprisingly, an mRNA encoding a regulatory protein (i.e., sarA mRNA). We hypothesize that some mRNAs may be protected by RNA-binding protein(s) from degradation by MazFsa. Using heparin-Sepharose-enriched fractions that hybridized to sarA mRNA on Northwestern blots, we identified among multiple proteins the DEAD box RNA helicase CshA (NWMN_1985 or SA1885) by mass spectroscopy. Purified CshA exhibits typical RNA helicase activities, as exemplified by RNA-dependent ATPase activity and unwinding of the DNA-RNA duplex. A severe growth defect was observed in the cshA mutant compared with the parent when grown at 25°C but not at 37°C. Activation of MazFsa in the cshA mutant resulted in lower CFU per milliliter accompanied by a precipitous drop in viability (∼40%) compared to those of the parent and complemented strains. NanoString analysis reveals diminished expression of a small number of mRNAs and 22 small RNAs (sRNAs) in the cshA mutant versus the parent upon MazFsa induction, thus implying protection of these RNAs by CshA. In the case of the sRNA teg049 within the sarA locus, we showed that the protective effect was likely due to transcript stability as revealed by reduced half-life in the cshA mutant versus the parent. Accordingly, CshA likely stabilizes selective mRNAs and sRNAs in vivo and as a result enhances S. aureus survival upon MazFsa induction during stress.
Collapse
Affiliation(s)
- Samin Kim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Anna-Rita Corvaglia
- Genomic Research Lab, Services of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Stefano Léo
- Genomic Research Lab, Services of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Ambrose Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Patrice Francois
- Genomic Research Lab, Services of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
29
|
Libertini G. Phylogeny of aging and related phenoptotic phenomena. BIOCHEMISTRY (MOSCOW) 2015; 80:1529-46. [DOI: 10.1134/s0006297915120019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Sci Rep 2015; 5:13125. [PMID: 26272287 PMCID: PMC4536659 DOI: 10.1038/srep13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in Escherichia coli and various other bacteria. However, their presence in the genome of Streptococcus suis, an important zoonotic pathogen, has received little attention. In this study, we describe the identification and characterization of a type II TA system, comprising the chromosomal yefM-yoeB locus of S. suis. The yefM-yoeB locus is present in the genome of most serotypes of S. suis. Overproduction of S. suis YoeB toxin inhibited the growth of E. coli, and the toxicity of S. suis YoeB could be alleviated by the antitoxin YefM from S. suis and Streptococcus pneumoniae, but not by E. coli YefM. More importantly, introduction of the S. suis yefM-yoeB system into E. coli could affect cell growth. In a murine infection model, deletion of the yefM-yoeB locus had no effect on the virulence of S. suis serotype 2. Collectively, our data suggested that the yefM-yoeB locus of S. suis is an active TA system without the involvement of virulence.
Collapse
|
31
|
Lee IG, Lee SJ, Chae S, Lee KY, Kim JH, Lee BJ. Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides. Nucleic Acids Res 2015; 43:7624-37. [PMID: 26150422 PMCID: PMC4551927 DOI: 10.1093/nar/gkv689] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis VapC30 toxin regulates cellular growth through both magnesium and manganese ion-dependent ribonuclease activity and is inhibited by the cognate VapB30 antitoxin. We also determined the 2.7-Å resolution crystal structure of the M. tuberculosis VapBC30 complex, which revealed a novel process of inactivation of the VapC30 toxin via swapped blocking by the VapB30 antitoxin. Our study on M. tuberculosis VapBC30 leads us to design two kinds of VapB30 and VapC30-based novel peptides which successfully disrupt the toxin-antitoxin complex and thus activate the ribonuclease activity of the VapC30 toxin. Our discovery herein possibly paves the way to treat tuberculosis for next generation.
Collapse
Affiliation(s)
- In-Gyun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Sang Jae Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Susanna Chae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
32
|
Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, Khosravi A, Ramli R, Hamat RA. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2553-61. [PMID: 26005332 PMCID: PMC4428366 DOI: 10.2147/dddt.s77263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
Collapse
Affiliation(s)
- Sara Soheili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morovat Taherikalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ramliza Ramli
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
33
|
Andrukov BG, Somova LM, Timchenko NF. STRATEGY OF PROGRAMMED CELL DEATH IN PROKARYOTES. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2015. [DOI: 10.15789/2220-7619-2015-1-15-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Programmed cell death (PCD) was first studied in eukaryotic organisms. This system also operates in the development life cycle of prokaryotes. The system PCD in microorganisms is activated a wide range of signals in response to the stresses associated with adverse environmental conditions or exposure to antibacterial agents. The results of numerous studies in the past decade allow considering the system PCD in prokaryotes as an evolutionary conservation of the species. These results significantly expanded understanding of the role of PCD in microorganisms and opened a number of important areas of research of the morphological and molecular genetic approaches to the study of death strategies for the survival in bacterial populations. The purpose of the review is to summarize the morphological and molecular genetic characteristics of PCD in prokaryotes which are real manifestations of the mechanisms of this phenomenon.
Collapse
|
34
|
Yan Z, Li G, Gao Y, Zhai W, Qi Y, Zhai M. The extracellular death factor (EDF) protects Escherichia coli by scavenging hydroxyl radicals induced by bactericidal antibiotics. SPRINGERPLUS 2015; 4:182. [PMID: 25932369 PMCID: PMC4411399 DOI: 10.1186/s40064-015-0968-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/06/2015] [Indexed: 01/17/2023]
Abstract
The newly discovered extracellular death factor (EDF) is a pentapeptide with the sequence NNWNN in Escherichia coli. It was reported that it participated in the cell death process mediated by toxin-antitoxin system mazEF. Reactive oxygen species (ROS) are recently considered as common factors for bactericidal antibiotics-mediated cell death. Previous study indicated that EDF could scavenge hydroxyl radicals and might act as a signal molecule with dual effects, "death" and "survival". But the structure-activity relationship of EDF and the effects of EDF on the activity of antibiotics remain unclear. In the present study, our results indicated that tryptophan could be the key residue to the hydroxyl radicals-scavenging activity of EDF, and EDF could protect Escherichia coli from killing by bactericidal antibiotics, but not by DNA-damaging or bacteriostatic antibiotics. Our results could provide novel evidence to understand the role of EDF in drug-resistance.
Collapse
Affiliation(s)
- Zhongyi Yan
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| |
Collapse
|
35
|
Citterio B, Albertini MC, Ghibelli L, Falcieri E, Battistelli M, Canonico B, Rocchi MBL, Teodori L, Ciani M, Piatti E. Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae. Arch Microbiol 2015; 197:773-80. [PMID: 25868793 DOI: 10.1007/s00203-015-1110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023]
Abstract
In Saccharomyces cerevisiae, a typical apoptotic phenotype is induced by some stress factors such as sugars, acetic acid, hydrogen peroxide, aspirin and age. Nevertheless, no data have been reported for apoptosis induced by puromycin, a damaging agent known to induce apoptosis in mammalian cells. We treated S. cerevisiae with puromycin to induce apoptosis and evaluated the percentage of dead cells by using Hoechst 33342 staining, transmission electron microscopy (TEM) and Annexin V flow cytometry (FC) analysis. Hoechst 33342 fluorescence images were processed to acquire parameters to use for multiparameter analysis [and perform a principal component analysis, (PCA)]. Cell viability was evaluated by Rhodamine 123 (Rh 123) and Acridine Orange microscope fluorescence staining. The results show puromycin-induced apoptosis in S. cerevisiae, and the PCA analysis indicated that the increasing percentage of apoptotic cells delineated a well-defined graph profile. The results were supported by TEM and FC. This study gives new insights into yeast apoptosis using puromycin as inducer agent, and PCA analysis may complement molecular analysis facilitating further studies to its detection.
Collapse
Affiliation(s)
- Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol 2015; 11:182-8. [PMID: 25689336 DOI: 10.1038/nchembio.1754] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
Abstract
Bacteria have developed resistance against every antibiotic at a rate that is alarming considering the timescale at which new antibiotics are developed. Thus, there is a critical need to use antibiotics more effectively, extend the shelf life of existing antibiotics and minimize their side effects. This requires understanding the mechanisms underlying bacterial drug responses. Past studies have focused on survival in the presence of antibiotics by individual cells, as genetic mutants or persisters. Also important, however, is the fact that a population of bacterial cells can collectively survive antibiotic treatments lethal to individual cells. This tolerance can arise by diverse mechanisms, including resistance-conferring enzyme production, titration-mediated bistable growth inhibition, swarming and interpopulation interactions. These strategies can enable rapid population recovery after antibiotic treatment and provide a time window during which otherwise susceptible bacteria can acquire inheritable genetic resistance. Here, we emphasize the potential for targeting collective antibiotic tolerance behaviors as an antibacterial treatment strategy.
Collapse
|
37
|
Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015; 6:e1609. [PMID: 25611384 PMCID: PMC4669768 DOI: 10.1038/cddis.2014.570] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Programmed cell death is a process known to have a crucial role in many aspects of eukaryotes physiology and is clearly essential to their life. As a consequence, the underlying molecular mechanisms have been extensively studied in eukaryotes and we now know that different signalling pathways leading to functionally and morphologically different forms of death exist in these organisms. Similarly, mono-cellular organism can activate signalling pathways leading to death of a number of cells within a colony. The reason why a single-cell organism would activate a program leading to its death is apparently counterintuitive and probably for this reason cell death in prokaryotes has received a lot less attention in the past years. However, as summarized in this review there are many reasons leading to prokaryotic cell death, for the benefit of the colony. Indeed, single-celled organism can greatly benefit from multicellular organization. Within this forms of organization, regulation of death becomes an important issue, contributing to important processes such as: stress response, development, genetic transformation, and biofilm formation.
Collapse
|
38
|
Barbosa LCB, Garrido SS, Marchetto R. BtoxDB: a comprehensive database of protein structural data on toxin-antitoxin systems. Comput Biol Med 2015; 58:146-53. [PMID: 25656309 DOI: 10.1016/j.compbiomed.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Toxin-antitoxin (TA) systems are diverse and abundant genetic modules in prokaryotic cells that are typically formed by two genes encoding a stable toxin and a labile antitoxin. Because TA systems are able to repress growth or kill cells and are considered to be important actors in cell persistence (multidrug resistance without genetic change), these modules are considered potential targets for alternative drug design. In this scenario, structural information for the proteins in these systems is highly valuable. In this report, we describe the development of a web-based system, named BtoxDB, that stores all protein structural data on TA systems. METHODS The BtoxDB database was implemented as a MySQL relational database using PHP scripting language. Web interfaces were developed using HTML, CSS and JavaScript. The data were collected from the PDB, UniProt and Entrez databases. These data were appropriately filtered using specialized literature and our previous knowledge about toxin-antitoxin systems. RESULTS The database provides three modules ("Search", "Browse" and "Statistics") that enable searches, acquisition of contents and access to statistical data. Direct links to matching external databases are also available. CONCLUSIONS The compilation of all protein structural data on TA systems in one platform is highly useful for researchers interested in this content. BtoxDB is publicly available at http://www.gurupi.uft.edu.br/btoxdb.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- UFT - Federal University of Tocantins, Department of Biotechnology, Caixa Postal 66, Gurupi 77402-970, Tocantins, Brazil.
| | - Saulo Santesso Garrido
- UNESP - Universidade Estadual Paulista, Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Araraquara 14800-000, São Paulo, Brazil
| | - Reinaldo Marchetto
- UNESP - Universidade Estadual Paulista, Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Araraquara 14800-000, São Paulo, Brazil
| |
Collapse
|
39
|
Karimi S, Ghafourian S, Taheri Kalani M, Azizi Jalilian F, Hemati S, Sadeghifard N. Association between toxin-antitoxin systems and biofilm formation. Jundishapur J Microbiol 2014; 8:e14540. [PMID: 25789127 PMCID: PMC4350053 DOI: 10.5812/jjm.14540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Toxin-antitoxin (TA) systems are found on the chromosomes and plasmids of many Bacteria such as Escherichia coli. The roles of TA systems in bacteria are enigmatic. Multiple biological functions of TA systems are proposed including growth modulation, persistence, and biofilm formation. Biofilms of E. coli are cause of urinary tract infections, as well as bacteraemia. Objectives: The current study aimed to find the association between biofilm formation and toxin-antitoxin systems in clinical isolates of E. coli. Materials and Methods: A total of 150 E. coli isolates were evaluated for biofilm formation by Congo red agar medium (CRA) and microtiter plate assay and the presence of different TA systems including MazEF, RelBE, hipBA, ccdAB and MqsRA. Results: The results of the analysis revealed that 107 E. coli isolates were potent for biofilm formation by CRA. The findings by microtiter plates showed that 102 E. coli isolates were biofilm producers. The results indicated that 80%, 85%, 70%, 91% and 82% of the isolates possessed MazEF, RelBE, hipBA, ccdAB and MqsRA TA loci, respectively. Conclusions: The analysis recommended that TA genes are prevalent in clinical isolates of E. coli strains. The analysis revealed that hipBA TA system is associated with biofilm formation.
Collapse
Affiliation(s)
- Sajedeh Karimi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
| | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
| | - Morovat Taheri Kalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
| | - Farid Azizi Jalilian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
| | - Saeed Hemati
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran
- Corresponding author: Nourkhoda Sadeghifard, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, IR Iran. Tel: +98-8412227101, Fax: +98-8412227136, E-mail:
| |
Collapse
|
40
|
Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, Neela V. The mazEF toxin-antitoxin system as a novel antibacterial target in Acinetobacter baumannii. Mem Inst Oswaldo Cruz 2014; 109:502-5. [PMID: 25004148 PMCID: PMC4155857 DOI: 10.1590/0074-0276130601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems' locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
Collapse
Affiliation(s)
- Sobhan Ghafourian
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Liam Good
- Pathology and Pathogen Biology, Royal Veterinary College, University of London, London, United Kingdom
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sara Soheili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vasanthakumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
41
|
Abstract
Genetically programmed death of an organism, or phenoptosis, can be found not only in animals and plants, but also in bacteria. Taking into account intrapopulational relations identified in bacteria, it is easy to imagine the importance of phenoptosis in the regulation of a multicellular bacterial community in the real world of its existence. For example, autolysis of part of the population limits the spread of viral infection. Destruction of cells with damaged DNA contributes to the maintenance of low level of mutations. Phenoptosis can facilitate the exchange of genetic information in a bacterial population as a result of release of DNA from lysed cells. Bacteria use a special "language" to transmit signals in a population; it is used for coordinated regulation of gene expression. This special type of regulation of bacterial gene expression is usually active at high densities of bacteria populations, and it was named "quorum sensing" (QS). Different molecules can be used for signaling purposes. Phenoptosis, which is carried out by toxin-antitoxin systems, was found to depend on the density of the population; it requires a QS factor, which is called the extracellular death factor. The study of phenoptosis in bacteria is of great practical importance. The components that make up the systems ensuring the programmed cell death, including QS factor, may be used for the development of drugs that will activate mechanisms of phenoptosis and promote the destruction of pathogenic bacteria. Comparative genomic analysis revealed that the genes encoding several key enzymes involved in apoptosis of eukaryotes, such as paracaspases and metacaspases, apoptotic ATPases, proteins containing NACHT leucine-rich repeat, and proteases similar to mitochondrial HtrA-like protease, have homologs in bacteria. Proteomics techniques have allowed for the first time to identify the proteins formed during phenoptosis that participate in orderly liquidation of Streptomyces coelicolor and Escherichia coli cells. Among these proteins enzymes have been found that are involved in the degradation of cellular macromolecules, regulatory proteins, and stress-induced proteins. Future studies involving methods of biochemistry, genetics, genomics, proteomics, transcriptomics, and metabolomics should support a better understanding of the "mystery" of bacterial programmed cell death; this knowledge might be used to control bacterial populations.
Collapse
Affiliation(s)
- O A Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
42
|
Im H, Jang SB, Pathak C, Yang YJ, Yoon HJ, Yu TK, Suh JY, Lee BJ. Crystal structure of toxin HP0892 from Helicobacter pylori with two Zn(II) at 1.8 Å resolution. Protein Sci 2014; 23:819-32. [PMID: 24677509 DOI: 10.1002/pro.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/05/2014] [Accepted: 03/22/2014] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance and microorganism virulence have been consistently exhibited by bacteria and archaea, which survive in conditions of environmental stress through toxin-antitoxin (TA) systems. The HP0892-HP0893 TA system is one of the two known TA systems belonging to Helicobacter pylori. The antitoxin, HP0893, binds and inhibits the HP0892 toxin and regulates the transcription of the TA operon. Here, we present the crystal structure of the zinc-bound HP0892 toxin at 1.8 Å resolution. Reorientation of residues at the mRNase active site was shown. The involved residues, namely E58A, H86A, and H58A/ H60A, were mutated and the binding affinity was monitored by ITC studies. Through the structural difference between the apo and the metal-bound state, and using a homology modeling tool, the involvement of the metal ion in mRNase active site could be identified. The most catalytically important residue, His86, reorients itself to exhibit RNase activity. His47, Glu58, and His60 are involved in metal binding where Glu58 acts as a general base and His47 and His60 may also act as a general acid in enzymatic activity. Glu58 and Asp64 are involved in substrate binding and specific sequence recognition. Arg83 is involved in phosphate binding and stabilization of the transition state, and Phe90 is involved in base packing and substrate orientation.
Collapse
Affiliation(s)
- Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sadeghifard N, Soheili S, Sekawi Z, Ghafourian S. Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis? GMS HYGIENE AND INFECTION CONTROL 2014; 9:Doc05. [PMID: 24653969 PMCID: PMC3960931 DOI: 10.3205/dgkh000225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci.
Collapse
Affiliation(s)
| | - Sara Soheili
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| | - Sobhan Ghafourian
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| |
Collapse
|
44
|
Tripathi A, Dewan PC, Siddique SA, Varadarajan R. MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 2014; 289:4191-205. [PMID: 24375411 PMCID: PMC3924284 DOI: 10.1074/jbc.m113.510511] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/24/2013] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.
Collapse
Affiliation(s)
- Arti Tripathi
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Pooja C. Dewan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Shahbaz A. Siddique
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P. O., Bangalore 560 004, India
| |
Collapse
|
45
|
Alvin A, Miller KI, Neilan BA. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 2014; 169:483-95. [PMID: 24582778 PMCID: PMC7126926 DOI: 10.1016/j.micres.2013.12.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/03/2022]
Abstract
Natural product drug discovery has regained interest due to low production costs, structural diversity, and multiple uses of active compounds to treat various diseases. Attention has been directed towards medicinal plants as these plants have been traditionally used for generations to treat symptoms of numerous diseases. It is established that plants harbour microorganisms, collectively known as endophytes. Exploring the as-yet untapped natural products from the endophytes increases the chances of finding novel compounds. The concept of natural products targeting microbial pathogens has been applied to isolate novel antimycobacterial compounds, and the rapid development of drug-resistant Mycobacterium tuberculosis has significantly increased the need for new treatments against this pathogen. It remains important to continuously screen for novel compounds from natural sources, particularly from rarely encountered microorganisms, such as the endophytes. This review focuses on bioprospecting for polyketides and small peptides exhibiting antituberculosis activity, although current treatments against tuberculosis are described. It is established that natural products from these structure classes are often biosynthesised by microorganisms. Therefore it is hypothesised that some bioactive polyketides and peptides originally isolated from plants are in fact produced by their endophytes. This is of interest for further endophyte natural product investigations.
Collapse
Affiliation(s)
- Alfonsus Alvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristin I Miller
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
47
|
Naka K, Koga M, Yonesaki T, Otsuka Y. RNase HI stimulates the activity of RnlA toxin in Escherichia coli. Mol Microbiol 2014; 91:596-605. [PMID: 24308852 DOI: 10.1111/mmi.12479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
A type II toxin-antitoxin system in Escherichia coli, rnlA-rnlB, functions as an anti-phage mechanism. RnlA is a toxin with an endoribonuclease activity and the cognate RnlB inhibits RnlA toxicity in E. coli cells. After bacteriophage T4 infection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs and consequently no T4 propagation, when T4 dmd is defective: Dmd is an antitoxin against RnlA for promoting own propagation. Previous studies suggested that the activation of RnlA after T4 infection was regulated by multiple components. Here, we provide the evidence that RNase HI is an essential factor for activation of RnlA. The dmd mutant phage could grow on ΔrnhA (encoding RNase HI) cells, in which RnlA-mediated mRNA cleavage activity was defective. RNase HI bound to RnlA in vivo and enhanced the RNA cleavage activity of RnlA in vitro. In addition, ectopic expression of RnlA in ΔrnlAB ΔrnhA cells has less effect on cell toxicity and RnlA-mediated mRNA degradation than in ΔrnlAB cells. This is the first example of a direct factor for activation of a toxin.
Collapse
Affiliation(s)
- Kenta Naka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka, 560-0043, Japan
| | | | | | | |
Collapse
|
48
|
Larson AS, Hergenrother PJ. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Biochemistry 2013; 53:188-201. [PMID: 24279911 DOI: 10.1021/bi4008098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Staphylococcus aureus chromosome harbors two homologues of the YefM-YoeB toxin-antitoxin (TA) system. The toxins YoeBSa1 and YoeBSa2 possess ribosome-dependent ribonuclease (RNase) activity in Escherichia coli. This activity is similar to that of the E. coli toxin YoeBEc, an enzyme that, in addition to ribosome-dependent RNase activity, possesses ribosome-independent RNase activity in vitro. To investigate whether YoeBSa1 is also a ribosome-independent RNase, we expressed YoeBSa1 using a novel strategy and characterized its in vitro RNase activity, sequence specificity, and kinetics. Y88 of YoeBSa1 was critical for in vitro activity and cell culture toxicity. This residue was mutated to o-nitrobenzyl tyrosine (ONBY) via unnatural amino acid mutagenesis. YoeBSa1-Y88ONBY could be expressed in the absence of the antitoxin YefMSa1 in E. coli. Photocaged YoeBSa1-Y88ONBY displayed UV light-dependent RNase activity toward free mRNA in vitro. The in vitro ribosome-independent RNase activity of YoeBSa1-Y88ONBY, YoeBSa1-Y88F, and YoeBSa1-Y88TAG was significantly reduced or abolished. In contrast to YoeBEc, which cleaves RNA at both adenosine and guanosine with a preference for adenosine, YoeBSa1 cleaved mRNA specifically at guanosine. Using this information, a fluorometric assay was developed and used to determine the kinetic parameters for ribosome-independent RNA cleavage by YoeBSa1.
Collapse
Affiliation(s)
- Amy S Larson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
49
|
Chen L, Xu Q, Tu J, Ge Y, Liu J, Liang FT. Increasing RpoS expression causes cell death in Borrelia burgdorferi. PLoS One 2013; 8:e83276. [PMID: 24358270 PMCID: PMC3865164 DOI: 10.1371/journal.pone.0083276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Collapse
Affiliation(s)
- Linxu Chen
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Yihe Ge
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
50
|
Połom D, Boss L, Węgrzyn G, Hayes F, Kędzierska B. Amino acid residues crucial for specificity of toxin-antitoxin interactions in the homologous Axe-Txe and YefM-YoeB complexes. FEBS J 2013; 280:5906-18. [PMID: 24028219 DOI: 10.1111/febs.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
Toxin-antitoxin complexes are ubiquitous in bacteria. The specificity of interactions between toxins and antitoxins from homologous but non-interacting systems was investigated. Based on molecular modeling, selected amino acid residues were changed to assess which positions were crucial in the specificity of toxin-antitoxin interaction in the related Axe-Txe and YefM-YoeB complexes. No cross-interactions between wild-type proteins were detected. However, a single amino acid substitution that converts a Txe-specific residue to a YoeB-specific residue reduced, but did not abolish, Txe interaction with the Axe antitoxin. Interestingly, this alteration (Txe-Asp83Tyr) promoted functional interactions between Txe and the YefM antitoxin. The interactions between Txe-Asp83Tyr and YefM were sufficiently strong to abolish Txe toxicity and to allow effective corepression by YefM-Txe-Asp83Tyr of the promoter from which yefM-yoeB is expressed. We conclude that Asp83 in Txe is crucial for the specificity of toxin-antitoxin interactions in the Axe-Txe complex and that swapping this residue for the equivalent residue in YoeB relaxes the specificity of the toxin-antitoxin interaction.
Collapse
Affiliation(s)
- Dorota Połom
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|